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Abstract: The direct oxidation of methane to methanol as a liquid fuel and chemical feedstock is
arguably the most desirable methane conversion pathway. Currently, constructing and understanding
linear scaling relationships between the fundamental physical or chemical properties of catalysts and
their catalytic performance to explore suitable descriptors is crucial for theoretical research on the
direct conversion of methane to methanol. In this review, we summarize the energy, electronic, and
structural descriptors used to predict catalytic activity. Fundamentally, these descriptors describe
the redox properties of active sites from different dimensions. We further explain the moderate
principle of descriptors in methane-to-methanol catalyst design and provide related application work.
Simultaneously, the underlying activity limitation of methane activation and active species generation
is revealed. Based on the selectivity descriptor, the inverse scaling relationship limitation between
methane conversion and methanol selectivity is quantitatively understood. Finally, multiscale
strategies are proposed to break the limitation and achieve the simultaneous enhancement of activity
and selectivity. This descriptor-based review provides theoretical insights and guidance to accelerate
the understanding, optimization, and design of efficient catalysts for direct methane-to-methanol
conversion.

Keywords: methane activation; direct oxidation to methanol; scaling relationship; descriptor;
conversion–selectivity limit

1. Introduction

Methane, with its large reserves and relatively low cost when obtained from natural
gas, coalbed methane, and shale gas, is arguably the most promising feedstock [1]. However,
most natural gas fields are located in remote regions, and some of the natural gas can only
be flared due to its low economic value, resulting in resource waste and environmental
pollution [2]. Direct methane-to-methanol conversion is the ideal way to significantly
reduce transportation and storage costs [3]. Methane is thermodynamically highly stable
and not easily activated, whereas methanol, with a lower C–H bond strength compared
to methane, is more susceptible to deep oxidation to CO2 with the same active sites [4].
Therefore, efficient methane activation while ensuring methanol selectivity is one of the
biggest challenges in the field of energy research [5].

Extensive efforts have been made to explore new catalytic systems and design strate-
gies for direct methanol production from methane under mild conditions with controlled
oxidation processes [6–8]. In particular, enzyme-mimetic single-site catalysts, with the
advantages of both heterogeneous and homogeneous catalysts, have excellent potential in
direct methane-to-methanol conversion [9]. Therefore, many enzyme-mimetic single-site
heterogeneous catalysts with different support types have been prepared, such as metal-
exchanged zeolites [10], metal-organic frameworks (MOFs) [11], two-dimensional (2D)
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nanomaterials [12], and others [13–15]. Increasing numbers of pioneering catalytic design
strategies with various combinations [16,17] of active site configurations, coordination
environments, and topological features have been proposed and validated. However, due
to the limitations arising from operando characterization techniques and the simultaneous
presence of various species under operating conditions, many relevant reaction mechanisms
have yet to be revealed [18].

Computational modeling has provided us with a powerful tool, especially in active
site identification, intermediate species determination, and reaction path construction [19].
Currently, one of the crucial goals in computational catalysis is to establish and understand
structure–activity relationships between the fundamental properties of catalytic materi-
als and their catalytic performance [20], as this understanding will lay the theoretical
foundation for achieving a more efficient and rational design of catalysts [21]. Therefore,
establishing linear scaling relationships between catalytic performance (e.g., activity, se-
lectivity, and stability) and the physical or chemical properties of the catalytic system
(e.g., energy changes, geometric structures, and electronic structures) as descriptors is
crucial [22].

Recently, significant advances have been made in descriptor-based theoretical work
on catalyst design for different reactions [23–25]. Based on suitable descriptors, complex
and high-dimensional variables in catalytic systems can be reduced to simplify the research
models [26,27], and catalyst optimization will be a more targeted process [28]. Subsequently,
the screening process and screening window [29] based on the scaling relationships and
descriptors can be established in order to quickly and accurately predict catalytic perfor-
mance, achieving the efficient screening of high-throughput catalysts [30]. At the same time,
we can quantitatively identify and understand the optimization laws and limitations [31]
of different regulation methods in catalyst design. Moreover, reasonable strategies to break
the limitations can be proposed to further improve catalytic performance [32].

Therefore, the present review focuses on the direct methane-to-methanol reaction to
summarize the progress of descriptor-based catalyst design. First, the energy, electronic,
and structural descriptors are summarized to predict catalytic activity. We further explain
the intrinsic correlation, the moderate principle, and the underlying limitations of activity
descriptors in methane-to-methanol catalyst design, and we provide related application
work. Furthermore, based on the selectivity descriptor, we can understand and provide
strategies to break the conversion–selectivity limit. Finally, based on pioneering multiscale
design work, we propose strategies combining multiple variables to break the existing
bottlenecks in order to achieve simultaneous improvement in the activity and selectivity of
direct methane-to-methanol conversion.

2. Methane Activation Mechanisms

The C–H bond breakage of methane is the critical step in direct methane-to-methanol
conversion. In heterogenous systems, reaction mechanisms for methane activation with
the C–H bond breakage in methane are mainly divided into homolytic and heterolytic
mechanisms [33,34] with the different properties of active sites and reaction pathways, as
seen in Figure 1.

2.1. Homolytic Mechanisms

Homolytic mechanisms involve hydrogen atom abstraction from CH4 via active
oxygen species in M–O active sites to form a free methyl radical and a hydrogen atom
adsorbed on the catalyst surface [35] with three-center linear transition states. In its
final state, the generated methyl radical has sp2 hybridization and a trigonal planar
geometry [36]. It cannot form M–C bonds with active sites and has weak interactions
with OH groups. Meanwhile, a one-electron redox process occurs, leading to the oxidation
of the carbon center from the −4 state to the −3 state and the corresponding reduction of
the active sites. The homolytic mechanisms generally require strong oxidizing oxidants
(e.g., H2O2 and N2O) [37,38] and high metal oxidation states to form electron-deficient
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species (e.g., O– and O2–) [39,40], resulting in promotion of the homolytic dissociation of
C–H bonds.
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2.2. Heterolytic Mechanisms

Heterolytic mechanisms generally use surface Lewis acid–base pairs (M–X) as ac-
tive sites to dissociate the adsorbed methane to produce CH3

– and H+ with four-center
quadrilateral transition states [34,41]. In the final state, the M metal atom stabilizes the
sp3-hybridized methyl group in a tetrahedral geometry via the σ–bond [42]. At the same
time, hydrogen protons are accepted through the X atom, including surface nucleophilic
oxygen species, surface metals, and ligands. Thus, the heterolytic mechanism is also called
the surface-stabilized mechanism [43]. Unlike homolytic mechanisms, the carbon and
active centers maintain unchanged oxidation states in heterolytic mechanisms [44]. Further-
more, the M–O active site, with a low metal oxidation state in the heterolytic mechanism,
is more favorable for the formation of electron-saturated oxygen atoms (O2–) [27,45] to
accept hydrogen protons and promote the heterolytic dissociation of C–H bonds. However,
although the two mechanisms have different characteristics, the accurate judgment of
the methane activation mechanism by various active sites still requires a comparison of
transition state energies [43].

In addition to homolytic and heterolytic mechanisms, several methane activation
processes can proceed through free radicals such as •OH [46]. However, the C–H bond
breakage process in these systems often occurs in the liquid phase or in gas environments
with free radicals, and the reaction performance is mainly determined by the concentra-
tion of free radicals generated on the catalyst. Meanwhile, there is no direct interaction
between methane with the active species on the catalyst. Therefore, this methane activation
mechanism will not be included in this review.

3. Activity Descriptors

Currently, no catalysts have been found for the direct conversion of methane to
methanol in industrial production [5,47]. This reaction process without deep oxidation is
extremely difficult due to kinetic and thermodynamic limitations [48]. C–H bond breakage
is the first prerequisite and challenge for direct methane conversion [49]. Thus, developing
activity descriptors with accessible properties of catalytic systems to understand the activity
of active sites is critical; these descriptors are based on scaling relationships [50,51]. With
suitable activity descriptors, we can directly judge whether catalysts have the capacity to
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activate methane and should be examined further by experimental and complete reaction
path calculations [52,53].

3.1. Activity Descriptors for Homolytic Mechanisms

The catalysts used via homolytic mechanisms mainly include zeolites, MOFs, and
2D materials, and have a similar methane active site (M–O), transition state (three-center
linear transition states), and final state (M–OH + •CH3). Therefore, in addition to the
traditional Bronsted–Evans–Polanyi (BEP) relationship [54], Latimer and co-workers [55]
demonstrated that hydrogen affinity energy (EH), which is defined as the energy difference
between M–OH and M–O in active sites, is a universal descriptor that can be used to predict
methane activation barriers (ETS) via homolytic mechanisms (Figure 2a). The linear scaling
relationship between ETS and EH indicates that active sites of methane activation with a
lower EH (i.e., a stronger O–H bond) will have more stable transition states to reduce ETS.
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Furthermore, the methane activation rate is only related to Gf (active site formation
energy which is the free energy of the oxidation process of reduced active sites, describing
the fraction of available active sites) and GH (describing the capacity of methane activation)
under specific temperature and pressure conditions. Meanwhile, Gf is linearly negatively
correlated with GH in two scaling lines (Figure 2c). The physical origin of these two lines is
due to the different charge delocalization abilities of substrates during the formation of the
active site. Therefore, a Gf-related volcano curve can be constructed to predict the methane
activation rate (Figure 2d). To reach the highest theoretical rate (i.e., the top of the volcano
curve), Gf should be approximately 0 eV to achieve the optimal balance between active site
coverage and methane activation ability. The volcano curve indicates that Cu-exchanged
zeolites and IrO2 are close to the summit of the volcano curve, and some of these catalysts
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have been experimentally proven to have excellent methane activation properties [42,56,57].
Therefore, the rationality of this volcanic relationship has been confirmed, which can serve
as an initial guide in methane conversion catalyst discovery with homolytic mechanisms.
Moreover, as shown in Figure 3, the oxygen vacancy formation energy (∆Evac) [58] is also
considered a predictor to evaluate methane activation energies in various oxide-based
catalysts, including doped MgO, doped CeO2, doped TiO2, TbOx with different oxidation
states, and TiO2 with various surface facets. It indicates that the more easily surfaces are
reduced (i.e., a lower ∆Evac), the stronger the catalyst’s ability to activate methane (i.e., a
lower ∆Eact).
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3.2. Activity Descriptors for Heterolytic Mechanisms

For most metal and metal oxide catalysts, unsaturated coordination metal sites can
stabilize methyl groups during methane activation via heterolytic mechanisms. Recently,
a generalized linear relationship was proposed by Latimer et al. [43] to evaluate the ETS
of methane heterolytic dissociation in terms of the final-state energy (EFS), which is de-
termined by the sum bond energies of H+ and CH3

– on the surface (Figure 4a). This
linear relationship is the result of the similar methane active site (M–X), transition state
(four-center transition states), and final state (M–CH3 + X–H). In the activation of methane
via heterolytic mechanisms, an active site with a lower EFS is more capable of stabilizing
the transition state with a lower ETS.

However, methane activation mechanisms (heterolytic or homolytic mechanisms)
in different catalysts must be correctly evaluated in advance to select the corresponding
suitable descriptor (EH or EFS) to calculate the transition energy (ETS). Thus, a simple
model has been formulated to predict the methane activation energy (Figure 4b) in a given
catalyst site. Using ETS calculated from the previously described universal homolytic (EH)
and heterolytic (EFS) descriptors, the lower of the two calculated results represents the
more accurate ETS. By the applicability of this model, we can achieve rapid judgment and
prediction of the methane activation mechanisms with the energy barriers, and evaluate
many different materials to discover more efficient catalysts. Furthermore, Fung et al.
demonstrated that the methane absorption energy (Eads) [59] can be used as the descriptor
to measure the low-temperature activity of methane heterolysis on M1-TiO2(110). The
stronger absorption of methane as a pre-activation state proves the enhanced charge and
orbital interactions of methane on TiO2 surfaces, facilitating methane heterolysis via the
lower activation energy. Computational studies predict that M1-TiO2(110) with Rh, Pd, Os,
Pt, and Ir atoms will realize low-temperature (<25 ◦C) methane activation.
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3.3. Additional Electronic and Structural Descriptors

Furthermore, although the above-mentioned energy descriptors via the adsorption
strength of different adsorbates can be used to depict the methane activation properties
of various active sites, it is crucial to identify the intrinsic properties of active sites or
components that contribute to these binding energies [60] in order to directly predict the
activity of methane conversion catalysts without computing additional energies.

For electronic descriptors, the spin density (ρO) of absorbed oxygen species has been
proposed as a common property influencing methane activation [61,62]. A higher spin
density indicates that the active oxygen species has more obvious free-radical characteristics
and thus a stronger ability to bind the hydrogen atom of methane with a lower activation
energy. Meanwhile, the M–O bond order can also be directly related to the stability of
active oxygen species (Ef) in various MOFs [63]. A lower M–O bond order corresponds to a
higher Ef and a lower methane activation energy. Moreover, Filonowich et al. [64] reported
that the charge of the active metal center, as an electronic activity descriptor, can predict
methane-to-methanol performance in phthalocyanine-/porphyrin-functionalized graphene
(GMPc/GMP) materials with different metal centers, doping substrates, and ligands. As
shown in Figure 5, as the charge of the metal center decreases, the methane activation
energy decreases linearly, and the oxygen species generation energy increases linearly. As a
result, GCoPc series catalysts represent an optimal candidate in direct methane-to-methanol
reactions.

Ideally, a more fundamental and straightforward descriptor is desired for activity
prediction on the basis of the element-related properties, requiring no additional calculation
costs [19,22]. Surprisingly, Zha et al. [65] demonstrated that the ionization energy of active
metal atoms as a descriptor is linearly proportional to the adsorption energy of absorbed
intermediates over many materials, including zeolites, graphene, transition metal oxides,
and single-site alloys. This descriptor is an intrinsic chemistry property of the specific
metal element, where a higher ionization energy will lead to a lower d band and filling
more electrons in the antibonding state, resulting in the lower adsorption energy of the
intermediates. The descriptor was successfully applied to direct methane-to-methanol
conversion. As displayed in Figure 6, with the increase in the second ionization energy,
the generation energy of M-O-M active sites linearly increases, whereas the formation
energies of other intermediate species all linearly decrease, describing the critical stages of
the complete conversion of methane to methanol. Meanwhile, other examples in this work
reveal the potential of ionization energies with applications in other surface reactions.
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In addition to the above-mentioned electronic descriptors, structural descriptors [66]
have been used to predict catalytic performance using geometric structures, which allows
us to construct specific active site configurations to design methane conversion catalysts.
For example, the stability of active oxygen species (Ef) is inversely scaled to the M–O bond
length for methane activation in various MOFs: a larger M–O bond length corresponds to
a higher Ef and a lower activation energy, as suggested by Rosen et al. [63]. In Cu-based
zeolites with [Cu2(µ-O)]2+ sites for direct methane-to-methanol conversion, as displayed in
Figure 7a, Mahyuddin et al. [67] demonstrated that a smaller Cu–O–Cu angle leads to a
lower acceptor orbital energy in the active site to stabilize the transition state and reduce the
methane activation energy, ultimately leading to diverse catalytic properties. Furthermore,
Fung and co-workers [68] defined the adjusted coordination number (ACN), which shows
great potential in directly predicting methane activation energies by combining different
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coordination numbers of active oxygen atoms and surrounding metal atoms on the surface
of metal oxides. As displayed in Figure 7b, the linear scaling relationship indicates that
active sites with a small ACN value can more efficiently activate methane with lower
energy barriers.
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Figure 7. (a) Influence of the Cu–O–Cu angle in different zeolites for direct methane-to-methanol
conversion. Reprinted/adapted with permission from Ref. [67]. Copyright 2017, copyright American
Chemical Society. (b) Linear scaling relationships between the methane activation energy with the
ACN descriptor. Red and blue numbers represent coordination numbers of reactive oxygen atoms
(CNO) and neighboring metal atoms (CNM), respectively. Reprinted/adapted with permission from
Ref. [68]. Copyright 2017, copyright American Chemical Society.

3.4. Moderate Principles Based Descriptors in Catalyst Design

Fundamentally, as depicted in Figure 8a, in the methane-to-methanol reaction cycle,
active site formation is an oxidation process, and methane activation is a reduction process
for active centers, resulting in the descriptors of the two processes (e.g., Ef and EH) being
negatively correlated [63]. Meanwhile, the intrinsic redox properties of active sites ulti-
mately determine the relative abilities of the oxidation and reduction processes to change
the adsorption energies of intermediates in the chemical reaction, resulting in different
catalytic properties. Therefore, essentially, the above-mentioned energy, electronic, and
structural descriptors all describe the ability of active sites to gain and lose electrons (i.e.,
the redox property) during the redox process from different dimensions, resulting in a
certain scaling correlation with each other [63]. For example, the d-band center, which is
the earliest and most widely used descriptor, uses the d-band [69–71] to largely describe the
variations in the intrinsic redox properties in active sites. With a higher d-band center, the
antibonding state will be elevated and filled with fewer electrons, resulting in a stronger
interaction with O* adsorbates and an increased reductivity of active sites [22]. Meanwhile,
the corresponding oxidizability of active sites will be weakened.
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From the perspective of descriptor selection, a simpler descriptor is more convenient
for predicting catalytic performance. However, a simpler descriptor contains more limited
information, resulting in the linearity of scaling relationships being relatively weak in
many catalytic materials. Therefore, for practical applications, accuracy and speed must be
balanced according to specific needs and to select the appropriate descriptor for catalyst
design [19,29]. At the same time, we must further explore new descriptors, including both
electronic and structural properties in catalysts, to evaluate catalytic performance more
accurately and quickly.

Furthermore, it is essential to determine the value of descriptors corresponding to
the highest catalytic activity (i.e., the screening window). The Sabatier principle [72]
will give us a conceptual framework to qualitatively guide catalyst design. When the
adsorbed species have a moderate “bond strength”, it is possible to simultaneously achieve
effective activation of reactants and rapid desorption of products while avoiding catalyst
deactivation, ultimately resulting in a volcano-type relationship between catalytic activity
and “bond strength”. At the same time, this moderate principle can also be understood
based on the catalytic reaction cycle. When active sites have moderate oxidation and
reduction properties that balance the critical elementary steps in the chemical reaction, the
overall catalytic activity is the highest [29].

Meanwhile, descriptors based on different dimensions create opportunities to quanti-
tatively characterize the redox properties of active sites, which are the quantitative values
to represent the “bond strength” in the Sabatier principle. As shown in Figure 8b, we
can determine the range of the screening window corresponding to the optimal-catalyst-
based moderate values in different descriptors, where the oxidation process of active
species formation is balanced with the reduction process of methane activation [73–75].
For example, we mentioned above the Gf-related volcano curve for the rate of methane
activation (Figure 2d). To design catalysts with the highest theoretical rate of methane
conversion based on this model, Gf should be approximately 0 eV to achieve the optimal
balance between active site coverage and methane activation ability. Rosen et al. [63]
reported structure–activity relationships in methane activation for a large number of MOFs
with different combinations of metal centers and support configurations. As depicted in
Figure 9a, the methane activation energy (Ea,C–H) of various active sites has a negative
linear relationship with the active species formation energy (∆EO, which is the same as
the above-mentioned Ef). Meanwhile, the active sites of MOFs with later transition metals
tend to have a more robust ability to activate methane (i.e., a lower Ea,C–H) and a lower
stability (i.e., a higher ∆EO). Moreover, the spin density of active oxygen species (ρO) and
the M–O bond distance (dM–O) are both considered descriptors of methane activation and
active species stability (Figure 9b,c). Meanwhile, the negative scaling relationship between
methane conversion and oxygen species stability indicates that the ideal active site needs
to have moderate redox properties, and the corresponding screening windows can be deter-
mined by different descriptors. Therefore, the M–O active sites in MOFs with the screening
window (∆EO: −1~0 eV, ρO: 0.4~0.5, and dM–O: 1.65~1.70 Å) can satisfy both activity and
oxygen species stability requirements. In general, the moderate principle, based on activity
descriptors characterizing the redox property in active sites, will provide a robust principle
to investigate and initially screen active sites for direct methane-to-methanol conversion.
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Figure 9. (a) Methane activation energies (Ea,C–H) as functions of ∆EO and the group number of the
active metal. ∆EO and ∆EH as functions of (b) the absolute spin density of active oxygen species (ρO)
and (c) the M–O distance (dM–O). Symbol shape indicates the formal oxidation state of the metal site
prior to oxidation as 1+ (triangles), 2+ (circles), or 3+ (squares). Orange and blue lines represent the
boundaries of activity (Ea,C–H < 1 eV; ∆EH < −1.51 eV) and stability (∆EO < 0 eV), respectively. Green
circles on the horizontal coordinate indicate the screening windows based on different descriptors.
Reprinted/adapted with permission from Ref. [63]. Copyright 2019, copyright American Chemical
Society.

3.5. Applications of Activity Descriptors

Recently, activity descriptors have been successfully applied to screen catalysts based
on zeolites [76], 2D materials [75], and MOFs [53] for direct methane-to-methanol con-
version. In this section, we mainly take 2D materials as examples, which have a rich
adjustment space, and use activity descriptors to reveal the effect of different regulation
approaches on the activity of direct methanol production from methane and screen optimal
active sites.

According to the density function theory (DFT) scaling relationship shown in
Figure 10a, a single Fe atom confined in a graphene nanosheet (GN) with an
O–MN4–O (Mn, Fe, Co, Ni, and Cu) active site is near the summit of the volcano rate
curve with the descriptor of active species formation energy (Gf) [74]. Experiments also
first proved that Fe1/GN is an excellent non-precious metal catalyst for the direct con-
version of methane to high-value-added C1 oxygenated products at 25 ◦C. Tan et al. [75]
explored the influence of vacancies and nonmetallic doping around the O–FeN4–O active
sites in graphene on direct methane oxidation performance in terms of Gf. As displayed
in Figure 10c,d, FeN4-V6r and FeN4-V5r active sites with C vacancies and nonmetal atom–
doped P-O/FeN4 active sites have a Gf closer to 0 eV compared to the intact FeN4 site.
Thus, the stability of active oxygen species and the ability of methane activation are more
balanced in the new active sites, resulting in the calculated methane activation rate of the
three candidate sites being more than 1000 times that of the intact FeN4 active site. On
different 2D materials, Wang et al. [77] comprehensively explored the influence of different
coordination types (N or O) of the triple-ligand mononuclear Cu active center in the boron
nitride (BN) system on the methanol-to-methanol performance in terms of an active oxygen
adsorption energy descriptor (∆Gads, which is the same as the above-mentioned Gf). As
seen in Figure 10b, Cu1/O1N2-BN has the highest reaction performance due to its moderate
oxygen adsorption properties.
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Figure 10. Volcano curves of methane activation rate in Fe1/GN catalysts with (a) intact sites.
Reprinted/adapted with permission from Ref. [74]. Copyright 2018, copyright Elsevier Ltd.
(b) Volcano curves of rate-limiting step energies in direct methane-to-methanol conversion with
the adsorption energy of active oxygen species. Reprinted/adapted with permission from Ref. [77].
Copyright 2022, copyright Royal Society of Chemistry. Volcano curves of methane activation rate in
Fe1/GN catalysts with (c) various vacancies and (d) doping heteroatoms with the descriptor of Gf.
Squares and stars represent intact MN4 (M = Cr, Mn, Fe, Co) active sites and defective FeN4 active
sites, respectively. Reprinted/adapted with permission from Ref. [75]. Copyright 2021, copyright
American Chemical Society.

Furthermore, using a descriptor-based approach, we comprehensively investigated the
electrochemical methane conversion of 2D carbides (MXenes) [78]. As shown in Figure 11a,
using the scaling relationship established by the ∆EOH*−∆EO* descriptor in the oxygen
evolution reaction (OER) process, most MXenes can form stable oxygen species under a
suitable external potential. As shown in Figure 11b, a trade-off relationship between the
thermodynamic stability of oxygen species with the reactivity of methane activation (∆Ea,TS)
is established. Based on the ∆EOH*−∆EO* descriptor, CrHf2C2O2 and TaHf2C2O2 meet both
activity and stability requirements, representing promising catalysts for the electrochemical
methane conversion. Furthermore, the d-band metal center and occupied p-band oxygen
center can be considered to be electronic descriptors due to their scaling relationship with
the ∆EOH*−∆EO* descriptor (Figure 11c,d). Moreover, MXene selectivity can be flexibly
adjusted by applying different potentials. These results give a systematic understanding of
the stability, activity, and selectivity of the electrocatalytic methane conversion in MXenes.
Therefore, based on reasonable descriptors and the moderate principle, catalytic systems
can be designed more efficiently and purposefully to enhance their catalytic performance
in direct methane oxidation.
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3.6. Breaking the Scaling Relationship of Activity Descriptors

A linear stability–reactivity scaling relationship will dramatically accelerate the initial
screening process for methane conversion catalysts. However, the stability and reactivity
values of possible active sites are limited to an inversely proportional linear relationship.
Furthermore, as long as the entire environment of active sites remains unchanged during the
two processes of active site formation and methane activation, the inversely proportional
stability–reactivity relationship is the fixed plot, limiting further improvements in catalytic
performance [32]. However, if some new variables are introduced to active sites with
bond-making or bond-breaking events [79–81] in the active species formation or methane
activation processes, the new active sites will deviate from the original scaling relationship.

One approach to breaking existing relationships is to alter the stability (Ef) without
obviously changing the reactivity (ETS) in the active sites. For example, as shown in
Figure 12a, Rosen et al. [63] found that the significant structural rearrangement of metal
centers from tetrahedral to square pyramidal–like geometries upon forming active oxy-
gen species, with no change in the methane activation process, leads to the deviation of
this active site from the proposed scaling relationship with no structural rearrangement.
Meanwhile, without changing the process of forming active species, changing the methane
activation can also break the general linear relationship. Göltl et al. [82] suggested that
the confining environment in zeolite can stabilize •CH3 transition states with geometric
constraints, significantly reducing the energy barrier of methane activation by more than
50%, as seen in in Figure 12b. However, throughout the whole process, the confined space
does not affect the generation of active species (Ef), and these active sites will deviate
strongly from the existing scaling relationship with no confinement effects. In addition to
the examples mentioned above, the oxidation and reduction processes in direct methane-
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to-methanol conversion also have the potential to negatively or positively deviate from
the existing linear relationship when other factors are introduced, including coordination
number [63], reversible linker displacement [83], and noncovalent interactions [84]. Overall,
attempts to identify events that break the given linear relationship are necessary to better
understand and develop methane conversion catalysts with a simultaneously high activity
and stability.
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Fe site. Reprinted/adapted with permission from Ref. [63]. Copyright 2019, copyright American
Chemical Society. (b) Comparison of methane activation energies of Fe–O active sites in clusters only
and the pore of periodic Fe-SSZ-13 (kJ/mol). Reprinted/adapted with permission from Ref. [82].
Copyright 2016, copyright American Chemical Society.

4. Selectivity Descriptors
4.1. Conversion–Selectivity Limit in Continuous Methane to Methanol

As documented in reports [6], the challenge of direct methane-to-methanol conver-
sion is not only the methane activation but simultaneously maximizing methanol selec-
tivity. From a thermodynamics perspective, with the further oxidation of CH3OH to
CH2O, HCOOH, and CO2, the reaction energies are gradually decreasing, as depicted in
Figure 13 [85]. Thus, the overoxidation of methanol is thermodynamically more favorable.
Meanwhile, methane derivatives with greater polarities and multiple functional groups are
highly susceptible to deep oxidation under methane-activation conditions [86]. Based on
these considerations, the primary oxygenates (methanol) are prone to further oxidation to
CO2, resulting in a substantial loss in the selectivity of methanol.
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Furthermore, Latimer et al. [87] demonstrated a universal trend that the C–H bond
activation energy of methane via homolytic mechanisms is 0.40 eV (∆Ga, at 300 K) higher
than that of methanol, which exists in many catalytic systems including zeolites, MOFs,
metals, and metal oxides. Moreover, a simplified two-step methanol selectivity model
(CH4 → CH3OH→ CO2) with ∆Ga effectively revealed the conversion–selectivity limit
via extensive experimental and DFT data in the direct oxidation of methane to methanol,
independent of the choice of catalyst. Therefore, the relationship between methane con-
version and methanol selectivity at the specified reaction temperature is only related to
∆Ga, which can be used as the methanol selectivity descriptor [48]. These results indicated
that direct methanol production from methane via homolytic mechanisms in continuous
processes will ultimately be limited in maximizing methane conversion and methanol se-
lectivity simultaneously, where methanol selectivity decreases significantly with increasing
methane conversion. As seen in the conversion–selectivity model shown in Figure 14a,
when methanol selectivity approaches 100%, the methane conversion in the gas phase
never exceeds 0.01%. Therefore, unless special approaches are adopted to protect methanol,
substantial efforts in direct methane conversion to obtain a high methanol yield will be in
vain.
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4.2. Protection Strategies for Methanol in Continuous Reaction

Although the selectivity descriptor underscores how methane conversion is gener-
ally limited in continuous conversion, we summarize reasonable methods to break the
selectivity limitations by considering the creation of new catalysts and processes. Breaking
the limitations of methanol selectivity is similar to overcoming the inverse proportional
linear relationship between activity with active species stability, namely introducing new
variables [32,80] into the catalytic system to develop the conversion–selectivity balance
in the expected direction. Several potential strategies have been suggested for protecting
methanol (Figure 14b) by reducing ∆Ga to achieve a higher methanol selectivity at the
desired methane conversion rate.

Methanol “collectors” with a strong capability of adsorbing methanol can be utilized to
avoid further methanol oxidation. The methanol “collectors” approach is adopted to reduce
the partial pressure of methanol. For example, Palkovits et al. [88] stabilized the methyl
group in the form of a methyl bisulfate intermediate in the methane conversion process.
Subsequently, the methyl bisulfate intermediate was hydrolyzed to recover methanol,
resulting in a methanol selectivity of >75%.

Aqueous conditions can be applied to stabilize methanol by liquid reaction solvents,
mainly due to the difference in the solubility of the reactant methane and the product
methanol. For example, Hutchings et al. [89] reported a one-step methane-to-methanol
conversion using H2O2 as an oxidant and Cu–Fe/ZSM-5 in a liquid medium. The methane
conversion rate of the catalyst was 10.1%, and the methanol selectivity reached 93% at
50 ◦C. It was found that the non-framework dimer Fe species located on the internal
surfaces of ZSM-5 served as the active site. Recently, the methanol selectivity of the single-
site Ce–UiO–Co catalyst [90] reached 99% with H2O2 as the oxidant in a liquid medium.
As shown in Figure 15, Tang et al. [91] demonstrated that the C–H bond activation energy
of methanol (1.34 eV) is ultimately greater than that of methane (1.16 eV) at the same
Cu–O active site in the single-site Cu1/ZSM-5 catalyst, avoiding the overoxidation of
methanol. This result is mainly due to different solvation contributions of methane and
methanol under aqueous conditions. At the same time, higher methane pressures and lower
methanol concentrations will further strengthen this trend, making methanol activation
more difficult. Therefore, the liquid-phase environment in liquid–solid reactions plays a
crucial role in improving methanol selectivity. It also explains the generally simultaneously
higher methane conversion and methanol selectivity under aqueous conditions [92–94]
than in gas-phase reactions [95–97] of the continuous methane-to-methanol conversion.
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Figure 15. C–H bond activation free energies (∆G 6=) of methane and methanol. ∆H 6=, T∆S 6=, and
∆G 6=sol as the contribution of enthalpy, entropy, and solvation, respectively. ∆µ is the pressure and
concentration influence on ∆G 6=. Reprinted/adapted with permission from Ref. [91]. Copyright 2021,
copyright Elsevier Ltd.
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Diffusion-limited catalysts can be used to achieve enhanced methanol selectivity with
a specific methane conversion rate. A diffusion-limited design has been realized in the
fixation of AuPd alloy nanoparticles in ZSM-5 modified with hydrophobic organosilanes to
encapsulate AuPd@ZSM-5 [98]. As shown in Figure 16, zeolite with a hydrophobic modifi-
cation serving as a molecular fence only allows CH4, O2, and H2 to access the AuPd active
sites while limiting the diffusion of in situ generated H2O2 around the AuPd active sites to
enhance the reaction probability (I and II). Meanwhile, the formed methanol can quickly
diffuse through the hydrophobic fence (III and IV). These modifications ultimately achieved
a methane conversion of 17.3% with a 92% methanol selectivity at 70 ◦C. Recently, we also
achieved efficient and stable direct methanol production from methane by hydrophobic
Cu-BTC MOF catalysts [99].
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Figure 16. Scheme showing the molecular diffusion in hydrophobic AuPd@ZSM-5 for the direct
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Catalysts with methane activation via the heterolytic mechanism [45,100,101] remain
a possible avenue to achieve a simultaneously high activity and selectivity, as investiga-
tions of the conversion–selectivity limit usually only consider active sites with methane
activation via the homolytic mechanism. For example, Kwon et al. applied the single-atom
Rh1-ZrO2 catalyst [102] to achieve direct methane-to-methanol conversion. Figure 17a
shows that the adsorbed CH3 and H intermediates (CH3* + H*) in the Rh-O active sites
have the lowest energy after the first C–H bond heterolytic breakage in the continuous
activation of the methane conversion process. Therefore, the metal site on the catalyst
surface can effectively stabilize the methyl group in the methane heterolytic mechanism,
as compared to the generation of free methyl radicals in the homolytic mechanism. As
another example, the CeO2/Cu2O interface [103] was found to directly convert methane
to methanol with water and molecular oxygen at 450 K. During the reaction, the water-
generated adsorbed hydroxyl species prevents O–O bond cleavage in molecular oxygen,
as the formed oxygen species leads to the dehydrogenation of the methoxy group to car-
bon dioxide (Figure 17b). Furthermore, the hydroxyl species will directly bond with the
methyl after methane activation to produce methanol (Figure 17c). Thus, water is the actual
O-provider (more than 95% methanol), and molecular oxygen is mainly used to oxidize
the reduced CeO2 surface. Meanwhile, water also promotes methanol generation from the
adsorbed *CH3O species (Figure 17d). This group reported Cu2O as a support loading
SnO [104] and ZnO [105] using the same strategy. These efforts represent a significant step
in direct methane conversion to yield methanol using molecular oxygen with remarkable
activity and selectivity.



Catalysts 2023, 13, 1226 17 of 28Catalysts 2023, 13, x FOR PEER REVIEW 17 of 29 
 

 

 
Figure 17. (a) Energy diagrams of continuous methane activation on Rh1/ZrO2. Reprinted/adapted 
with permission from Ref. [102]. Copyright 2017, copyright American Chemical Society. Reaction 
paths of three critical steps in direct methane-to-methanol conversion with oxygen and water on the 
interface of CeO2/Cu2O: (b) the water and oxygen dissociation (black and red, respectively), (c) the 
hydroxyl species from water to promote methane to methanol, and (d) the generation of methanol 
from the adsorbed *CH3O species with the aid of water. Reprinted/adapted with permission from 
Ref. [103]. Copyright 2020, copyright American Association for the Advancement of Science. 

4.3. Stepwise Processes to Protect Methanol 
In nature, methane monooxygenase enzymes overcome this challenge of conversion 

and selectivity by converting molecular oxygen and methane to methanol with an out-
standing selectivity at ambient temperature and pressure, aided by flexible protein struc-
tures and gating mechanisms [85,106]. Inspired by the gating mechanism of biological en-
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Figure 17. (a) Energy diagrams of continuous methane activation on Rh1/ZrO2. Reprinted/adapted
with permission from Ref. [102]. Copyright 2017, copyright American Chemical Society. Reaction
paths of three critical steps in direct methane-to-methanol conversion with oxygen and water on the
interface of CeO2/Cu2O: (b) the water and oxygen dissociation (black and red, respectively), (c) the
hydroxyl species from water to promote methane to methanol, and (d) the generation of methanol
from the adsorbed *CH3O species with the aid of water. Reprinted/adapted with permission from
Ref. [103]. Copyright 2020, copyright American Association for the Advancement of Science.

4.3. Stepwise Processes to Protect Methanol

In nature, methane monooxygenase enzymes overcome this challenge of conversion
and selectivity by converting molecular oxygen and methane to methanol with an outstand-
ing selectivity at ambient temperature and pressure, aided by flexible protein structures and
gating mechanisms [85,106]. Inspired by the gating mechanism of biological enzymes [107]
(Figure 18a), stepwise processes of oxidizing methane to methanol have been explored
(Figure 18b), especially with zeolite [18] and MOF systems [108] in gas–solid reactions. The
stepwise process involves three independent processes: active site formation by oxidants,
methane activation, and methanol desorption with solvents.
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nase enzymes’ hydroxylase. Reprinted/adapted with permission from Ref. [107]. Copyright 2018,
copyright American Chemical Society. (b) Independent optimization of the conditions of each stage
in stepwise processes of direct methane-to-methanol conversion.

The spatial separation of the active species generation phase and the product formation
phase in stepwise processes offers the inherent benefits of the effective stabilization of
methyl species as an important intermediate in methanol. At the same time, methanol
avoids encountering the newly generated active species in the next reaction cycle. Thus,
the continued oxidation of desirable products (i.e., methanol) is prevented, resulting in an
inherently higher selectivity compared to continuous processes in gas–solid reactions. For
example, a high selectivity (~97%) over Cu-MOR [109] with dimer copper active sites can be
achieved with stepwise processes in direct methane-to-methanol conversion. Meanwhile,
using H2O as the oxidant (instead of H2O2 [110] or N2O [37]) will promote the development
of industrial processes for direct methane-to-methanol conversion.

However, in many stepwise catalysts, the desorption of methanol is extremely dif-
ficult and represents the rate-limiting step of the methane-to-methanol conversion [18].
Therefore, in stepwise processes, the ideal catalyst must have a moderate bonding en-
ergy to balance the two goals of simultaneously stabilizing the methyl group to protect
methanol and achieving rapid methanol desorption under mild conditions. Meanwhile,
to further improve the performance of stepwise processes for direct methane-to-methanol
conversion, the choice of methanol extraction methods, desorption solvents, and reaction
conditions [47] must be continuously optimized to reduce the switching time and energy
consumption of different stages.

5. Perspectives

Although activity and selectivity descriptors can provide an initial optimization direc-
tion in the design and screening of catalysts, tremendous challenges remain in the further
performance enhancement of direct methane-to-methanol conversion [3,111]. In view of
these requirements, promising methods and technologies have emerged, providing new
possibilities for efficient methane conversion across several different strategies.

5.1. The Synergistic Effect of Multicenter Active Sites

Cooperative active sites offer an opportunity to optimize the methane conversion per-
formance. As shown in Figure 19a, the distant binuclear Fe(II) active sites in
Fe-ferrierite [112] can achieve molecular dioxygen cleavage, and the two formed oxy-
gen species (Fe(IV)=O) have a remarkable performance in direct methane-to-methanol
conversion. Furthermore, active oxygen species are also formed over distant pairs of other
M(II) (Co, Ni, and Mn) cations [113–115]. Arachchige et al. [116] demonstrated by DFT
calculations that graphyne can confine single M (Fe, Co, Ni, and Cu) atoms. Two metal
sites suitably distanced from each other in the adjacent pores of graphyne can interact
simultaneously with molecular oxygen, where Fe@GY (Figure 19b) and Co@GY can effec-
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tively promote oxygen activation to generate M–O active species for subsequent methane
activation. Therefore, compared to a single active site, the synergistic effect in suitable
multicenter active sites can efficiently activate molecular oxygen to reduce the activation
energy of forming active species. Meanwhile, the reactive oxygen species are highly active,
resulting in breaking existing relationships of the activity and the active species stability
in single sites. This breakthrough has great practical importance in the development of
prospective industrial catalysts in direct methane-to-methanol conversion.
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5.2. Active Site Microenvironment

For the microenvironments of active sites, different local coordination and pore envi-
ronments can offer diverse confinement effects, which will change the electronic properties
of active centers and stabilize intermediates along reaction pathways to preserve a high
activity and selectivity toward non-CO2 products. For example, in Cu-MOR, Snyder
et al. [117] proposed that the constricted region of the zeolite lattice will lead to closer van
der Waals forces between methane and active sites, resulting in a lower activation energy,
despite two dimer Cu active sites possessing similar electronic and geometric structures.
The same group [118] also reported that although a single Fe in chabazite and beta zeolites
(Fe-CHA and Fe-*BEA) results in the identified active species α-Fe(IV)=O and the local
chemical environment, Fe-CHA had a significantly higher activity in recycle experiments.
Experimental characterization and DFT calculations showed that the activity of different
zeolites mainly depends on their pore size, where CHA (3.7 Å) has a smaller diffusion
pore size compared to *BEA (5.9 Å), and the van der Waals diameter of CH4 is 4.1–4.2 Å.
Thus, Fe-CHA can effectively block the diffusion of •CH3 radicals with an energy barrier
of 5.2 kcal/mol after methane activation, and directly generate methanol through the •CH3
rebound mechanism (the left side of Figure 20) with α-Fe(III)-OH. Finally, the active sites in
Fe-CHA can be regenerated after methanol desorption. However, Fe-BEA, with a larger
pore size, has no hindered diffusion for the methyl radical. The methyl radical can freely
diffuse to bond with other α-Fe(IV)=O sites through the •CH3 cage escape mechanism (the
right side of Figure 20), making it unavailable for methane activation, whereas these active
sites (i.e., α-Fe(III)-OCH3 and α-Fe(III)-OH) cannot be recovered. Therefore, the microen-
vironment plays a decisive role in producing different reaction pathways to regulate the
performance of methane conversion, and strategies involving it are potentially broadly
applicable in microporous materials [119].
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5.3. Co-Catalyst

In the presence of CO, Rh1-ZSM-5 [120,121] can achieve one-step methane activation
to methanol and acetic acid using molecular oxygen as the oxidant in aqueous solutions at
150 ◦C, with a C1 selectivity exceeding 90%. Notably, even if CO is not directly involved in
methanol formation, this process cannot be carried out without the addition of CO. Thus,
monodispersed Rh(I)(CO)n species in the reaction can promote methane activation. In
the overall reaction, as shown in Figure 21, CO plays a crucial role in the high catalytic
performance [122]. It can be used as an oxidant to promote O2 cleavage to generate Rh=O
active species. At the same time, it can be used as a ligand of the Rh center to further reduce
the methane activation energy. Subsequently, it can also act as a reactant to form acetic acid
with the methyl group. Ir1-ZSM-5 [123] and Au/H-MOR [124] were proved to have similar
reaction properties. Thus, this type of catalyst, with CO or other additives as co-catalysts,
is worthy of further exploration to provide new ideas to design more efficient methane
oxidation catalysts and processes.
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5.4. Machine Learning-Assisted Techniques

Currently, the establishment of structure–reactivity relationships in experimental and
theoretical results is mainly based on intuitive approaches with relatively low-density and
low-dimensional information. With machine-learning (ML) methods [125,126], we can
easily and quickly treat thousands of multiscale data using various mathematical models
to automatically mine general and unique rules affecting catalytic performance. At the
same time, standard workflows can be further established to screen huge samples with
various features to obtain candidate catalysts at the lowest cost. Therefore, ML methods
will accelerate the design of direct methane-to-methanol conversion catalysts.

The above-mentioned metal-oxo formation energy (Ef) is a reactive descriptor of the
methane conversion that is determined by a combination of various properties of metals,
oxidation states, and ligands. Recently, Nandy et al. [30] applied large-scale computational
screening through ML methods to accelerate the search for design rules in stable high-valent
oxygen species via the input of 1200 open-shell and octahedral transition metal complexes
with different features. The result showed that the stability of oxygen species is mainly
determined by the metal type and non-local electronic ligand properties.

For the design of direct methane-to-methanol catalysts, as shown in Figure 22,
Adamji et al. [127] developed a high-throughput screening workflow based on a MOF
database (10,143 MOFs) and identified that certain MOFs with terminal metal-oxo species
are synthesizable, thermally stable, and highly active toward methane. Subsequently,
87 MOFs meeting the initial screening criteria were further investigated with more detailed
mechanistic studies. Finally, three Mn MOFs with weak-field ligands and curved/planar
configurations showed remarkable kinetic and thermodynamic properties for the conver-
sion of methane to methanol. Hence, ML-driven discovery can reveal design rules and
provide a powerful screening strategy for methane conversion catalysts.
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5.5. Multicomponent Catalytic Materials

In converting methane to methanol, MOFs offer uniform active sites and versatile
ligand structures to afford catalyst design with fine-tunable chemical properties [128,129],
combining the characteristics of enzymes and homogeneous and heterogeneous catalysis.
At the same time, certain MOFs have unique physical properties (e.g., high surface area
and hydrophobicity [90]) that further improve catalytic performance in direct methane-
to-methanol conversion. In addition to using MOFs alone [99], hydrophobic MOFs can
also be used as the surface modification component on hydrophilic zeolites to form the
two-component catalyst. Therein, zeolites realize the chemical process of methanol pro-
duction from methane, and MOFs promote the physical process of methane adsorption
and methanol desorption, avoiding strong interaction between methanol and hydrophilic
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zeolites to improve the methanol selectivity. For example, Fe-ZSM-5@ZIF-8 [130] was pro-
posed as a promising dual-component catalyst for direct methane-to-methanol conversion.
In the reaction, methane adsorbs onto hydrophobic ZIF-8 and is subsequently activated by
Fe-ZSM-5 to form methanol, whereas almost no methanol is produced in either Fe-ZSM-5
or ZIF-8 alone. Moreover, the hydrophobic ZIF-8 can promote the desorption of methanol.
Therefore, the design of multicomponent catalytic systems incorporating materials with
different physicochemical properties could make up for the shortcomings of traditional
methane conversion materials.

5.6. Additional Energy Source

Recently developed reaction processes of methane conversion driven by electro- [48],
plasma- [131], and photocatalysis [132] systems have been used in methane catalyst design.
The additional energy input will reduce the temperature requirement of the catalytic
reaction, significantly facilitating active species generation and methane activation [17]
(Figure 23) to achieve direct methane conversion at room temperature using inexpensive
oxidants. Thus, catalytic systems with various energy combinations have an opportunity
to surpass the current limitations of thermal catalysis.
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For example, the electrocatalyst CuO/CeO2 [133] can directly convert methane to
methanol with a production rate of 7165.0 µmol/gcat in the presence of CO3

2– under
ambient conditions. Fe/γ-Al2O3 [134] has achieved single-step plasma-catalytic methane
oxidation with O2 with the oxygenate selectivity of 71.5% under ambient conditions. In the
plasma gas-phase reaction, the critical CHx and OH species can be generated and combined
to produce methanol. Au/ZnO [135], as an outstanding photocatalyst, achieved a C1
selectivity exceeding 95% under mild light irradiation using molecular oxygen in water
at ambient temperature. This catalyst has the powerful ability to simultaneously activate
methane and molecular oxygen to form •CH3 and •OOH radicals via photogenerated
holes and electrons, resulting in the formation of liquid oxygenates and the suppression of
overoxidation.

Owing to the limited development time of non-thermal catalysts of direct methane
conversion, their active sites, reaction mechanisms, and the role of an external energy source
remain largely unknown. However, these catalysts can generally use molecular oxygen to
convert methane directly under ambient conditions, which is difficult to simultaneously
achieve with current thermal catalysts. Therefore, using an additional energy source
provides new possibilities for the design of catalysts to further promote the realization of
industrialization in the direct conversion of methane to methanol under ambient conditions.
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6. Conclusions

The direct oxidation of methane to methanol under ambient conditions has been
regarded as the “holy grail” in the chemical community. To date, although immense efforts
have been made, industrially viable catalysts and processes remain far from realization.
However, with the aid of descriptors, it will be easier to discover promising material can-
didates and processes to simultaneously improve activity and selectivity. In this review,
first, we classified the C–H activation of methane into two basic homolytic and heterolytic
mechanisms and compared the characteristics of both active sites and reaction processes to
provide a fundamental understanding of the methane activation of heterogeneous catalysts.
Based on these two mechanisms, catalytic activity was evaluated using energy, electronic,
and structural descriptors at the stages of methane activation and active species generation
in direct methane-to-methanol conversion. Fundamentally, these descriptors all describe
the active site’s ability to gain and lose electrons in the redox process from different dimen-
sions. We further explain the moderate principle of descriptors in methane-to-methanol
catalyst design and summarize related application work. Based on the activity descrip-
tors, we summarized the underlying limitations of methane activation and active species
generation, and provide different optimization strategies by introducing new variables
with bond-breaking or bond-making events to overcome them. For methanol selectivity,
a simple two-step selectivity model with a selectivity descriptor explains why the selec-
tivity of continuous methane-to-methanol conversion is generally limited. Further, we
provided strategies and principles to break the conversion–selectivity limit according to
the characteristics of stepwise and continuous processes in direct methane-to-methanol
conversion. Finally, based on pioneering work on the multiscale design of efficient catalysts
for the direct oxidation of methane to methanol, further reasonable strategies are outlined,
including the use of the synergistic effect of multiple active sites, the microenvironment of
the active sites, co-catalysts, ML-assisted techniques, multicomponent catalytic materials,
and additional energy sources. We hope to combine multiple variables to break the exist-
ing bottlenecks in direct methane-to-methanol conversion and simultaneously optimize
methane conversion and methanol selectivity.
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