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Abstract: Herein, two CeO2 samples dominantly decorated with surface and bulk sulfates were
constructed and their distinct effects on high-temperature NH3-SCR were investigated by strictly
controlling the sulfate content at a comparable level. The obtainment of surface and bulk sulfates was
revealed using a designed leaching experiment, and further evidenced by the characterization results
from XPS and H2-TPR. In comparison with CeO2 modified with bulk sulfates (B-CeS), sufficient
acid sites with strong intensity were generated on CeO2 modified with surface sulfates (S-CeS).
In addition, due to electron-withdrawing effect from S=O in sulfate species, NH3 oxidation over
S-CeS was greatly suppressed, providing an additional contribution to enhanced performance in
high-temperature NH3-SCR.

Keywords: CeO2; high-temperature denitration; surface sulfates; bulk sulfates

1. Introduction

The large and uncontrolled emission of nitrogen oxides (NOx, x = 1,2) has caused
serious environmental problems, and selective catalytic reduction of NOx with NH3
(NH3-SCR) is testified to be one of the most effective methods for NOx elimination from
stationary sources and diesel vehicles [1]. Among the diverse catalysts developed for
NH3-SCR, the vanadium–titanium system, represented by V2O5-WO3(MoO3)/TiO2, has
been commercialized for SCR denitration for decades. The operation temperature for
V2O5-WO3(MoO3)/TiO2 catalysts typically lies in the medium temperature zone
(300–400 ◦C), which is compatible with the flue gas temperature at boiler economizer
outlets and thus often used for NOx removal from coal-fired power plants [2]. However,
the installation of this catalyst in high-temperature denitration is largely restrained, mainly
due to the aggravated oxidation of ammonia by active V2O5 and inferior thermal stability
of anatase TiO2 [3,4]. From the viewpoint of practical application, there is an urgent need
for treatment of exhaust gases via high-temperature SCR in some workplaces, such as
diesel engines, gas turbines and waste incinerators [5–7].

As early as the 1990s, Topsøe and coworkers pointed out that acid and redox sites are
essential for NH3-SCR catalysts [8,9]. Whether for the Eley–Rideal (E-R) or the Langmuir–
Hinshelwood (L-H) reaction pathway, NH3 adsorption on a catalyst surface constitutes the
first step to initiate a reaction. With an increase in reaction temperature, NH3 adsorption
will be disrupted and desorption tends to occur. As such, it is necessary that the catalysts
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designed for high-temperature SCR should acquire acid sites with sufficient intensity [10].
On the other hand, their redox properties also need to be carefully regulated, since ex-
cessive consumption of NH3 via heavy oxidation is bound to reduce the available NH3
for NO reduction. Following these two basic guidelines, a diverse array of catalysts has
been explored and such typical combinations like metal ion-exchanged zeolite [11,12] and
WO3/TiO2 [3,13] are found to exhibit excellent de-NOx performance even at temperatures
higher than 500 ◦C.

Ceria-based materials, as an important kind of rare-earth oxide, have been extensively
studied as efficient V-free NH3-SCR catalysts due to their abundant reserve, good redox
property and tunable acidity [14,15]. Particularly, by taking advantage of the fascinating
characteristics of rich oxygen vacancies and an easy Ce3+/Ce4+ redox cycle, substantial
attention has been paid to CeO2 for application in low-temperature NH3-SCR [16]. Nev-
ertheless, the catalytic behavior at high temperature is less considered. Actually, based
on the experimental results of some recent studies, it was shown that by grafting strong
acid sites onto the surface of ceria, the NO reduction efficiency at high temperatures
(>400 ◦C) can also be significantly boosted. For example, Yang et al. reported that H3PO4-
modified CeO2 exhibited more than 80% NO conversion in the broad temperature range of
250–550 ◦C [17]. Our recent study revealed that when applying excessive SO2 treatment
(72 h) over CeO2, the obtained catalysts displayed excellent activity at 500 ◦C with NO
conversion exceeding 90% [18].

It is well known that under actual flue gas conditions, SO2 is widely present. The
interaction of SO2 with CeO2 will inevitably lead to the generation of sulfate species,
and depending on the extent of the interaction, surface sulfates and bulk sulfates are
expected to be formed [19,20]. Many previous studies have proved that irrespective of the
specific structures or morphologies, sulfate species modification is conducive to enhance
the acid strength of CeO2 and, simultaneously, disrupt the redox properties to a certain
extent [21–24]. Obviously, this would endow a positive effect on the performance of high-
temperature SCR. However, further details are still lacking. For example, what is the
difference between surface sulfate and bulk sulfate species on the catalytic performance of
CeO2 for high-temperature SCR, it is still obscure. Herein, two sulfate species-modified
CeO2 catalysts with comparable sulfur content but distinct existing states were fabricated,
and the unique function of surface sulfates and bulk sulfates in high-temperature SCR
was explored in detail. Results showed that in comparison with bulk sulfates, surface
sulfates played a more significant role in promoting NO conversion at high temperatures,
which could be reasonably attributed to the much stronger acid properties and worse redox
capacity due to close surface coverage of sulfate species on CeO2.

2. Results and Discussion
2.1. Construction of Target Catalysts

The CeO2 catalysts modified with sulfate species have been widely investigated in
NH3-SCR, and conventional fabrication is fulfilled according to a bottom-up route, either
through vapor sulfation of CeO2 with SO2 + O2 or via wet impregnation of CeO2 with
H2SO4/(NH4)2SO4 [24–26]. Both methods are facile in operation and one can obtain surface
or bulk sulfates by tuning the exposure time or modulating the H2SO4 concentration. How-
ever, it is worth to mention that to explicitly approach the goal of present study, we needed
to control the sulfate content at a similar value. This is challenging for the traditional prepa-
ration, since bulk sulfates are usually formed at the expense of surface sulfates. In other
words, in order to generate bulk sulfates, the introduced sulfur content should be controlled
at a very high value. For this reason, an alternative top-down preparation methodology
was used to construct the designated catalyst of CeO2 modified with bulk sulfates.

It is well reported that when CeO2 is exposed to a feed stream of SO2 + O2 for a short
duration, its surface will be covered by an adsorption layer of sulfates [27]. In the present
study, this method was utilized to construct the sample of CeO2 exclusively modified with
surface sulfates (S-CeS). However, for the obtainment of CeO2 modified with bulk sulfates,
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the traditional method of treating CeO2 in a SO2 + O2 stream for a long duration or at a
high temperature was not adopted. Alternatively, a novel but facile top-down strategy was
performed. That is, directly calcining the sulfated precursor of Ce2(SO4)3·xH2O in air at
a high temperature (i.e., 900 ◦C) to convert the majority of metal salts into CeO2, and the
residual is expected to present mainly as bulk sulfates. Obviously, one notable merit of this
method is that it can well resolve the dilemma between low sulfur content and bulk state
of sulfates.

To confirm the effectiveness of this method, a TG analysis was first performed. It is
clearly visible in Figure 1 that two distinct decomposition processes are displayed. The first
step is related to a loss of crystalline water. Compared to desorption of crystalline water,
a distinct delay is detected for the thermal decomposition of sulfate species. Evidently,
decomposition of sulfate groups cannot be initiated until the temperature reaches 700 ◦C,
and a sharp weight loss (29.7%) occurs in the narrow temperature range of 700–850 ◦C.
Notably, by inspecting the TG profile at a much higher temperature (830–1000 ◦C, inset), it
is found that the decomposition is still in progress even when the temperature surpasses
900 ◦C. This can satisfactorily explain the existence of minor sulfur in the B-CeS sample
after the harsh thermal treatment at 900 ◦C for 1 h.
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Figure 1. The TG curve of Ce2(SO4)3·xH2O under static air atmosphere. Inset pattern shows the
continued process of thermal degradation at 800–1000 ◦C.

EDS analysis (Table 1) was performed to approach the actual sulfur content in B-CeS
and S-CeS. It can be seen from SEM images (Figure 2a,b) that due to the employment
of different preparation routes, variations in the macroscopic morphology of the two
samples are present, and S-CeS exhibits a more porous appearance with fine particles
and tight arrangement. From Table 1, a S signal is detected and the measured content
displays a low but comparable value (Ce/S ratio: 20.44 vs. 20.78) for B-CeS and S-CeS.
Since a variation in the S content is expected to bring great distinction in acid and redox
properties [19,27], the construction of sulfate CeO2 with comparable sulfate loading pro-
vides a reliable comparison of the contribution from different sulfate species on the catalytic
performance of ceria in high-temperature SCR.

Table 1. Summary of element analysis from EDS and XPS for B-CeS and S-CeS.

Samples Atomic Concentration (mol.%) Atomic Ratio (%)
Ce O S C Ce3+/(Ce3+ + Ce4+) Oβ/(Oα + Oβ) Ce/S *

B-CeS 18.42 58.52 2.13 20.93 22.08 33.06 20.44
S-CeS 16.47 54.32 3.6 25.61 40.97 74.07 20.78

* Ce/S ratio determined from EDS analysis.
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Figure 2. Typical SEM images of (a) B-CeS and (b) S-CeS.

In order to confirm the existence of different sulfate species in B-CeS and S-CeS,
a designed water leaching experiment was carried out. According to previous studies,
one notable difference between surface and bulk sulfates comes from their solubility in
water [19,28]. Commonly, sulfates are tightly bound to a metal oxide surface and cannot
be easily leached away by water. Contrarily, analogue to the salt of cerium sulfate, bulk
sulfates interact less with the rigid framework of CeO2 and can thus be easily dissolved in
water. Therefore, in the present work, we innovatively utilize this principle to distinguish
bulk sulfates and surface sulfates, and with the aid of Raman characterization, the crucial
information related to the existing state of sulfates is revealed.

As shown in Figure 3, a sharp band at 463 cm−1, which can be ascribed to the F2g
vibrational mode of cubic fluorite CeO2, is dominated in the Raman spectra of B-CeS
and S-CeS. In addition, no obvious difference in peak intensity is exhibited, suggesting
insignificant disturbance on the bulk structure of CeO2 with sulfate species. By further
inspecting the spectra, a weak and broad peak centered around 1170 cm−1 is detected and
it actually represents the signal from sulfate species [19,29]. Unfortunately, no obvious
variation in peak shape or position can be found for B-CeS and S-CeS. Nevertheless, we
can still take advantage of the sensitivity of Raman characterization in revealing sulfate
signals to approach the crucial information of S content changes. It is observed that the
peak intensity of sulfate in B-CeS-W (water leached sample) is significantly lower than that
of B-CeS. Interestingly, a negligible change in the peak intensity of the sulfate signal in
S-CeS-W is detected as compared to the pristine S-CeS. This sharp difference in the solubility
of the sulfate species can be attributed to the different existing states of the sulfate species.
That is, bulk sulfates are widely present in B-CeS, while surface sulfates are dominant
in S-CeS.
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2.2. XRD Results

To explore any impact from sulfate introduction on the phase structure of CeO2,
XRD measurements were performed. It is obvious from Figure 4 that the XRD patterns
of B-CeS and S-CeS are represented by the characteristic diffractions from fluorite CeO2
(JCPDS 43-1002), and no peaks from sulfates are detected. Based on these results, we can
conclude that in comparison with Raman, XRD shows less sensitivity in revealing the
evolution of sulfate species. For S-CeS, the absence of reflection peaks from cerium sulfate
is understandable, since the sulfates are well dispersed on CeO2. However, for B-CeS, we
suppose the absence of signal from cerium sulfate is mainly due to the low loading or
amorphous structure [29].
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When it comes to the signal related to CeO2, a clear difference is exhibited. In general,
the appearance of sharp peaks suggests high crystallinity of CeO2 in both catalysts. This is
basically in agreement with the high-temperature treatment and small surface area shown
by the two catalysts (B-CeS: 3.6 m2/g, S-CeS: 10.8 m2/g). Additionally, we can find that
although both catalysts are calcined under the same temperature, B-CeS obtains diffraction
peaks with a stronger intensity, and the calculated average grain sizes applying the Scherrer
equation on the most intense peak at 2θ = 28.6◦ for B-CeS and S-Ce are 40.2 nm and 31.3 nm,
respectively. The results clearly show the sintering behavior of ceria can be influenced by
the accompanied anion linked to Ce3+ in the precursor.

2.3. XPS Measurement

To obtain a better understanding of the chemical state of elements on the catalyst
surface, XPS characterization was performed. Figure 5a presents the S 2p spectra. No
obvious difference in the binding energy of S is exhibited, and the appearance of a typical
band at 168.7 eV conveys the sulfur element is in the oxidation state of +6, in accordance
with the formation of SO4

2− [30]. In addition, a smaller surface atomic concentration of
S is observed for B-CeS (2.13%) when compared to S-CeS (3.60%). This can be viewed as
convincing evidence for the aggregated feature of sulfate species in B-CeS sample.

The XPS spectra of Ce 3d are shown in Figure 5b. The peaks denoted as u′ and v′ are
related to Ce3+ species, and u, u′′, u′′′, v, v′′ and v′′′ are attributed to Ce4+ species. From
Table 1, we can see that the introduction of surface sulfate species induces a significant
augmentation of the surface concentration of Ce3+. This is not surprising since Waqif
et al. reported that SO2 can act as a reducing agent and lead to the formation of Ce2(SO4)3
on a CeO2 surface [31]. Additionally, the obtainment of a much higher surface Ce3+

concentration can be attributed to the fact that most S in S-CeS are concentrated on the
surface with CeO2, and therefore more surface Ce3+ are generated.
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Regarding the O 1s spectra, a significant difference in the peak shape is displayed. For
B-CeS, two well resolved peaks are detected, and they can be reasonably attributed to the
signals from lattice oxygen Oα (529.0–530.0 eV) and surface oxygen Oβ (531.3–531.9 eV).
Owing to insufficient contact of the CeO2 surface with bulk sulfates, Oβ shows a much
weaker intensity than Oα. However, the case is very different for S-CeS. Oβ undergoes
an obvious enhancement with the surface coverage of sulfates. In addition, a third peak,
Oγ, located at the binding energy of 532.7–533.5 eV, springs out. According to a previous
study, this peak can be related to the signal from surface hydroxyl species [32]. Based on
the XPS analysis, we know that the different existing states of sulfate species induce a lot of
alteration on the surface features of CeO2, and this is particularly true for the S-CeS sample.
For B-CeS, lattice oxygen species from ceria are dominant, while the surface oxygen species
from sulfate are enriched in S-CeS.

2.4. H2-TPR Results

To explore the impact from varied sulfate species on the reduction behavior of CeO2,
H2-TPR was carried out and is shown in Figure 6. According to previous reports, three
species have potential for interaction with H2 over the catalyst of sulfated ceria. They are
the surface and bulk oxygen from CeO2 and the sulfur in sulfates [27,33]. In B-CeS, all
of the three reduction peaks are displayed, with corresponding H2 consumption at low
temperatures (peak α, 300–400 ◦C,), medium temperatures (peak β, 450–540 ◦C) and high
temperatures (peak γ, 700–800 ◦C). For S-CeS, peak γ with a comparable intensity is found.
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This is reasonable since this peak is usually attributed to the reduction of bulk oxygen
in the deeper interior of CeO2. However, for the other two peaks, significant changes
are displayed. That is, peak α cannot be observed anymore and peak β shifts to higher
temperatures, with its signal strongly intensified.
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It is well known that for pure CeO2 free from any alien element modification, in
addition to the reduction of bulk oxygen, the reduction of surface oxygen at a much lower
temperature usually accompanies it [33]. This feature is shown by the appearance of a
minor peak centered at 360 ◦C for the B-CeS sample (peak α). However, for S-CeS, the peak
α disappears. In view of the fact that surface sulfate species are abundant, we suppose that
the disappearance of the reduction peak from oxygen species on the ceria surface actually
reflects that most of them reacted with SO2 in generating surface sulfate species. This can
also explain the presence of the large β peak shown for the S-CeS sample.

Based on the comprehensive characterizations using Raman, XPS and H2-TPR, it is
concluded that two kinds of sulfate species are established for CeO2. That is, through
SO2 + O2 treatment, the surface of CeO2 is exclusively covered with a layer of sulfate. As
a sharp contrast, the sulfate species are present mainly as bulk sulfates through directly
calcining Ce2(SO4)3 at an elevated temperature.

2.5. NH3-SCR Performance

The NO conversion and N2 selectivity as a function of the reaction temperature for
pure CeO2 and sulfated CeO2 at 200–500 ◦C is shown in Figure 7a,b. As expected, a
much poorer activity was exhibited by pure CeO2, with a NO conversion of less than 50%
across the entire test range. In addition, the appearance of a negative NO conversion at
500 ◦C reflects the occurrence of serious NH3 oxidation [32], which is also compatible
with the very poor N2 selectivity (Figure 7b). Clearly, the introduction of sulfate species
distinctly promotes the catalytic performance. S-CeS shows a more pronounced improve-
ment in reaction efficiency than B-CeS, which acquires more than 90% NO conversion in
the high-temperature range of 350–450 ◦C. When the reaction temperature is further in-
creased, a distinct deactivation was observed for both samples. However, the negative NO
conversion was no longer present, demonstrating efficient suppression of NH3 oxidation
via sulfate modification. From the results of the activity test, we can tentatively propose
that surface sulfates contribute more to promoting high-temperature SCR activity than
bulk sulfates. To further confirm this, a direct comparison of the activity from B-CeS and
B-CeS-W was achieved by taking advantage of the complete removal of bulk sulfates in the
B-CeS-W sample. From Figure 7c, we can see that the catalytic performance at 400–500 ◦C
shows negligible declining after removal of bulk sulfates, although obvious differences in
low temperature range are displayed. This can be viewed as solid evidence that in com-
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parison with surface sulfates, the contribution from bulk sulfates in boosting the catalytic
performance of CeO2 at high temperatures is insignificant.
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To further explore the reaction stability of catalysts operated at high temperatures,
the results of NO conversion/N2 selection as a function of reaction time are presented in
Figure 7d. Both catalysts exhibit no obvious activity and selectivity change after successive
operation at 450 ◦C for 240 min, revealing a good reaction stability of the sulfated samples.

2.6. The Acidity of Prepared Catalysts (NH3-TPD)

To disclose possible reasons for the different catalytic behaviors of surface and bulk sul-
fates in promoting high-temperature NH3-SCR performance, the acid and redox properties
were explored. Figure 8 presents the NH3-TPD results. In line with previous studies, both
catalysts showed a wide range of NH3 desorption [22,24]. Through further examination,
two desorption peaks can be differentiated. The low-temperature desorption with a peak
centered at 150 ◦C can be attributed to NH3 adsorbed on the weak acid sites from CeO2.
It is well reported that due to the nature of basicity, pure CeO2 possesses weak acidity.
With introduction of sulfate species, the acidity is strongly enhanced, as evidenced by the
appearance of another desorption peak at a temperature of 263 ◦C.
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Interestingly, despite their comparable sulfate content, the distribution of weak and
strong acid sites over the two catalysts varies sharply. For B-CeS, weak acidity is dominant,
as can be deduced from the appearance of a maximum NH3 desorption signal at 150 ◦C
(peak α). In view of the fact that insufficient contact is present between sulfate species and
CeO2, more surface sites from ceria can be provided for NH3 adsorption. On the other
hand, due to the aggregation state of sulfate in B-CeS, fewer sites from sulfates are available
for NH3 adsorption. It is reasonable that this changes when bulk sulfates are substituted by
surface sulfates. From the XPS and H2-TPR results, we know that abundant sulfates are
bound to the CeO2 surface. With this significant difference in sulfate species distribution,
we can reasonably conclude that the amount of strong acid sites (peak β) increases at the
expense of the weak sites provided by CeO2.

2.7. The Oxidation Properties with Respect to NO and NH3 (NO Oxidation and NH3 Oxidation)

The oxidation properties of catalysts with respect to reactants are investigated in terms
of NO oxidation and NH3 oxidation. The NO oxidation performance is shown in Figure 9a.
In general, both catalysts show poor activity in converting NO to NO2, which is evidenced
by the high temperature required to initiate the reaction (250 ◦C and the obtained poor
maximum conversion efficiency (<20%). It has been previously reported that although ceria
has excellent redox properties, it shows poor NO oxidation performance and, due to the
strong electron-withdrawing effect from S=O in sulfate group, the modification of sulfate
species can induce a further deterioration in NO oxidation performance [30]. From this
point of view, it is reasonable that the B-CeS displayed a better NO oxidation performance
than the S-CeS, since the main body of ceria is less disrupted by bulk sulfates in B-CeS. By
comparing the NO oxidation performance with the high-temperature NH3-SCR results,
we can conclude that the ability to oxidize NO is not responsible for the different SCR
behaviors at high temperatures.

The results of the NH3 + O2 test are shown in Figure 9b. In line with the NO oxidation
performance, the S-CeS catalyst presents a worse oxidation capacity for NH3. It is possible
that due to the strong coverage of sulfate species on CeO2, the inherent surface oxygen
on ceria is not available for S-CeS. As a result, a poor oxidation ability is exhibited, which
can suppress ammonia oxidation to some extent at high temperatures. Based on the above
analysis, we can conclude that in addition to the change in acid sites, the reduced oxidation
capacity of reductant NH3 constitutes another reason for the better performance of the
S-CeS sample in high-temperature NH3-SCR.
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3. Materials and Methods
3.1. Catalyst Preparation

CeO2 modified with bulk sulfates was constructed through a novel top-down strategy.
Ce2(SO4)3·xH2O was employed directly as the precursor, and with help of a harsh thermal
treatment (static air, 900 ◦C, 1 h), most of the metal salt was converted into CeO2. Notably,
a minute amount of precursor was not decomposed and still existed as bulk phase in the
mixture. For simplicity, the obtained sample is denoted as B-CeS.

The CeO2 modified with surface sulfates was obtained via a vapor sulfation method.
Pure CeO2 derived from thermal treatment of cerium nitrate hydrate (900 ◦C, 1 h) was
exposed to a stream of 2000 ppm SO2 + O2 to obtain the designated sample of CeO2
modified with surface sulfate (S-CeS). By controlling the treatment time, a similar value in
sulfate content as B-CeS is guaranteed.

A designed experiment of water leaching was performed to discriminate bulk sulfates
and surface sulfates, by taking advantage of their different behaviors in water solubility.
The B-CeS and S-CeS catalysts were dropped into distilled water, washed to remove the
soluble sulfates, sonicated, filtered and dried to obtain the water-washed samples, which
are named B-CeS-W and S-CeS-W, respectively.

3.2. Catalyst Characterization

The specific surface area was characterized using the N2 sorption technique at−196 ◦C
on an Micromeritics ASAP-2020 adsorption apparatus (Norcross, GA, USA). The samples
were vacuum-pretreated at 300 ◦C for 3 h before measurement.

TG was performed on a Netzsch thermal analyzer STA 449C (Erich NETZSCH GmbH
& Co.Holding KG, Selb, Germany) with N2 as carrier gas and a test temperature range of
0–1000 ◦C with a temperature rise rate of 10 ◦C/min.

Surface morphologies of the catalyst samples were investigated using a FEI NANO
SEM430 (Fei company, Lausanne, Switzerland) scanning electron microscope. All SEM
images were obtained from secondary electrons with an accelerating voltage of 15 kV. The
elemental composition and distribution were determined using an Oxford X-Max20 EDS
equipment (Oxford Instruments Private Limited, Oxford, UK).

Raman spectra of samples were collected on a LabRAM Aramis (Japan Hobiba,
Kyoto, Japan) Laser Raman spectroscopy with a 532 nm Ar+ laser beam.

XRD was performed on a Philips X’pert Pro diffractometer (Philips Analytical, Overi-
jssel, The Netherlands) with a Ni filter and a Cu target Kα radiation source (wavelength
0.15418 nm). The operating voltage and current were set to 40 kV and 40 mA, and data
were collected in the range 2θ = 10-80◦ with a scanning speed of 10 ◦C/min.
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XPS was performed on a PHI 5000 VersaProbe X-ray photoelectron spectrometer (PHI
Corporation, Kanagawa, Japan) with a monochromatic Al Kα radiation source (1486.6 eV)
and an acceleration power of 15 kW. Prior to testing, the sample was degassed to below
5 × 10−7 Pa at room temperature in an ultra-high vacuum chamber. Sample charge effects
were compensated for by correcting the C 1s spectrum to 284.6 eV. The accuracy of the
binding energy was 0.1 eV.

Temperature-programmed reduction by H2 (H2-TPR) was carried out in a quartz
U-tube reactor connected to a thermal conduct detector (TCD) with an H2/Ar mixture
(7% H2 by volume) as a reductant. A total of 10 mg sample was used for each measurement.
Before introducing it to the H2-Ar stream, the sample was pretreated in the N2 stream at
200 ◦C for 1 h. The H2 consumption profile was collected from room temperature to 900 ◦C
at a rate of 10 ◦C/min.

The acid properties were determined from temperature-programmed desorption (TPD)
of ammonia using a Nicolet IS10 FT-IR spectrometer (Thermo Scientific,
Waltham, MA, USA) equipped with a 2 m path-length gas cell (2 L volume). Catalysts were
evaluated in a fixed-bed quartz reactor (5 mm internal diameter) operating with a steady-
state flow. About 100 mg sample was primarily pretreated using argon (100 mL/min) at
200 ◦C for 1 h, then it was cooled to room temperature and exposed to 500 ppm NH3/Ar
(100 mL/min) for 1 h. Thereafter, excessive physical absorbed ammonia was removed by
purging with argon at room temperature for 1 h. All NH3-TPD tests were carried out by
increasing the temperature from 30 to 600 ◦C at a rate of 10 ◦C/min and an argon flow rate
of 100 mL/min.

The NH3/NO oxidation experiments were carried out on a fixed-bed reactor with a
gas composition of 500 ppm NH3 (or NO), 5 vol.% O2, and N2 as equilibrium gas at a gas
flow rate of 100 mL/min. A certain amount (200 mg) of the sample was loaded into the
quartz tube reactor, purged with N2 at 200 ◦C for 1 h and then cooled to room tempera-
ture. After the reaction gas was adsorbed to saturation, the reactions were carried out at
different temperatures. The concentrations of NO and NH3 were recorded online using a
Thermofisher IS10 FTIR spectrometer, and the catalytic performance data as a function of
temperature were collected after being kept stable for 30 min at each temperature point.

3.3. Activity Measurement

The catalytic performance was evaluated in a fixed-bed quartz reactor with 5 mm
internal diameter under steady-state flow. The feed gas was 500 ppm NO, 500 ppm NH3,
5% O2, and total gas flow was controlled at 100 mL/min. The WHSV was 60,000 mL/(gh).
A total of 100 mg catalyst was sieved through a 40–60 mesh. Before the tests, the catalyst
was pretreated in a purified Ar stream at 200 ◦C for 30 min to avoid surface impurities.
Then, the mixed gases were switched on and activity data were collected at every target
temperature after stabilizing for 30 min in the range of 200–500 ◦C. The concentration
of effluent gases was analyzed on a Nicolet IS10 FT-IR spectrometer equipped with a
2 m path-length gas cell (2 L volume). The NO conversion was calculated based on the
following equations:

NO conversion (%) =
[NO]in − [NO]out

[NO]in
×100%

N2 selectivity (%) =
[NO]in − [NO]out + [NH3]in − [NH3]out − [NO2]out − 2×[N2O]out

[NO]in − [NO]out + [NH3]in − [NH3]out
×100%

4. Conclusions

By explicitly controlling the existing states of sulfate species, the effect of surface
and bulk sulfates on high-temperature catalytic performance of ceria in NH3-SCR was
investigated in the present study. It was found that introduction of sulfate species induced
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little modification on the bulk structure of CeO2. However, both the adsorption and
reaction behaviors were significantly altered. In comparison with pure CeO2, introduction
of sulfates notably enhanced the high-temperature NH3-SCR performance. In addition, an
apparent difference in reaction efficiency between surface and bulk sulfates was exhibited.
Due to close contact between sulfate species and ceria, the active surface oxygen species
from ceria were largely eliminated, resulting in alleviated NH3 oxidation for S-CeS. On
the other hand, the strong interaction between SO2 and surface oxygen species from ceria
created sufficient sulfate species. As a result, more strong acid sites were generated in
S-CeS. With the obtainment of these unique properties (more strong acid sites and reduced
NH3 oxidation capacity), the catalyst of ceria modified with surface sulfates displayed
enhanced catalytic performance in high-temperature NH3-SCR.
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Glossary

S-CeS CeO2 modified with surface sulfates
B-CeS CeO2 modified with bulk sulfates
B-CeS-W The B-CeS catalyst treated using water leaching
S-CeS-W The S-CeS catalyst treated using water leaching
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