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Abstract: In this paper, the focus is on upgrading the value of naphtha compounds represented by
n-heptane (n-C7H16) with zero octane number using a commercial zeolite catalyst consisting of a
mixture of 75% HY and 25% HZSM-5 loaded with different amounts, 0.25 to 1 wt.%, of platinum metal.
Hydrocracking and hydroisomerisation processes are experimentally and theoretically studied in the
temperature range of 300–400 ◦C and under various contact times. A feedforward artificial neural
network (FFANN) based on two hidden layers was used for the purpose of process modelling. A total
of 80% of the experimental results was used to train the artificial neural network, with the remaining
results being used for evaluation and testing of the network. Tan-sigmoid and log-sigmoid transfer
functions were used in the first and second hidden layers, respectively. The optimum number of
neurons in hidden layers was determined depending on minimising the mean absolute error (MAE).
The best ANN model, represented by the multilayer FFANN, had a 4–24–24–12 topology. The ANN
model accurately simulates the process in which the correlation coefficient (R2) was found to be 0.9918,
0.9492, and 0.9426 for training, validation, and testing, respectively, and an average of 0.9767 for
all data. In addition, the operating conditions of the process were optimised using the genetic
algorithm (GA) towards increasing the octane number of the products. MATLAB® Version 2020a
was utilised to complete all required computations and predictions. Optimal operating conditions
were found through the theoretical study: 0.85 wt.% Pt-metal loaded, 359.36 ◦C, 6.562 H2/n-heptane
feed ratio, and 3.409 h−1 weight-hourly space velocity (WHSV), through which the maximum octane
number (RON) of 106.84 was obtained. Finally, those operating conditions largely matched what was
calculated from the results of the experimental study, where the highest percentage of the resulting
isomers was found with about 78.7 mol% on the surface of the catalyst loaded with 0.75 wt.% Pt-metal
at 350 ◦C using a feed ratio of 6.5 H2/n-C7 and WHSV of 2.98 h−1.

Keywords: n-heptane; Pt/HY-HZSM-5 zeolite catalyst; hydroisomrisation; hydrocracking; octane
number; artificial neural network; optimisation; genetic algorithm

1. Introduction

Gasoline is currently the main fuel for various means of transportation; it is a carcinogen
if the resulting exhaust contains benzene in large quantities and it also constitutes a major
problem in fuel production [1,2]. Accordingly, it is necessary to make naphtha fuel as free as
possible from hydrocarbons such as alkanes and naphthenes, especially in the range from
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hexane to heptane. Because naphtha contains large amounts of hydrocarbons in the n-C6 and
n-C7 range, these compounds are considered the most prevalent precursors for the genera-
tion of harmful substances that are subsequently produced with the exhaust emitted from
engines [3,4]. Hydroisomerisation and/or hydrocracking of the linear paraffins are essen-
tial processes to produce high-quality gasoline through converting the linear hydrocarbons
with a low octane number, such as n-C7 into branched hydrocarbons with a higher-octane
number [5,6]. Branched paraffin does not contain olefin and aromatic components and has
lower melting points and low sulphur content compared with that in the straight paraffins.
Moreover, the efficiency of these processes depends on the reaction pathway, which is de-
termined by the framework structure of the catalyst used and the reaction conditions [7].
Therefore, research continues in this field to choose the suitable commercial catalyst with
the required specifications, optimal metal loading ratios, and accurate reaction conditions
to reach an ideal catalytic reaction pathway for the linear hydrocarbon treatment process,
and consequently raise the octane number of naphtha [8–10]. The type of catalyst utilised
throughout the catalytic hydrotreating is a bifunctional catalyst (i.e., a noble metal support
on an acid catalyst) [11]. Generally, metallic sites are required as a necessity for dehydro-
genation/hydrogenation reactions; nevertheless, the acidic sites are essential to complete
cracking/isomerisation reactions. Platinum metal has strong dehydrogenation and hydro-
genation activities, while zeolite is used as an acid catalyst [12]. In fact, most zeolite catalysts
are suitable for hydroisomerisation and/or hydrocracking because they have thermal stability;
acidity and appropriate pore size do not hindrance the diffusion of their products from the ze-
olite opening pores, especially with zeolites that have multidimensional networks [13]. In the
catalytic techniques of the chemical industries, heterogeneous reactions are used up to about
80%, and about 95% of them apply Y-type zeolites, especially in the petroleum industries [14].
The Y-type zeolite structure consists of a three-dimensional channel system and possess a large
pore size, containing 12 tetrahedra with a maximum free pore diameter of Ø > 6.5 Å, while
the ZSM-5-type zeolite structure consists of two intersection channels; one is straight and
the other is sinusoidal and possesses a medium to small pore size, containing 10 tetrahedra
with a maximum free pore diameter of 4.5 Å < Ø < 6.5 Å [15,16]. The ZSM-5 catalyst, due
to its porous properties, is used to increase the selectivity of products as in the case of the
fluidised bed reactor (i.e., FCC-unit) [17,18]. It was found in a study that the combination
of HY zeolite and HZSM-23 zeolite together can significantly enhance the properties of
isomerisation products [19]. On the other hand, developing an appropriate kinetic model
based on the reaction mechanism is an important step in building a mathematical model.
There are few investigations that have been interesting with regard to studying kinetic
models of hydroisomerisation and hydrocracking reactions, such as Schweitzer et al. [20],
who studied the kinetic model of n-heptane hydro-conversion using Pt/Beta catalyst, Song
et al. [21], who investigated the kinetic model of the hydrocracking of vacuum gas oil
using hydrotreating/hydrocracking catalysts, Vandegehuchte and his co-worker [22], who
studied the kinetic model of n-hexadecane hydrocracking employing Pt/HBEA zeolite
catalyst, Choudhury et al. [23], who explored the kinetic model of decane hydroisomerisa-
tion over Pt/HZSM-22 zeolite catalysts, and Martens et al. [24], who surveyed the kinetic
model of n-octane to n-dodecane hydrocracking reaction over Pt/USY zeolite catalysts.
Customarily, petroleum reactors comprise the reactions of cracking, polymerisation, dehy-
drogenation, alkylation, cyclisation, and isomerisation, which occur simultaneously [25].
Indeed, the hydrocracking reactions of alkenes take place at higher temperatures than
the reactions of hydroisomerisation, and as a consequence the development of a reaction
pathway describing hydroisomerisation and hydrocracking reactions of alkenes in indus-
trial processes is very difficult [26]. In the past few years, modelling and simulation have
become very necessary to keep pace with industry development through optimising the
design of chemical units. Several models were suggested to predict and analyse produc-
tion in terms of quality and quantity, and the results have shown a good improvement
in most of these manufactures. Undeniably, the modelling is performed to understand
the influence of process parameters such as temperature, pressure, volumetric flow rate,
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weight hourly space velocity, metal loading, and the ratio of hydrogen atoms to carbon
atoms (H/C) in hydrocarbon compounds [27,28]. Mathematical models are classified into
two types, either empirical or deterministic models [29,30]. The empirical model, also
named the statistical model, is based on prediction in contrast to deterministic models
that rely on fundamental-principle calculations without relying on random interpretations.
Artificial neural networks (ANNs) are evolutionary intelligence computational models,
which are constricted by mathematical relations according to randomness correlations
between input and output parameters [31,32]. The ANNs outperformed mathematical
modelling in representing some chemical processes such as catalytic reactors [29]. ANNs
can identify dependent and independent elements in nonlinear methods; however, black
box is the main drawback of this method as it is strenuous to realize how the results were
obtained. Nowadays, ANNs are employed to estimate the reaction performance for highly
complex reactions such as hydroisomerisation and hydrocracking [4]. Furthermore, in
systems of multiple input–output variables, ANNs have the ability to form relationships
between these multiplexed variables. Estimation of the reaction rate without a kinetic
model eliminates the errors arising from the selection of the kinetic model and the estima-
tion of kinetic constants [33]. Traditional mathematical modelling can include algebraic,
ordinary differential, and partial differential equations describing reaction temperature
and reaction kinetics, while by using the ANN model, the effect of different factors, such
as production cost (i.e., the effect of changing the composition of the feedstock on the
distribution of products), calculating the cost of the technological regime (i.e., feasibility
studies), the rate of catalyst deactivation (i.e., change of catalyst activity with reaction time),
and the concentration of sulphur content, can be studied. Here, consideration should be
given to the availability of sufficient experimental data showing the change in product
distribution based on the change of these factors [29,34]. However, developing empirical
models that render nonlinear relationships between products and reactants and cover the
hydroisomerisation and hydrocracking reactions is an important task for the simulation,
optimisation, and design of refinery reactors.

The aim of this study is to develop an artificial neural network model that can be
easily used to simulate the performance of n-heptane hydrocracking and hydroisomerisa-
tion over a commercial bifunctional catalyst consisting of a mixture of HY and HZSM-5
zeolites. Previous studies have addressed the influence of only reaction parameters such
as temperature and weight-per-hour space velocity (WHSV) on the product distribution
and, thus, on the octane number (RON) of the product. In the current study, the effect
of Pt-metal loading on the catalyst surface was added to the operating conditions as an
effective variable. The efficiency of the developed empirical model was confirmed by the
results obtained. The application of process optimisation was also made using the genetic
algorithm approach to estimate the optimum operating conditions (e.g., wt.% Pt-metal
loaded, reaction temperature, H2/n-heptane feed ratio, and WHSV) that promise to increase
the RON value of the reaction products. Finally, the optimal operating conditions obtained
from the experimental results according to the highest molar percentage of the isomers
produced on the catalyst surface were compared with the theoretical results calculated
according to the artificial neural network model, to reach the degree of agreement between
them and hence to determine the efficiency of the empirical model developed in this study.

2. Results and Discussion
2.1. Discussion of the Experimental Results

In the experimental aspect, the focus was on studying four important parameters in
the hydroisomerisation and hydrocracking reactions, including WHSV, H2/n-heptane feed
ratio, wt.% Pt-metal loaded, and reaction temperature. Figure 1a–c shows the relationship
of WHSV with selectivity towards the isomer generated on a catalyst surface. As mentioned
earlier, the catalyst is formed from a mixture of 75 wt.% HY and 25 wt.% HZSM-5 and
loaded with four different percentages of Pt-metal (i.e., 0.25, 0.5, 0.75, and 1 wt.%). The
current study was conducted under temperatures ranging from 300 to 400 ◦C, as this range
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of temperatures is the most common in the study of these types of catalytic reactions aimed
at cracking hydrocarbons and increasing the production of isomers, and hence raising
the value of the octane number of products. It is clearly observed that an increase in
WHSV leads to a decrease in the percentage of isomers produced on the surface of the
catalysts loaded with different amounts of Pt-metal. In fact, an increase in WHSV means
a decrease in the contact time (i.e., catalyst weight/molar flow rate of n-C7 in the feed,
W/F) [35]. Therefore, it seems that the time spent by the reactants on the surface of the
catalyst throughout the reaction is short and does not assist the catalytic hydroisomerisation
reactions to occur at the level required to produce large quantities of isomers. In other
words, a catalytic reaction is an interface phenomenon, and increasing the contact time
between the active sites of the catalyst and the reactants can increase the reaction rate [36].
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Likewise, the same catalytic behaviour is observed on the surface of bifunctional
catalysts in Figure 2a–c, as increasing the H2/n-heptane feed ratio leads to a decrease
in the percentage of the produced isomers, whereas increasing the amount of excess
hydrogen contributes to accelerating the hydrogenation/dehydrogenation reactions on
the metal sites, which helps produce larger amounts of light gases with few carbon atoms
such as C1, C2, and C3 as well as pushes towards hydrocracking reactions instead of
hydroisomerisation reactions [37]. Despite the differences in conclusions and discussions
of results in the experimental study of both parameters, it can be noted that the catalytic
behaviour is similar in terms of isomer production, whether using the WHSV in Figure 1
and/or the H2/n-C7 feed ratio in Figure 2, due to the fact that there is a direct relationship
between them. Where the calculation of each WHSV value is based on the corresponding
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contact time (W/F) value, this latter value is, in turn, dependent on the H2/n-C7 feed
ratio value from which it was calculated. These parameters were studied experimentally
for the purpose of using their results later in testing the efficiency of the empirical model
developed in this study in its ability to predict and compare the theoretical results with the
experimental results. Table 1 demonstrates the details of the laboratory-found results. In
addition, the highest percentage of the resulting isomers of about 78.7 mol% was found
on the catalyst surface loaded with 0.75 wt.% Pt-metal at 350 ◦C using a feed ratio of
6.5 H2/n-C7 and a WHSV of 2.98 h−1, while the lowest percentage of the resulting isomers
around 1.5 mol% was generated on the catalyst surface loaded with 0.25 wt.% Pt-metal at
300 ◦C using 10.5 H2/n-C7 feed ratio and 7.61 h−1 WHSV.
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Moreover, Figure 3a–c shows the results of 36 experiments that were performed to
study the relationship between the percentages of Pt-metal loaded on the surface of a zeolite
catalyst with the percentages of selectivity towards producing isomers at different reaction
temperatures. The significant effect of the percentages of loaded metal on the catalytic
behaviour of the catalysts throughout the hydroisomerisation/hydrocracking reaction can
be seen in terms of the different percentages of the resulting isomers on their surfaces.
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Table 1. Spectra of isomers produced on the surfaces of the catalysts loaded with different percentages
of platinum.

Parameters Selectivity towards Isomer Production (mol.%)

Temperature
(◦C)

H2/n-C7
Feed Ratio WHSV ( h−1)

0.25 wt.%
Pt/HY-HZSM-5
Zeolite Catalyst

0.5 wt.%
Pt/HY-HZSM-5
Zeolite Catalyst

0.75 wt.%
Pt/HY-HZSM-5
Zeolite Catalyst

1 wt.%
Pt/HY-HZSM-5
Zeolite Catalyst

400 6.5 2.98 36.53 37.74 40.44 39.13

8.5 5.03 34.04 36.01 39.18 37.79

10.5 7.61 27.16 31.81 36.14 34.37

350 6.5 2.98 44.07 44.42 78.69 71.68

8.5 5.03 43.75 44.11 78.3 69.85

10.5 7.61 43.18 43.03 65.29 64.23

300 6.5 2.98 18.85 20.97 33.88 28.6

8.5 5.03 9.63 13.82 30.26 23.81

10.5 7.61 1.49 3.39 20.5 14.32
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It can be seen that the percentage of production of isomers did not change much
when the loading percentage of platinum metal on the surface of the catalyst increased
from 0.25 wt.% to 0.5 wt.%, but the large increase of the resulting isomers appeared when
the loaded metal was increased to 0.75 wt.% at different temperatures, while increasing
the percentage of the loaded metal from 0.75 wt.% to 1 wt.% gave opposite results, as
it led to a decrease in the resulting isomers. Metal loading on the catalyst surface is a
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very accurate procedure because it greatly affects the generation of metallic sites on the
surface of the catalyst as well as the distribution of these sites throughout its structural
framework. The small number of metal functionalities can lead to a decrease in the
efficiency of hydrogenation and dehydrogenation reactions, which play the main role in the
production of isomers and catalytic selectivity. Increasing the percentage of metal loaded
on the catalyst surface can close the opening pores and lead to a decrease in the initial
hydrocracking reactions of the feedstock hydrocarbons, as it prevents the reactants from
reaching many acidic sites, and as a result, the catalytic activity decreases in general [38,39].
Furthermore, it can be distinguished that 350 ◦C is the best reaction temperature at which
the percentage of isomers production is achieved, taking into consideration that 350 ◦C is the
critical boundary between hydroisomerisation and hydrocracking reactions. The reaction
temperature is considered a major challenge in such catalytic reactions; unsurprisingly, the
use of a higher temperature (i.e., 400 ◦C) leads to an increase in the hydrocracking reactions
and the production of light gases along with an increase in the amount of coke accumulated
at the expense of the hydroisomerisation reactions and the production of isomers [40,41].
On the other hand, a lower temperature (i.e., 300 ◦C) may not serve the purpose required
for catalytic reactions to take place at a level sufficient to break down hydrocarbons or
produce isomers over a specified reaction time. Therefore, a decrease in conversion is
observed in most cases when the reaction temperature is reduced. Consequently, the
reaction temperature must be controlled with great accuracy to obtain the highest possible
product value [42]. Accordingly, it can be concluded that 0.75 wt.% of metal loaded onto
the catalyst surface and conducting the reactions at a temperature of 350 ◦C gives the
best criterion that can be used to obtain the greatest hydroisomerisation of the n-heptane
components for the purpose of raising the octane number.

2.2. ANN Model Training
2.2.1. Training of Artificial Neural Networks (ANNs)

In fact, finding a suitable network with a minimal error in the training data is important
and is achieved through careful selection of the number of neurons in the hidden layer.
Different topologies having one or two hidden layer(s) of equal number of neurons were
tested iteratively en route for obtaining the optimal ANN topology. The first layer is an
input layer and consists of four neurons (i.e., reaction temperature, wt.% Pt-metal loaded,
H2/n-C7 feed ratio, and weight-hourly space velocity (WHSV)). The second and third
layers are hidden layers containing a variable number of neurons (1–30). The fourth layer
is the output layer and contains twelve neurons (i.e., the mole fraction of products). ANN
training is basically an optimisation process by which the weights of the neural network are
altered for the purpose of minimising the error function. The most common error function
used to quantify the performance of a neural network topology is the mean absolute error
(MAE). In this work, a single hidden layer containing a single neuron was started, and
this was followed by training and testing of the neural network. In order to improve
the overall results of training and testing, the number of neurons was increased and this
process was repeated each time. Several net configurations with one layer and two hidden
layers were trained using input–output patterns. MAE values were estimated for each
neural network topology. By comparing the values of MAE obtained of one and two hidden
layers, as displayed in Figure 4a,b, respectively, it was found that a lower level of MAE was
obtained by using two hidden layers having equal number of neurons compared to using
one hidden layer, especially for 12 and 24 neurons. The optimum number of neurons in
the hidden layer was also found to be 24 in this case. The lowest level of MAE (i.e., 0.5162)
was achieved when two hidden layers with 24 neurons each were used; therefore, the
4–24–24–12 topology was chosen as the optimal ANN topology for the characterisation of
hydroisomerisation and hydrocracking of n-heptane. A lower level of error was identified
when using a number of neurons equal to or twice the number of dependent output
variables. In addition, higher levels of error were achieved when 1–5 neurons were used for
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both one and two hidden layers. Thereby, the best model developed in this study consists
of four layers, as demonstrated in Figure 5.

Catalysts 2023, 13, x  8 of 22 
 

 

number of neurons in the hidden layer was also found to be 24 in this case. The lowest 
level of MAE (i.e., 0.5162) was achieved when two hidden layers with 24 neurons each 
were used; therefore, the 4–24–24–12 topology was chosen as the optimal ANN topology 
for the characterisation of hydroisomerisation and hydrocracking of n-heptane. A lower 
level of error was identified when using a number of neurons equal to or twice the number 
of dependent output variables. In addition, higher levels of error were achieved when 1–
5 neurons were used for both one and two hidden layers. Thereby, the best model devel-
oped in this study consists of four layers, as demonstrated in Figure 5. 

 
(a) 

 
(b) 

Figure 4. Mean absolute error achieved for different numbers of hidden layers and neurons: (a) one 
hidden layer and (b) two hidden layers of equal neurons. 

 
Figure 5. Optimum selected topology for ANN network. 

0.1

1.0

10.0

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

M
ea

n 
ab

so
lu

te
 er

ro
r

No. of neurons

0.1

1.0

10.0

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

M
ea

n 
ab

so
lu

te
 er

ro
r

No. of neurons

Figure 4. Mean absolute error achieved for different numbers of hidden layers and neurons: (a) one
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The number of epochs indicates the number of iterations completed until the optimal
value of the target function (i.e., the minimum value of the sum squared error, SSE) is
finally reached. Obviously, the SSE value decreases as the number of iterations (epochs)
increases. A value of 0.79858 was found as the lower limit for SSE when the epoch number
reached 582, while a further increase in the epoch number had no significant effect on
the SSE value. Accordingly, the maximum number of epochs was set at 582 during ANN
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modelling. Figure 6 illustrates the error versus epochs. The parameters of the ANN model
are summarised in Table 2.
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Table 2. Parameters of artificial neural network model.

Input layer Input data (4 variables)

Output layer Composition of the products (12 variables)

Number of hidden layers 2

Number of neurons for each hidden layer 24

Performance function Mean absolute error (MAE)

Activation function Sigmoid

Type of activation sigmoid

Tan-sigmoid transfer function was used in
first hidden layer

Log-sigmoid transfer function was used in
second hidden layer

Algorithm used for training Levenberg–Marquardt

Learning rate 0.0001

Max number of iterations 1000

Gradient 0.00001

In addition, the strength of ANN model development is illustrated as parity plots and
shown in Figure 7 for training, validation, and testing, in which the correlation coefficient
(R2) was found to be 0.9918, 0.9492, and 0.9426 for training, validation, and testing, respec-
tively, and an average of 0.9767 for all data. According to the acceptable obtained level of
correlation coefficient (R2), which lies within the range of 0.95–1, it can be concluded that
the ANN model accurately simulates hydrocracking and hydroisomerisation of n-heptane
over a Pt-supported catalyst in the temperature range of 300–400 ◦C.
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2.2.2. Comparison of ANN Predictions

The predicted mole fractions calculated by the trained ANN were plotted against the
experimental values, as shown in Figure 8. The observed correlation coefficient (R2) for all
components was greater than 0.926 except for i-C5H12, which had a correlation coefficient
of the order of 0.767. It is noted that the applicability is high between the experimental and
expected results, as the value of the correlation coefficient is always close to one. On the
contrary, whenever the values are far from one, the mathematical model fails to represent
the experimental results. For i-C5H12, the lower correlation coefficient can be attributed to
the ANN optimisation algorithm using mean absolute error as an objective function during
optimisation; therefore, the focus will be on components having higher mole fractions,
contrary to the components having lower mole fractions such as i-C5H12, which has a
maximum mole fraction of 0.8%. As mentioned earlier, the average correlation coefficient
for all experiments and all components was found to be 0.9767, which is strongly accepted.
On the strength of these findings, neural network modelling appears to be a better approach
for modelling the behaviour of n-heptane hydroisomerisation and hydrocracking reactions
on the surface of a bifunctional zeolite catalyst. MATLAB® Version 2020a was utilised to
complete all required computations and predictions.
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2.2.3. Optimisation of Research Octane Number

The maximisation of the objective function (i.e., raising the RON value) via mod-
elling and optimising the n-heptane hydrocracking and hydroisomerisation processes was
achieved by using the hybrid artificial neural network–genetic algorithm (ANN–GA) ap-
proach. The details of the multiple steps of the hybrid ANN–GA approach taken in this
study are easily illustrated by the pathways demonstrated in the flowchart in Figure 9. As
a general rule, this flowchart can be divided into two main parts. The first part involves the
development of a black box model based on the ANN methodological approach, so the
inputs of the neural network are process parameters being optimised and the outputs of
the neural network are also process parameters. In the second part, the optimal output was
attained using GA, which was utilised to study the optimisation of the input variables of the
ANN model. In other words, after the ANN model for the process was generated in the first
part, GA was used in the second part for the purpose of optimising the four-dimensional
space of the decision variables.

The optimisation results are summarised in Figure 10. In this figure, the objective
function value (i.e., maximum RON) as well as the operating conditions with respect to the
iteration number are plotted. The operating conditions (i.e., wt.% Pt-metal loaded, reaction
temperature, H2/n-heptane feed ratio, and WHSV) were changed iteratively within the
specified range shown previously in Table 1. In fact, a maximum RON of 106.84 was
achieved under optimal operating conditions: 0.85 wt.% Pt-metal loaded, 359.36 ◦C reac-
tion temperature, 6.562 H2/n-heptane feed ratio and 3.409 h−1 WHSV. Finally, it can be
concluded that the results of this study have reached the optimal conditions to raise the
RON value of the products in the hydroisomerisation and hydrocracking of n-heptane
reactions, under the determinants of the main reaction parameters, which are both the
percentage of platinum metal loaded on the surface of the catalyst and the reaction tem-
perature, and these results are almost consistent with those of studies conducted by other
researchers [43,44]. The higher reaction temperature was supposed to accelerate the rate of
hydrocracking reactions at a temperature above 350 ◦C, as previously revealed in the exper-
imental results discussion section, which consequently leads to a decrease in the RON of the
products. Conversely, as the reaction temperature increases by about 10 ◦C, it is noted that
the RON of the products continues to increase, possibly owing to the hydroisomerisation
of hydrocarbon chains resulting from the hydrocracking reaction, which have five carbon
atoms [45]. After the reaction temperature reaches 359.36 ◦C according to the results of the
empirical model, it is seen that the production of isomers decreases; thus, the RON of the
products decreases due to the increase in the rate of the hydrocracking reaction. In fact,
raising the reaction temperature leads to a significant increase in the catalytic activity of the
hydrocarbon cracking process, and this leads to an increase in the reaction conversion in
general along with a decrease in selectivity towards the production of isomers [46].
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3. Experimental Work

In the heterogeneous process, hydroisomerisation and hydrocracking experiments
were carried out for 99 wt.% liquid n-heptane with chemical formula [CH3 (CH2)5 CH3]
from Sigma-Aldrich and having a boiling point in the range of 97–98 ◦C. Heptane has a
zero point on the octane rating scale and was therefore chosen as a light n-alkane feedstock.
The decationised catalysts provided by Alfa Aesar (45,867 Zeolite Y, ammonium) and
(45,879 Zeolite ZSM-5, ammonium) with a SiO2:Al2O3 mole ratio of 5.2:1 and 23:1 along
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with a BET surface area of 750 and 425 m2/gcat, respectively, were used as a common
standard catalyst for catalytic reactions. Then, 99.9% H2PtCl6 Hexa-ChloroPlatinic (IV)
acid from Sigma-Aldrich with a molecular weight of 409.81 g/mol was used as a source of
Pt-metal and loaded into the HY-ZSM-5 zeolite structures by common incipient wetness
impregnation method [47] to obtain different percentages of 0.25, 0.5, 0.75, and 1 wt.%
Pt-metal loaded according to the results of inductively coupled plasma analysis. A mixture
of 75 wt.% HY and 25 wt.% HZSM-5 powdered catalysts loaded with Pt-metal was shaped
into pellets of size about 150–450 µm. The bifunctional catalyst particles were then packed
within a stable temperature zone inside a continuous-flow fixed-bed stainless-steel reactor,
which was inserted in the middle of a vertical Carbolite® furnace. Prior to starting each
experiment, streams of nitrogen gas followed by hydrogen gas coming from the cylinders
in a steady flow using mass flow controllers (MFCs) were initially passed through purifiers
to finally reach the catalyst bed separately for the purpose of activating the catalyst in situ
inside the reactor. Then, 40 mL/min for 3 h of nitrogen gas was used for the calcination
step to decompose NH3 ions from the catalyst framework at 450 ◦C, after which a constant
gas flow of 30 mL/min for 2 h of hydrogen gas was employed for metal reduction on the
surface of de-ammoniated catalyst lattice at 350 ◦C. The hydrogen then passed as a carrier
gas saturated with n-C7H16 molecules through the pipes of the system, which were held at
120 ◦C using an electric heater and were also covered with an insulating layer of aluminium
foil to avoid n-heptane vapor condensation; the reaction began when the feed contacted
the granular catalyst bed, as shown in Figure 11. In a gas phase and under an atmospheric
pressure, hydroisomerisation and/or hydrocracking reactions were performed over each
mixture of HY-HZSM-5 catalyst loaded with a certain percentage of Pt-metal, 0.25 to 1 wt.%,
at three different temperatures (e.g., 300, 350, and 400 ◦C). In addition, under each tempera-
ture, three total flow rates of 22.5, 38, and 57.5 mL/min (i.e., H2:n-C7 feed ratios were 6.5,
8.5, and 10.5, respectively) were used to obtain three different weight-hourly space velocity
(e.g., WHSV = 2.98, 5.03, and 7.61 h−1). Accordingly, a total of thirty-six experiments were
conducted with twelve experiments at each temperature, as previously listed in Table 1,
and the reaction products were analysed using gas chromatography. The molar percentage
of isomers produced in each experiment was calculated using Equation (1) [48]:

Selectivty =
(Total moles of isomers)

Initial moles of nC7 − Unreacted moles of nC7
∗ 100 (1)
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4. Theoretical Work
4.1. Artificial Neural Network Modelling

ANN, which mimics the processes of the human brain, is basically a series of mathe-
matical algorithms that are used in this study to estimate the relationships between datasets.
ANN models are able to establish empirical relationships between dependent and inde-
pendent variables based on a set of experimental data. The multilayer feedforward neural
network (MFFNN) is currently the most popular topology in developing neural network
models [49,50]. The ANN contains several layers, which are an input layer, a hidden
layer(s), and an output layer. There may be a different number of neurons within each
layer, and those neurons are connected to a weight that measures their strength.

The output of the jth and kth hidden nodes are given by Equations (2) and (3), respec-
tively [51]:

netj =
I

∑
i=1

Wi,jxi (2)

outputj = f
(
netj

)
netk =

N

∑
n=1

Wn,kxn (3)

outputk = f (netk)

In addition, transfer functions (i.e., sigmoid) arise between ANN layers, and their
function is to link inputs and outputs. The three sigmoids commonly used in ANN
models are linear (i.e., purelin), hyperbolic tangent sigmoid (i.e., tansig), and log-sigmoid
(i.e., logsig) [52,53]. The tan-sigmoid and log-sigmoid transfer functions are given by
Equations (4) and (5), respectively:

f (x) =
2

(1 + e−2x
) − 1 = tansig(x) (4)

f (x) =
1

(1 + e−x
) = logsig(x) (5)

By summing the incoming weighted signals of the hidden nodes which pass through
a specific network activation function (i.e., sigmoid function, fo) the ANN outputs can be
obtained, as given in Equation (6) [54]:

yj = fo

(
n

∑
i=1

Wi,jxi + bj

)
(6)

where xi is the input variable, yj is the output variables, bj is a bias, Wi,j is the weight from
ith neuron in the jth layer, and fo is the activation function of the jth neuron, which could
be tansig or logsig sigmoid.

Designing an Artificial Neural Network

In general, there are three steps that can be followed in developing a neural network
model. The first step involves generating the private data for training and the second step
involves training the neural network using the selected data generated. It is worth noting
that during this step, an objective function is employed to reduce the errors within the pre-
dicted and target values due to the fact that the network can be exposed to a certain number
of patterns. The third step (e.g., testing) is the stage in which the accuracy of the predicted
pattern is adjudged by the exposure of the trained network to an unfamiliar dataset.

The set of data points based on 36 laboratory experiments can be considered fairly
suitable for modelling the neural network, and the success of the modelling is evident
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from the empirical model being developed in the current study and can be very useful in
optimising the experimental work. It can also be combined with other techniques such as
statistical analysis (see Section 4.2), so that successful models can be built using a relatively
small number of datasets [55–60]. Evidence for this is established by comparing the results
of the optimal reaction conditions that will be obtained through the developed empirical
model with the results obtained under original experimental reaction conditions, which
should prove a high agreement between theoretical and experimental results. A total of
180 datasets were chosen for training and testing the neural network using the pregenerated
multiple datasets (in a more precise sense, the 180 datasets were divided into 144 datasets
for training and testing neural networks and the remaining 36 datasets were used for
validation). In fact, 36 datasets represent the original experimental results. The 144 datasets
were generated from experimental results using the response surface methodology (RSM)
method, which is a set of mathematical and statistical methods aimed at analysing problems
through an empirical model. The technique used in the current study is consistent with the
techniques of other studies in the published literature [61–63].

The multilayer feedforward ANN model was used to estimate the performance of the
n-heptane reactions and the selectivity of the products. In Figure 12, the artificial neurons
can be described as representing a parallel, interconnected structure that includes (i) an
input layer of neurons expressing independent variables, (ii) a number of hidden layers,
and (iii) an output layer expressing dependent variables. Here, it is clear that the number
of input neurons is 4 and the number of output neurons is 12. The ANN model input
contained four nodes represented by reaction temperature, wt.% Pt-metal loaded within the
catalyst, H2/n-C7 feed ratio, and weight-hourly space velocity (WHSV), while the model
output contained 12 nodes represented by the mole fractions produced (i.e., methane: CH4,
ethane: C2H6, propane: C3H8, butane: n-C4H10, isobutane: i-C4H10, butene: C4H8, pentane:
n-C5H12, isopentane: i-C5H12, pentene: C5H10, heptane: n-C7H16, isoheptane: i-C7H16, and
heptene: C7H14).
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According to the range of input and output datasets that is shown in Table 3, a
significant difference between these variables can be recognized, where the mole fractions
are within the range of 0–1, while the reaction temperature is within the range 300–400 ◦C.
Normalisation is necessary when there are different ranges of the input and/or output
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dataset. The ANN training model without normalisation will make optimisation (i.e.,
minimisation of objective function or error) focus on the variables with larger values. Using
min–max normalisation is one of the most common methods of data normalisation, in
which the range of datasets for different variables is converted from minimum–maximum
(i.e., xmin−xmax) to 0–1. For each present feature, the maximum value of this feature is
converted to (1), while the minimum value is converted to (0), and the remaining values
are transformed into a decimal number between the (0) value and the (1) value. The input
variables were normalised according to Equation (7) [64]:

xnorm
i =

xi − xmin
xmax − xmin

(7)

Table 3. Range of ANN model variables.

Maximum Minimum Variables

Temperature (◦C) 300 400

Pt-metal loaded (wt.%) 0.25 1

H2/n-C7 feed ratio 6.5 10.5

WHSV (h−1) 2.98 7.61

Mole fraction (%) 0 1

In neural networks, training and testing are expressed by calibration and verification
of mathematical models. Therefore, all variables prior to and subsequent to the actual
application in the neural network are normalised and denormalised between the values of
(1) and (0). By determining the minimum and maximum values for each variable during
the entire data period, this process can be implemented, and the measured variables are
calculated using Equation (8):

xi = xmin + xnorm
i (xmax − xmin) (8)

4.2. Statistical Analysis

Four different evaluating criteria were applied to compare the experimental and
predicted results, in which correlation coefficient of determination (R2), mean absolute
error (MAE), mean relative error (MRE), and mean square error (MSE) were calculated
using Equations (9)–(12) [65]:

R2 = 1 −
∑N

i=1

(
yexp,i − ypred,i

)2

∑N
i=1

(
yexp,i − yexp

)2 (9)

MAE =
1

N × M

M

∑
j=1

N

∑
i=1

∣∣∣yexp
i,j − ypred

i,j

∣∣∣ (10)

MRE =
1

N × M

M

∑
j=1

N

∑
i=1

yexp
i,j − ypred

i,j

yexp
i,j

 (11)

MSE =
1

N × M

M

∑
j=1

N

∑
i=1

(
yexp

i,j − ypred
i,j

)
(12)

where yi,j is the mole fraction of ith component in jth experiments, M represents the number
of experiments, N represents the number of components, and exp. and pred. are superscripts
denoting to experimental and predicted results.
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4.3. Optimisation Method

The genetic algorithm (GA) optimisation method was also used to select the optimum
operating conditions. The ANN model was employed to evaluate the model output for
each selected chromosome (i.e., values of operating conditions). The GA optimisation
method was utilized to predict the operating conditions which corresponded to prediction
maximum octane number (i.e., research octane rating, RON). The RON of a mixture explic-
itly expresses the sum of the contributions of each component within that mixture and can
be calculated according to Equation (13) [4]:

RON =
nc

∑
i=1

αi×RONi (13)

where RON is a measure of the octane number of all hydrocarbons produced, whereas
RONi is the octane number of only the pure component of each i-molecule within that
product, and αi is an expression of the volumetric fractions of the reaction products.

5. Conclusions

In the present study, n-heptane hydroisomerisation and hydrocracking were modelled.
The operating conditions were optimised using both artificial neural network (ANN) and
genetic algorithm (GA) in tandem to enhance the research octane number (RON) value
of the reaction products. For the purpose of constructing an optimal ANN model having
a 4–24–24–12 topology, the parameters of the ANN model were optimised. In order to
investigate the regression model developed in this study, the predicted values and the
actual values were compared in combination with a small percentage of error. The results
of the comparison confirmed that it is possible to rely on the developed model to predict
the conversions of the reactant and, thus, the selectivity of the reaction products within
the range of operating conditions used in this study. In conclusion, the results show
that ANNs are a suitable tool for evaluating even highly complex and nonlinear reaction
systems. Moreover, with a correlation coefficient (R2) of 0.9767, the developed ANN model
was able to provide an accurate prediction for all the used experimental data. Finally,
applications of the genetic algorithm were utilised to optimize the reaction conditions
during the process towards increasing the octane number of the products. The maximum
RON value of 106.84 was achieved under the optimal operating conditions of 0.85 wt.%
Pt-metal loaded, 359.36 ◦C, 6.562 H2/n-heptane feed ratio, and 3.409 h−1 WHSV. The results
of the optimal conditions for the reactions obtained through the developed empirical model
are in agreement with the experimental results. Through conducting 36 experiments of
n-heptane hydroisomerisation/hydrocracking reactions on the surface of the bifunctional
HY-HZSM-5 catalyst, the highest percentage of the resulting isomers was found with about
78.7 mol% on the surface of the zeolite catalyst loaded with 0.75 wt.% Pt-metal at 350 ◦C
using the feed ratio of 6.5 H2/n-C7 and WHSV of 2.98 h−1.
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ANNs Artificial neural networks
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exp. Superscripts letters indicate experimental results
FF–ANN Feedforward artificial neural network
fo Sigmoid function, which is the activation function of the jth neuron
GA Genetic algorithm
jth and kth Hidden nodes
M Number of experiments
MAE Mean absolute error
MFF–ANN Multilayer feedforward artificial neural network
MRE Mean relative error
MSE Mean square error
N Number of components
pred. Superscripts letters indicate predicted results
R2 Correlation coefficient
RSM Response surface methodology.
RON Research octane number of all hydrocarbons produced
RONi Octane number of only the pure component of each i-molecule within that product
SSE Sum of square error
W/F Weight of the catalyst divided by the molar flow rate of n-C7 in the feed
WHSV Weight-hourly space velocity
Wi,j Weight from ith neuron in the jth layer
xi Input variable
yi,j Mole fraction of ith component in jth experiments
yj Output variables
αi Volumetric fractions of the reaction products
Ø Maximum free pore diameter

References
1. Al-Shafei, E.N.; Albahar, M.Z.; Aljishi, M.F.; Akah, A.; Aljishi, A.N.; Alasseel, A. Catalytic conversion of heavy naphtha to

reformate over the phosphorus-ZSM-5 catalyst at a lower reforming temperature. RSC Adv. 2022, 12, 25465–25477. [CrossRef]
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