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Abstract: A series of cobalt complexes bearing (8-(arylimino)-5,6,7-trihydroquinolin-2-yl)methyl
acetate ligand framework were prepared using a one-pot synthesis method. These complexes were
then extensively investigated for their catalytic performance in isoprene polymerization. In addition
to the complexes being characterized via FT-IR spectrum and elemental analysis, the molecular
structure of Co1 and Co5 was determined via X-ray diffraction analysis. The analysis revealed a
chloride-bridged centrosymmetric binuclear species in which each cobalt center exhibited a distorted
square pyramidal geometry. Among the prepared complexes, Co1 demonstrated the highest catalytic
activity of 1.37 × 105 g (mol of Co)−1(h)−1, achieving complete monomer conversion and resultant
polyisoprene showed high molecular weight (Mn ≥ 2.6 × 105 g/mol). All of the complexes showed
preference for the cis-1,4 configuration ranging from 65% to 72%, while the 3,4 monomer insertion
units constituted between 27% and 34% of the polymer structure. Moreover, extensive investigations
were conducted to assess the impact of reaction parameters and ligand properties on the catalytic
activities and microstructural characteristics of the resulting polymer.

Keywords: Coordination-insertion polymerization; isoprene; polyisoprene; cobalt catalysts; cis-1,4
microstructure; 3,4 microstructure

1. Introduction

Polyisoprene, as a viable alternative to natural rubber, possesses exceptional thermal,
mechanical and physical properties, making it highly suitable for various industries such
as rubber manufacturing, shape memory technology, and medicinal applications [1,2].
Among various significant attributes, the mechanical properties of polyisoprene heavily
rely on the intricate microstructure of the polymer, which is determined by the type of
isoprene enchainment within the polymer chain. There are four predominant types of
isoprene enchainments: cis-1,4, trans-1,4, 3,4 and the less commonly observed 1,2 isoprene
configuration. The quantity and nature of these monomer enchainments play a crucial
role in determining the desired properties and applications of polyisoprene [3,4]. Highly
trans-1,4 polyisoprene exhibits enhanced crystallinity and toughness [5]. Conversely, the
presence of cis-1,4 enchainment imparts remarkable flexibility and low crystallinity to the
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material [6], rendering it particularly desirable as a primary component in bulk tire produc-
tion due to its exceptional elastomeric properties. Generally, the high rolling resistance of
cis-1,4 polyisoprene-based tires makes them unsuitable for use in harsh environment [7]. To
address this issue, incorporation of 3,4 units into cis-1,4 polyisoprene chains is an excellent
strategy to reduce rolling resistance while maintaining high wet-skid resistance and wear
resistance [8]. During the past few decades, numerous catalysts have been suggested to
achieve highly selective synthesis of polyisoprene. However, most successful develop-
ments have been achieved by using coordination-insertion polymerization catalysts. Over
the past 60 years, isoprene polymerization has primarily relied on early transition metal
catalysts or conventional Ziegler–Natta catalysts [9,10]. However, recent advancements in
late transition metal-catalyzed polymerization have brought about exciting developments
in the field. The discovery of α-diimine-Ni(II)/Pd(II) complexes in 1995 [11,12], followed by
bis(imino)pyridine-Fe(II)/Co(II) complexes for olefin polymerization [13,14], has attracted
significant interest among both academic researchers and the industrial community. These
breakthroughs have also stimulated notable progress in late-transition metal catalysts
specifically designed for isoprene polymerization [3,4,15]. One of the key advantages
of these complexes is their well-defined molecular structures, which play a vital role in
controlling monomer enchainment, molecular weights, and molecular weight distributions,
enabling the production of polymers with desired mechanical and physical properties.
Iron and cobalt catalysts have become the preferred choices for isoprene polymerization
due to advantages such as low cost, ready availability, high stability, moisture and air
stability in most cases, ease of preparation, and demonstrated high activity and selectiv-
ity [16–19]. Both bidentate and tridentate ligand chelated iron and cobalt complexes have
been explored, with bidentate ligand-metal complex catalysts demonstrating superior poly-
merization activity and molecular weights [20–26]. Bidentate iminopyridine-iron complex
with high catalytic activity and high stereoselectivity for cis-1,4 and trans-1,4 microstruc-
ture was initially reported for isoprene polymerization [16], and subsequently, extensive
structural modifications into this ligand framework have been explored, particularly for
iron complexes [27–30]. However, there have been limited reports on iminopyridine-cobalt
complexes due to their low polymerization activities. Recently, Chen et al. reported on
iminopyridine-based cobalt complexes (A, Chart 1) with polymerization activity up to
8.3 × 104 g (mol of Co)−1(h)−1, producing polyisoprene with low molecular weights up
to 1.8 kg/mol [31]. Later, Wang et al. investigated the influence of fluorine substituents
on iminopyridine-cobalt complexes (B, Chart 1) and achieved polymerization activity up
to 2.6 × 104 g (mol of Co)−1(h)−1, yielding polyisoprene with moderate-to-high molec-
ular weight [32]. Recently, our group employed π-conjugated naphthalenyl-substituted
iminopyridine-cobalt complexes (C, Chart 1) for isoprene polymerization, achieving high
activity up to 3.2 × 105 g (mol of Co)−1(h)−1 and high selectivity for 1,4-polyisoprene [33].
Apart from variations in catalyst structure, reaction parameters, especially the type of
co-catalyst, have significant influence on the polymerization rate and polymer proper-
ties [34–36].
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In recent years, our research group has prepared a series of nickel complexes based on
N-(2-alkyl-5,6,7-trihydroquinolin-8-ylidene) arylimines for ethylene polymerization [37–42].
We observed that the incorporation of a carbocyclic ring into the iminopyridine-nickel
complexes positively impacts the performance of ethylene polymerization, particularly
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polymerization activity. Motivated by this observation, we hypothesized that incorporat-
ing a carbocyclic ring into the iminopyridine-cobalt complexes would aid in controlling
monomer enchainment and further enhance the polymerization behavior of these catalysts.
Herein, a series of cobalt complex catalysts based on (8-(arylimino)-5,6,7-trihydroquinolin-
2-yl)methyl acetate ligands was prepared and their performance in isoprene polymerization
was investigated. Isoprene polymerization experiments were extensively conducted to
establish a clear structure–activity relationship. The significant influence of reaction condi-
tions on the polymerization being recognized, the various reaction parameters, including
the type and amount of co-catalyst, reaction temperature, run time, and catalyst loading,
were systematically examined. By systematically studying these factors, we aimed to
gain insights into their impact on the polymerization process and ultimately optimize the
catalyst performance for isoprene polymerization.

2. Results and Discussion
2.1. Synthesis and Characterization of Cobalt Complexes (Co1–Co6)

Following the established procedure [29,43], a one-pot synthesis method was em-
ployed to prepare (8-(arylimino)-5,6,7-trihydroquinolin-2-yl)methyl acetate-cobalt dichlo-
ride complexes (where aryl = 2,6-Me2C6H3 for Co1), 2,6-Et2C6H3 for Co2, 2,6-iPr2C6H3 for
Co3, 2,4,6-Me3C6H2 for Co4, 2,6-Et2-4-MeC6H2 for Co5 and 2,4,6-tBu3C6H2 for Co6). The
reaction involved refluxing 2-chloromethyl-5,6,7-trihydroquinolin-8-one, the corresponding
aniline, and CoCl2·6H2O in acetic acid for 7 h. This synthetic procedure generated the
desired cobalt complexes at high yields, as depicted in Scheme 1. Generally, the one-pot
synthetic approach of complexes offered several advantageous, such as elimination of the
need for purification and isolation of ligands. However, this approach can sometimes lead
to unexpected reactions due to the use of harsh conditions such as high temperatures (120
◦C) and acetic acid as the solvent [40]. Thus, in the synthesis of the desired complexes, an
unexpected reaction occurred, leading to the incorporation of a methyl acetate functional-
ity at the ortho position of the pyridine ring instead of anticipated chloro methyl group.
This observation was confirmed via single-crystal X-ray diffraction analysis and elemental
compositions. It is proposed that at elevated temperatures, acetic acid, used as the solvent,
displaced the chloro group with an acetyl group, ultimately leading to the incorporation
of a methyl acetate functionality at the ortho position of the pyridine ring. A mechanism
for this unexpected reaction is proposed in Scheme 1. All synthesized complexes were
thoroughly characterized using Fourier transform infrared (FT-IR) spectra and elemental
analysis. Additionally, the molecular structures of two complexes, Co1 and Co5, were
examined via single-crystal X-ray diffraction analysis.
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The elemental analysis data provided confirmation of the structural integrity of the
complexes depicted in Scheme 1. In the FT–IR spectra, the characteristic stretching vi-
brations of the C=Nimine bonds within these complexes were observed in the range of
1619–1647 cm−1. Upon comparison of these wave numbers with those of structurally
related non–coordinated ligands reported in the literature [37,41,44], a noticeable shift of
approximately 20 cm−1 towards lower values was observed, indicating coordination of
the cobalt metal with the ligand structure. These findings align with previous reports on
analogous cobalt complexes [31–33]. Moreover, the stretching vibrations of carbonyl groups
were observed at approximately 1740 cm−1, which confirms the presence of methyl acetate
functionality within the ligand structure.

Single crystals of Co1 and Co5, suitable for X-ray determinations, were grown via the
slow diffusion of n-hexane into a solution of the corresponding complexes in dichloromethane
at ambient temperature. The molecular structures of both complexes, displayed in Figure 1,
exhibit a chloride-bridged centrosymmetric binuclear species; thus, the discussion will
focus on both complexes together. In this dimeric arrangement, each cobalt center is coordi-
nated by two sp2 nitrogen atoms derived from the (8-(arylimino)-5,6,7-trihydroquinolin-2-
yl)methyl acetate ligand. Additionally, one chloride ion bridges the cobalt centers while the
remaining chloride ion acts as a monodentate ligand [40,45]. This coordination pattern is
observed in both complexes. In the molecular structure of both complexes, the basal plane
is formed from Npyridine, Nimine, and the bridging chloride atoms (Cl2 and Cl2) while Cl1
occupies an axial position, resulting in a distorted square pyramidal geometry around the
metal center. According to the data in Table 1, the bond distance between Npyridine and the
cobalt metal is slightly greater than the Nimine–cobalt bond distance [Co1–N1 = 2.172 (4) Å
for Co1; 2.157 (3) Å for Co5 vs. Co1–N2 = 2.056 (4) Å for Co1; 2.058 (3) Å for Co5, respec-
tively], indicating a stronger coordination between Nimine and the metal center compared
to Npyridine. The N(1)–Co(1)–N(2) bite angles in each complex are similar, measuring 77.53◦

(Co1) and 77.90◦ (Co5), albeit considerably smaller than the three other angles [N1–Co1–
Cl2, N2–Co1–Cl2, Cl2–Co1–Cl2] within the square plane. Moreover, the planes of the
N-aryl rings are oriented almost perpendicular to the chelate ring plane. These structural
characteristics have been previously reported in related metal complexes [40,45,46].
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Figure 1. Molecular structure of Co1 (left) and Co5 (right) with thermal ellipsoids shown at 30%
probability level. All hydrogen atoms are omitted for clarity.
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Table 1. Selected bond lengths (Å) and bond angles (◦) for Co1 and Co5.

Co1 Co5

Bond lengths (Å)
Co1–N1 2.172 (4) 2.157 (3)
Co1–N2 2.056 (4) 2.058 (3)
Co1–Cl1 2.2812 (14) 2.2664 (11)
Co1–Cl2 2.3422 (12) 2.3420 (10)
N1–C1 1.321 (7) 1.334 (5)
N1–C5 1.345 (7) 1.357 (5)
N2–C9 1.292 (6) 1.295 (5)

N2–C13 1.440 (7) 1.441 (5)
Bond Angles (o)

N1–Co1–Cl2 89.42 (10) 89.57 (9)
N1–Co1–N2 77.53 (16) 77.90 (13)
N2–Co1–Cl2 97.01 (11) 97.52 (10)
Cl2–Co1–Cl2 85.45 (3) 85.48 (3)
N2–Co1–Cl1 115.08 (11) 111.70 (10)
Cl1–Co1–Cl2 128.79 (6) 130.19 (5)
N1–Co1–Cl1 92.02 (11) 91.29 (9)

2.2. Isoprene Polymerization
2.2.1. Screening of Reaction Conditions Using Co1 as Precatalyst

Previous studies have demonstrated the substantial impact of reaction parameters
on the catalytic performance of complexes, particularly on the molecular weights and
microstructure of the resulting polymers [25,34,45]. Consequently, we conducted a compre-
hensive screening of various reaction parameters, including reaction temperature, catalyst
loading, and reaction time, as well as the type and quantity of co-catalyst employed. The
aim was to identify the optimal reaction conditions that would serve as a reference point for
evaluating the performance of all the synthesized complexes in isoprene polymerization.

The screening process for isoprene polymerization commenced with an evaluation of
a suitable co-catalyst. The experiments were conducted using a fixed reaction time of 1 h in
toluene solution (5 mL) at room temperature, utilizing complex Co1 as the representative
precatalyst. Three distinct alkylaluminum co-catalysts, namely methylaluminoxane (MAO),
dimethylaluminum chloride (AlMe2Cl), and trimethylaluminum (AlMe3), were individu-
ally tested in combination with complex Co1. The polymerization results, as summarized
in Table 2, revealed that Co1 displayed activity only when paired with AlMe2Cl (Al/Co
ratio = 50), yielding a polymerization activity of 0.22 × 105 g (mol of Co)−1(h)−1 and pro-
ducing polyisoprene with a molecular weight of 0.1 × 105 g/mol. In contrast, MAO and
AlMe3 yielded only trace amounts of polymer. The disparity in polymerization activity can
be attributed to the varying Lewis acidity of the co-catalysts, which plays a pivotal role in
the activation of the catalysts. Therefore, AlMe2Cl was identified as the optimal co-catalyst
for subsequent investigations into isoprene polymerization.

Table 2. Selection of suitable co-catalyst for isoprene polymerization using Co1 as the precatalyst a.

Entry Co-Cat. Al/Co Conv. b (%) Act. c Mn
d (105, g/mol) PDI d

Microstructure e

cis-1,4 trans-1,4 3,4

1 MAO 100 trace - - - - - -
2 AlMe3 50 trace - - - - - -
3 AlMe2Cl 50 16 0.22 0.1 1.2 74 1 25
4 AlMe2Cl 40 22 0.30 2.9 1.7 71 4 25
5 AlMe2Cl 20 29 0.40 2.8 1.6 71 5 24
6 AlMe2Cl 10 18 0.25 2.6 2.3 70 2 28

a General conditions: catalyst Co1 (10 µmol); isoprene 2 mL (20 mmol); IP/Co (2000); 5 mL toluene, reaction time
1 h, reaction temperature 25 ◦C, b isolated yield; c 105 g (mol of Co)−1(h)−1; d determined via GPC, e selectivity
given in mol%, determined via 1H and 13C NMR spectra.
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Subsequent isoprene polymerization experiments were carried out with varying
Al/Co ratios ranging from 50 to 10 while maintaining a constant temperature of 25 ◦C
for a duration of 1 h (entries 3–6, Table 2). Notably, a reduction in the Al/Co ratio from
50 to 40, and further down to 20, resulted in an improvement in polymerization activity,
reaching a peak value of 0.4 × 105 g (mol of Co)−1(h)−1 at an Al/Co ratio of 20 (entry 5,
Table 2). However, further decreasing the co-catalyst amount to 10 led to a decline in
activity. This correlation between co-catalyst amount and polymerization activity aligns
with previous findings in isoprene polymerization studies [17,23–25,33]. The increased
concentration of the co-catalyst leads to a higher occurrence of chain transfer reactions,
which was likely to result in the partial deactivation of the active species, ultimately leading
to relatively lower yields when the co-catalyst concentration was high. At a monomer
conversion of 22%, the resulting polyisoprene exhibited an average molecular weight (Mn)
of 2.9 × 105 g/mol, accompanied by a polydispersity index of 1.7. However, when the
monomer conversion increased to 29% at an Al/Co ratio of 20 (entry 5, Table 2), a slightly
lower Mn was observed. This discrepancy can be attributed to difficulty with polymer mass
removal, as the presence of sticky polymer around the active species somehow hinders
monomer insertion and increases the likelihood of chain transfer reactions, thus affecting
chain propagation [17,23,45]. The microstructural features of polyisoprenes were analyzed
using 1H and 13C NMR spectra [recorded in deuterated chloroform at room temperature],
as shown in Figures S1–S18. The obtained spectra were compared with the literature to
confirm the presence of characteristic peaks for cis-1,4 and trans-1,4 and 3,4 units [18,45].
Interestingly, there was no substantial influence on the selectivity of monomer insertion
when varying the Al/Co ratios. The composition of 1,4 and 3,4 units remained almost
consistent, with values ranging from 72% to 76% (consisting of both cis- and trans-1,4) and
24% to 28%, respectively, across all Al/Co ratios. The 1,4 monomer insertion is mainly
cis-1,4 selectivity, accounting for 70% to 74% of overall composition of the resulting polyiso-
prene (entries 3–6, Table 2).

While the Al/Co ratio was maintained at the optimal value of 20, the temperature-
dependent behavior of the polymerization reactions was investigated over a range of
temperatures varying from 25 ◦C to 80 ◦C (entries 1–6, Table 3). The obtained results
indicated a gradual increase in polymerization activity as the temperature was elevated,
reaching complete conversion with the highest activity of 1.37 × 105 g (mol of Co)−1(h)−1

at 60 ◦C (entry 4, Table 3), resulting polyisoprene with high cis-1,4 selectivity (72%, con-
firmed from Figure 2). However, further elevation of the reaction temperature to 70 ◦C
and above resulted in a consistent decline in polymerization activity. This decrease can be
attributed to either partial decomposition of active species or formation of inactive species
at higher temperatures, thus leading to reduced polymerization yields [16,17,20,35,45].
Despite the decrease in polymerization activity with increasing temperature, the catalytic
system still displayed a remarkable activity of 1.12 × 105 g (mol of Co)−1(h)−1 with 82%
conversion at 80 ◦C (entry 6, Table 3), demonstrating the excellent thermal stability of
the prepared catalyst [29,35]. The molecular weight of the resulting polyisoprene grad-
ually decreased with increasing reaction temperature up to 50 ◦C. It is presumed that
elevated temperatures enhance the rate of chain transfer reactions and termination in
comparison to chain propagation, thereby leading to a reduction in the molecular weights
of the resulting polymers [17,23,45]. However, further increasing reaction temperature
did not show a consistent change in molecular weight. This observation implies that the
polymer yields at elevated temperature of 60 to 80 ◦C were in the range of 82% to over
99%; it is likely that this large amount of polymer surrounding the active species might
impede chain transfer reactions, which in turn produces comparatively higher molecular
weight polyisoprene [23,29]. Meanwhile, the influence of the reaction temperature on the
selectivity of monomer insertion was not substantial. Increasing the reaction temperature
led to a slight increase in 3,4 selectivity from 24% to 33%. In contrast, the selectivity of
cis-1,4 monomer insertion showed minimal change, ranging from 66% to 73% (entries 1–6,
Table 3). Similar findings have been reported in previous studies [16,17,20,24,34].
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Table 3. Optimization of reaction conditions for isoprene polymerization using Co1 as the precatalyst a.

Entry
Temp.
(◦C) Time (min) Conv. (%) b Act. c Mn

d (105 g/mol) PDI d
Microstructure e

cis-1,4 trans-1,4 3,4

1 25 60 29 0.40 2.8 1.6 71 5 24
2 40 60 35 0.48 2.2 2.0 73 2 25
3 50 60 59 0.80 1.4 2.3 73 1 26
4 60 60 >99 1.37 2.6 3.2 72 1 27
5 70 60 88 1.20 4.5 2.5 67 1 32
6 80 60 82 1.12 3.4 2.2 66 1 33
7 60 5 57 0.78 3.2 2.1 65 1 34
8 60 15 66 0.90 3.8 2.1 65 2 34
9 60 30 70 0.95 3.3 2.3 65 1 34

10 60 45 79 1.08 2.1 2.2 71 1 28
11 f 60 60 53 1.44 1.5 3.8 65 2 33
12 g 60 60 47 2.56 2.1 2.8 65 3 32

a General conditions: catalyst Co1 (10 µmol); co-catalyst AlMe2Cl, Al/Co = 20, isoprene 2 mL (20 mmol), 5 mL
toluene; b isolated yield; c 105 g (mol of Co)−1(h)−1; d determined by GPC, e selectivity given in mol%, determined
by 1H and 13C NMR spectra, f Co1 (5 µmol), g Co1 (2.5 µmol).
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Next, the reaction running time was varied from 5 min to 60 min with the Al/Co ratio
and temperature fixed at 20 and 60 ◦C respectively (entries 4 and 7–10, Table 3). It was
observed that the polymerization activity and monomer conversion exhibited an almost
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linear increase with the prolongation of reaction time (entries 4 and 7–10, Table 3), suggest-
ing the long life of active species and a somewhat living behavior in promoting isoprene
polymerization [33]. The molecular weights of the resulting polymer initially increased
with the prolongation of reaction time up to 15 min, however, further prolonging the
reaction time resulted in a decrease in molecular weights. Once again, this can be ascribed
to the accumulation of a significant amount of polymer around the active species with
longer reaction times, which likely hinders monomer insertion and leads to slightly lower
molecular weights [17,23,45]. The selectivity of monomer insertion remained relatively
consistent across all reaction running times, with cis-1,4 and 3,4 units ranging from 65% to
72% and 27% to 34%, respectively (entry 4 and 7–10, Table 3).

Finally, the effect of catalyst loading was investigated under optimal conditions (entries
11–12, Table 3). It was found that using a catalyst loading of 5 µmol resulted in 53%
conversion, which is approximately half of the conversion achieved with a 10 µmol catalyst
loading, while the activities remained relatively similar for both catalyst loadings (entry 4
vs. 11, Table 3). On the other hand, employing a catalyst loading of 2.5 µmol yielded
a similar conversion compared to the 5 µmol catalyst loading, but significantly higher
polymerization activity of 2.56 × 105 g (mol of Co)−1(h)−1 was obtained (entry 12, Table 3).

2.2.2. Isoprene Polymerization Using Complexes Co1–Co6

To investigate the impact of catalyst structure on the polymerization activity and
properties of the resulting polyisoprene, besides Co1, the catalytic performance of all the
complexes Co2–Co6 was examined for isoprene polymerization, and the results are pre-
sented in Table 4. The polymerization reactions were carried out under specific conditions,
using toluene (5 mL) as solvent, with an IP/Co ratio of 2000, at 60 ◦C for a run time of
60 min. The results demonstrated that both electronic and steric substituents had a signifi-
cant influence on the polymerization activity and the properties of the resulting polymer.
The polymerization activities and isolated yields exhibited a decrease with increasing
steric hindrance at the ortho position of the N-phenyl group (Figure 3) [33,34,36]. Among
the complexes tested, the complex Co1, bearing the smallest steric groups (2,6-Me2Ph),
stands out as the top performer, providing the highest activity of 1.37 × 105 g (mol of
Co)−1(h)−1 with a quantitative yield (entry 1, Table 4). The complex Co2 (2,6-Et2Ph) and
Co3 (2,6-iPr2Ph) followed in terms of activity, while Co6 (2,4,6-tBu3Ph), with the bulkiest
steric groups, displayed the lowest polymerization activity. This suggests that the sterically
bulky substituents at the ortho positions of the N-phenyl groups occupy more space around
the active species. As a result, insertion and coordination of monomers were hindered at
certain level, leading to relatively lower yields in the polymerization process [20,21].

Table 4. Isoprene polymerization by using Co1–Co6 a.

Entry Cat. Conv. (%) b Act. c Mn
d (105) PDI d

Microstructure e

cis-1,4 trans-1,4 3,4

1 Co1 >99 1.37 2.6 3.2 72 1 27
2 Co2 98 1.34 2.4 2.3 65 1 34
3 Co3 90 1.23 2.8 2.7 68 1 31
4 Co4 96 1.30 3.1 1.9 69 1 30
5 Co5 94 1.28 3.3 1.7 67 1 32
6 Co6 82 1.12 3.4 2.3 69 1 30

a General conditions: catalyst loading 10 µmol; co-catalyst AlMe2Cl, Al/Co = 20, isoprene 2 mL (20 mmol), 5 mL
toluene, temperature 60 ◦C, reaction time 1 h; b isolated yield; c 105 g (mol of Co)−1(h)−1; d determined by GPC,
e selectivity given in mol%, determined by 1H and 13C NMR spectra.

Furthermore, the introduction of electron-donating groups at the para position of
the N-phenyl group had a negative effect on the polymerization activities. The com-
plexes Co4 and Co5, for example, showed slightly lower polymerization activity and
monomer conversion compared to complexes Co1 and Co2 (entries 1 and 2 vs. entries
4 and 5, respectively, Table 4). The positive electronic effect of the methyl groups re-



Catalysts 2023, 13, 1120 9 of 16

duced the Lewis character of the metal center, impeding monomer coordination to some
extent [20,21]. As depicted in Figure 3, the overall trend of decreasing polymerization
activity was as follows: Co1 (2,6-Me2Ph) > Co2 (2,6-Et2Ph) > Co4 (2,4,6-Me3Ph) > Co5
(2,6-Et2-4-MePh) > Co3 (2,6-iPr2Ph) > Co6 (2,4,6-tBu3Ph). Meanwhile, the observed trend
in molecular weights of the resulting polymer aligns with the dependence on the cat-
alyst structure: Co6 (2,4,6-tBu3Ph) > Co5 (2,6-Et2-4-MePh) > Co4 (2,4,6-Me3Ph) > Co3
(2,6-iPr2Ph) > Co1 (2,6-Me2Ph) > Co2 (2,6-Et2Ph), as shown in Figure 3 [20,34]. The com-
plexes with bulky groups tended to produce polyisoprene with higher molecular weights.
Co6, bearing significant steric hindrance (2,4,6-tBu3Ph), yielded polyisoprene with the
highest molecular weight, up to 3.4 × 105 g/mol (entry 6, Table 4). The presence of sub-
stantial steric hindrance at the axial sites of the metal center, as seen in Co6, shields the
active species from undergoing extensive chain transfer reactions and promotes chain
propagation, resulting in comparatively higher molecular weight polyisoprene. The find-
ings regarding the influence of steric hindrance on molecular weight are consistent with
previous studies [20]. The microstructure of the resulting polymers was minimally af-
fected by steric hindrance. Analysis of the 1H and 13C NMR spectra revealed that all
the complexes exhibited a preference for cis-1,4 selectivity in monomer insertion. The
cis-1,4 units in the resulting polymer ranged from 65% to 72%, while the 3,4 units ranged
from 27% to 34%. The polyisoprene derived from Co1 consisted of cis-1,4 units at 72%
and 3,4 units at 27% (Figure 2). As for Co6, polymer composed of cis-1,4 and 3,4- units
at 69% and 30%, respectively (Figure 4). Co6, with its large steric hindrance, displayed a
greater inclination towards 1,4 monomer insertion selectivity [36]. Based on the analysis of
the polymer microstructure, a mechanism for monomer coordination and insertion into
the growing polymer chain is proposed (Figure 5). The allyl-cobalt intermediate contains
two reactive sites, C1 and C3. Insertion of the incoming monomer at C1 results in the
formation of a 1,4 addition, whereas insertion at C3 leads to the formation of a 3,4 unit.
From the experimental findings presented in Table 4, it is evident that the cis-η4 and anti-
allyl-cobalt intermediate were more favorable. As a result, the major product observed was
cis-1,4 polyisoprene, with a minor amount of 3,4 polyisoprene. In contrast, the structure
of the catalysts does not seem to support the trans-η4 mode of coordination and syn allyl-
cobalt intermediate, as a negligible quantity of trans-1,4 units was observed in the resulting
polymer. Overall, these findings indicate that catalyst structure, specifically the presence
of electronic and steric substituents, plays a crucial role in the polymerization activity,
molecular weight, and microstructure of the resulting polyisoprene. Understanding these
structure–activity relationships can contribute to the development of tailored catalysts for
controlling and optimizing the properties of polyisoprene polymers.
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2.3. Comparison with Other Reported Iminopyridine Based Cobalt Complexes

Compared to the previously reported iminopyridine-cobalt complexes for isoprene
polymerization, the newly synthesized cobalt complexes presented in this study exhibited
comparable or better polymerization activity, molecular weights and monomer enchain-
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ment selectivity. Under optimal conditions, the maximum polymerization activity achieved
by the title complexes is 1.37 × 105 g (mol of Co)−1(h)−1, which is ten times higher than the
activity reported for the complexes A [31] and B (chart) [32], but similar to that observed
in complexes C (Chart 1) [33]. Moreover, the average molecular weights of the resulting
polyisoprene were at the level of 105 g/mol, which are higher than the values of those
obtained with complexes A–C in the Chart 1. It is worth noting that all the reported and
prepared iminopyridine-cobalt complexes showed a preference for the cis-1,4 regioselec-
tivity. In comparison to other bidentate cobalt complexes such as pyrazolylimine [24] and
iminoimidazole-based cobalt complexes [25] reported elsewhere, the title complexes demon-
strated superior polymerization activity and molecular weight of the resulting polyisoprene.
Additionally, the title complexes also exhibited higher or comparable polymerization activ-
ity to the cobalt complexes bearing tridentate ligand structures [17,20,22,34,47]. However,
the benefits of title complexes include their simple synthesis, use of less co-catalyst, and
high molecular weight polyisoprene at the level of 105 g/mol.

3. Experimental Section
3.1. General Consideration and Materials

Manipulations of isoprene polymerization were typically conducted in an inert at-
mosphere of dry argon using standard Schlenk techniques or inside a glove box, and the
synthesis of cobalt catalysts was performed in an open atmosphere. Toluene was dried
using sodium metal, and all other solvents were refluxed over CaH2. Additionally, these
solvents underwent distillation under an argon atmosphere prior to their use. The co-
catalysts, namely MAO (1.67 M in toluene), AlMe3 (2 M in toluene), and AlMe2Cl (0.9 M
in heptane), were purchased from Anhui Botai Electronic Materials Co., Chaoyang, China
and Shanghai Macklin Biochemical Co., Ltd., Shanghai China, respectively, and used as
received without any modifications. Isoprene of analytical grade was purchased from
Beijing Yansan Petrochemical Co., purified via distillation over CaH2 under an argon at-
mosphere, and stored at low temperature. All other commercially available chemicals
were used without requiring additional purification. The 1H and 13C NMR measurements
were conducted using a Bruker Ascend 400 MHz HD spectrometer (Ettlingen, Germany).
All tests were performed at room temperature, and deuterated chloroform served as the
internal standard. The chemical shifts are reported in ppm, and J values are reported in Hz.
Fourier transform infrared (FT-IR) analysis was carried out using a PerkinElmer System
2000 FT-IR spectrometer, Waltham, MA, USA. The elemental composition of complexes
was determined using a Flash EA 1112 micro-analyzer. Gel permeation chromatography
(GPC) was performed using a PL-GPC50 instrument equipped (Agilent, Santa Clara, CA,
USA) with a refractive index detector. The GPC system utilized mixed columns with a
combined length of 650 and an internal diameter of 7.5 mm. The samples were dissolved in
tetrahydrofuran (THF) at a temperature of 40 ◦C. The elution of THF occurred at a flow
rate of 1.0 mL/min. The columns were calibrated using standard polystyrene samples.

3.2. Synthesis and Characterization of (8-(Arylimino)-5,6,7-trihydroquinolin-2-yl)methyl
Acetate-Cobalt Dichloride Complexes (Co1–Co6)
3.2.1. Aryl = 2,6-Me2C6H3 (Co1)

General procedure: 2-(chloromethyl)-6,7-dihydroquinolin-8(5H)-one (100 mg, 0.5 mmol),
CoCl2·6H2O (107 mg, 0.45 mmol), and an excess amount of 2,6-dimethylaniline (91 mg, 0.75
mmol) were added to acetic acid (5 mL) and heated to reflux with constant magnetic stirring.
After 7 h of reaction time, all the volatiles were removed via low pressure, and the resulting
crude product was redissolved in 2 mL dichloromethane. Subsequently, diethyl ether
(5 mL) and n-hexane (20 mL) were added sequentially to generate the precipitates, and the
resulting product was further washed with n-hexane and dried under vacuum to yield
a green powder. Green solid, 335 mg, 74% yield. FT-IR (cm−1): 3330.91 (m), 3215.29 (m),
2917.97 (m), 1746 (s), 1621.65 (s), 1586.56 (s), 1511.19 (m), 1473.83 (s), 1414.31 (m), 1362.58 (s),
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1316.31 (m), 1141.94 (m), 1108.03 (w), 1048.16 (s), 838.60 (w), 770.04 (s). Anal. Calcd. for
C20H22Cl2CoN2O2[5CH2Cl2]: C, 34.24; H, 3.68; N, 3.19. Found: C, 33.97; H, 3.73; N, 3.56.

3.2.2. Aryl = 2,6-Et2C6H3 (Co2)

Following a similar procedure as described for the synthesis of Co1, Co2 was obtained as
green solid (310 mg, 65% yield). (FT-IR (cm−1): 3232.18 (m), 3039.95 (w), 2919.09 (w), 2854.67 (w),
1745, 1646.8 (s), 1603.04 (m), 1537.84 (s), 1484.33 (s), 1432.05 (s), 1370.88 (s), 11313.38 (m),
1288.96 (s), 1226.30 (w), 1037.61 (w), 1014.17 (w), 859.17 (w), 739.33 (w), 715.82. Anal. Calcd. for
C22H26Cl2CoN2O2: C, 55.02; H, 5.46; N, 5.83. Found: C, 55.61; H, 5.48; N, 5.89.

3.2.3. Aryl = 2,6-iPr2C6H3 (Co3)

Following a similar procedure as described for the synthesis of Co1, Co3 was obtained
as green solid (350 mg, 69% yield). FT-IR (cm−1): 3551.11 (m), 3399.65 (m), 2962.10 (s),
2868.12 (w), 1747 (s), 1619 (m), 1587.53 (s), 1515.70 (w), 1472.07 (s), 1383.40 (w), 1325.92 (w),
1297.18 (w), 1184.47 (w), 1142.55 (w), 1109.96 (w), 1025.38 (w), 929.05 (w), 838.90 (w), 803.15
(m), 775.34 (s). Anal. Calcd. for C24H30Cl2CoN2O2[3CH2Cl2, Et2O]: C, 47.90; H, 5.90; N,
3.72. Found: C, 47.56; H, 5.36; N, 4.05.

3.2.4. Aryl = 2,4,6-Me3C6H2 (Co4)

Following a similar procedure as described for the synthesis of Co1, Co4 was obtained as
green solid (335 mg, 72% yield). FT-IR (cm−1): 3232.18 (m), 3039.95 (w), 2919.09 (w), 2854.67 (w),
1750 (s), 1646.8 (s), 1603.04 (m), 1537.84 (s), 1484.33 (s), 1432.05 (s), 1370.88 (s), 11313.38 (m),
1288.96 (s), 1226.30 (w), 1037.61 (w), 1014.17 (w), 859.17 (w), 739.33 (w), 715.82. Anal. Calcd. for
C21H24Cl2CoN2O2: C, 54.10; H, 5.19; N, 6.01. Found: C, 53.87; H, 5.24; N, 6.62.

3.2.5. Aryl = 2,6-Et2-4-MeC6H2 (Co5)

Following a similar procedure as described for the synthesis of Co1, Co5 was obtained
as green solid (330 mg, 67% yield). FT-IR (cm−1): 3367.04 (w), 2965.18 (m), 2932.57 (m),
2873.76 (m), 1744 (s), 1619.59 (m), 1589.66 (s), 1514.07 (m), 1457.29 (m), 1371.42 (s), 1221.77 (s),
1142.86 (m), 1101.90 (w), 1050.89 (s), 858.26 (s), 826.53 (w), 749.60 (w). Anal. Calcd. for
C23H28Cl2CoN2O2[MeOH]: C, 54.77; H, 6.13; N, 5.32. Found: C, 54.74; H, 6.23; N, 5.48.

3.2.6. Aryl = 2,4,6-tBu3C6H2 (Co6)

Following a similar procedure as described for the synthesis of Co1, Co6 was obtained
as green solid (380 mg, 64% yield). FT-IR (cm−1): 3400.41 (s), 2957.84 (s), 2868.79 (m),
1744.53 (m), 1621.44 (s), 1592.96 (s), 1516.21 (w), 1485.62 (m), 141431 (m), 1434.76 (w),
1393.84 (w), 1364.40 (m), 1220.77 (s), 1107.66 (m), 1086.07 (w), 1050.46 (m), 927.87 (w),
890.20 (w), 837.81 (w), 746.44 (w). Anal. Calcd. for C30H42Cl2CoN2O2[3CH2Cl2, H2O]:
C, 45.81; H, 5.82; N, 3.24. Found: C, 45.81; H, 5.75; N, 3.69.

3.3. Polymerization Procedure

Under an inert argon atmosphere, a Schlenk flask was dried under reduced pressure
and then filled with argon gas. While a flow of argon was maintained, the precatalysts
such as Co1 (10 µmol), toluene (5 mL) were added sequentially into this flask, followed
by the addition of the assumed AlMe2Cl. The resulting solution was stirred at the desired
temperature for 1 min, and then isoprene (2 mL) was immediately injected. After the
desired running time, the reaction was quenched by adding an acidic ethanol solution
(ethanol/HCl = 50/1). The resulting polymer was washed with excess ethanol several
times, filtered, and dried under vacuum at room temperature until no change was observed
in weight.

3.4. X-ray Crystallographic Studies

The single-crystal X-ray diffraction analysis of Co1 and Co5 complexes was conducted
using a Rigaku Sealed Tube CCD (Saturn 724+) diffractometer, Rigaku, Tokyo, Japan. The
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diffractometer employed graphite-monochromated Cu-Kα radiation with a wavelength (λ)
of 0.71073 Å. The measurements were performed at a temperature of 170 (±10) K. The cell
parameters were determined by globally refining the positions of all collected reflections.
The intensities obtained from the X-ray diffraction analysis were corrected for Lorentz and
polymerization effects; an empirical absorption correction was carried out as well. The
structures of complexes Co1 and Co5 were identified via direct methods and further refined
via full-matrix least squares fitting on F2. The non-hydrogen atoms in each complex were
refined anisotropically. The positions of all hydrogen atoms were determined based on
calculated positions. The structural solution and refinement for each complex were carried
out using SHELXT (Sheldrick) software. The solvent molecules, which do not influence
the geometry of the main compound, were also processed using SHELXT [48]. The crystal
data and processing parameters for Co1 (CCDC 2270716) and Co5 (CCDC 2270717) are
presented in Table 5.

Table 5. Crystal data and structure refinement for Co1 and Co5 complexes.

Co1 Co5

Identification code 2270716 2270717

Empirical formula C20H22Cl2CoN2O2 C23H28Cl2CoN2O2
Formula weight 452.24 494.32
Temperature/K 169.98 (10) 169.99 (10)
Crystal system monoclinic triclinic

Space group P21/n P-1
a/Å 9.1464 (4) 9.1668 (3)
b/Å 22.0899 (15) 10.4116 (4)
c/Å 10.6237 (4) 13.8557 (5)
α/◦ 90 71.220 (3)
β/◦ 106.870 (5) 87.520 (3)
γ/◦ 90 69.207 (3)

Volume/Å3 2054.08 (19) 1166.68 (8)
Z 4 2

ρcalcg/cm3 1.462 1.419
µ/mm−1 9.048 8.024

F(000) 928.6 518.0
Crystal size/mm3 0.15 × 0.10 × 0.05 0.15 × 0.10 × 0.05

Radiation Cu Kα (λ = 1.54184) Cu Kα (λ = 1.54184)
2Θ range for data collection/ 8.0 to 151.5 6.8 to 151.5

Index ranges
−11 ≤ h ≤ 11
−25 ≤ k ≤ 27
−12 ≤ l ≤ 10

−11 ≤ h ≤ 11
−13 ≤ k ≤ 12
−17 ≤ l ≤ 17

Reflections collected 17,017 13,334

Independent reflections 4097 [Rint = 0.0727,
Rsigma = 0.0598]

4645 [Rint = 0.0441,
Rsigma = 0.0430]

Data/restraints/parameters 4097/0/247 4645/1/282
Goodness-of-fit on F2 1.032 1.040

Final R indexes [I> = 2σ (I)] R1 = 0.0595,
wR2 = 0.1508

R1 = 0.0636,
wR2 = 0.1841

Final R indexes [all data] R1 = 0.0914, wR2 = 0.1734 R1 = 0.0687,
wR2 = 0.1884

Largest diff. peak/hole/e Å−3 0.70/−0.72 1.07/−0.45

4. Conclusions

In this study, a series of well-defined cobalt complexes bearing the ligand framework
of (8-(arylimino)-5,6,7-trihydroquinolin-2-yl)methyl acetate were designed, prepared, and
thoroughly characterized via FT-IR, elemental analysis, and X-ray diffraction analysis
in the cases of Co1 and Co5. Interestingly, during the one-pot synthesis of these com-
plexes, an unexpected substitution occurred, in which acetic acid, serving as the solvent,
replaced a chloro group with an acetyl group, leading to the incorporation of a methyl
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acetate moiety into the ligand structure. Among the tested catalyst systems, complex Co1
combined with AlMe2Cl resulted in a complete conversion with the highest activity of
1.37 × 105 g (mol of Co)−1(h)−1. Excellent thermal stability was observed, as the activity
at 80 ◦C could still preserve 1.12 × 105 g (mol of Co)−1(h)−1. The resulting polyisoprene
possessed high molecular weight, ranging from 1.4 to 4.5 × 105 g/mol and exhibited
a predominant presence of cis-1,4 units, ranging from 65% to 72%, while the 3,4 units
accounted for 27% to 34% of the polymer structure. The structure–activity relationship
analysis revealed that the introduction of steric substituents at the ortho position and
electron-donating substituents at the para position of the N-aryl unit negatively affected
catalytic activity. On the other hand, regarding the molecular weights of the resulting
polyisoprene, an opposing trend was observed. Notably, the steric hindrance of the catalyst
had minimal impact on this selectivity. Moreover, the presence of 3,4 units as pendant
terminal olefin side chains in the resulting polyisoprene holds particular importance for
post-modification of the polymer, as it offers the potential to modify and fine-tune the prop-
erties of the polymer. Overall, the designed cobalt complexes showed promising catalytic
activity, control over the molecular weights, and selectivity for cis-1,4 units, providing
insights for the synthesis and modification of polyisoprene polymers.
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