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Abstract: We developed and optimized an electrocatalytic filtration system to catalytically hy-
drodechlorinate chlorophenolic compounds. A key part of the system was the cathode, which
consisted of a filter constructed with electroactive carbon nanotubes (CNTs) functionalized with
atomically precise gold nanoclusters (AuNCs). In the functional membrane electrode, the AuNCs
attached to the CNTs functioned as a highly effective hydrodechlorination catalyst. Additionally,
the ligands of the AuNCs facilitated the binding of the AuNCs with the CNT and protected the
Au core from agglomeration. Atomic H* was the primary reactive species in the system, but direct
reduction by cathode electrons also contributed to the elimination of 2,4-dichlorophenol (2,4-DCP)
by hydrodechlorination. The generated atomic H* was able to break the C–Cl bond to achieve the
rapid hydrodechlorination of 2,4-DCP into phenol, with 91.5% 2,4-DCP removal within 120 min. The
AuNC catalysts attached to the CNT exceeded the best catalytic activity of larger nanoparticles (e.g.,
AuNPs), while the flow-through construction performed better than a standard batch reactor due to
the convection-enhanced mass transport. The study provides an environmentally friendly strategy
for the elimination of pervasive halogenated organic contaminants using a highly efficient, stable and
recyclable system for hydrodechlorination that integrates nanofiltration and electrochemistry.

Keywords: gold nanoclusters; carbon nanotubes; hydrodechlorination; 2,4-dichlorophenol; advanced
reduction process

1. Introduction

Chlorophenolic organic compounds are widely used as raw materials or intermediates
in the industrial production of pesticides, textile, dyes and petrochemicals [1]. However,
due to the existence of chlorine atoms, the degradation cycle of chlorophenolic organic
compounds is extremely long, which leads to their ubiquitous persistence in water systems
and straightforward enrichment in aquatic organisms [2]. As a representative chlorophe-
nolic organic chemical, 2,4-dichlorophenol (2,4-DCP) is known for being difficult to treat
with common mineralization techniques [3,4]. The Chinese government and the United
States Environmental Protection Agency have already listed it as a priority pollutant [5,6].
Additionally, the World Health Organization has classified 2,4-DCP as a carcinogenic com-
pound [7]. Therefore, there is an urgent need for the development of effective strategies to
decontaminate water containing 2,4-DCP.

Although advanced oxidation processes are highly effective in the degradation of
halogenated organic compounds, they might generate oxidation products with greater
toxicity than the parent compound [8–10]. Alternatively, advanced reduction processes
(ARPs) have shown great potential for the removal of chlorophenol pollutants by degrading
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the target pollutant into simple by-products, rather than generating intermediates with
higher toxicity [9,11]. Among ARPs, electrocatalytic hydrodechlorination has attracted
much attention regarding chlorophenol degradation because of its convenient operation and
mild reaction conditions [6,12]. Specifically, a metal catalyst can adsorb protons to generate
highly reductive forms of hydrogen at a low overpotential and adsorb them onto the catalyst
(H*ads), thus enabling an indirect pathway controlled by H*ads for the hydrodechlorination
of chlorophenols [13]. Additionally, direct electron transfer between the pollutants and the
functional electrode surface can also contribute to chemical reduction [14]. The formation
of atomic H* in the electrocatalytic hydrodechlorination process is shown in the chemical
reactions below (M represents metal catalysts) [15]:

M + H2O + 2e− ↔ H∗adsM + 2OH− (Volmer step) (1)

R-Cl + 2H∗adsM → 2M + R-H + H++Cl− (Dechlorination) (2)

H∗adsM + H2O + e− → M + H2 + OH− (Heyrovsky step) (3)

H∗adsM + H∗adsM → 2M + H2 (Tafel step) (4)

The formation of hydrogen (generated by the Heyrovsky and Tafel steps) is the main
limiting step that inhibits the electrocatalytic hydrodechlorination efficiency [16,17]. To
strengthen the hydrodechlorination process, noble metal catalysts such as Pd [18] and
Au [19] have been used to modify the cathode. Compared with extensive studies on the H*
generation using Pd, however, only limited efforts have been devoted to the application of
Au toward H* production, since Au has been considered to be catalytically inert for a long
time [20,21].

The Au catalytic activity is closely correlated to its particle size and a general trend
is that the activity of Au catalysts increases with the decrease in Au size. For instance,
Xu et al. [22] synthesized a series of nanocrystalline biphasic Pd–Au nanoparticles. These
alloy catalysts showed significant activity and stability toward low-temperature CO ox-
idation, even at 300 K. Further decreasing the Au size to less than 2 nm, known as gold
nanoclusters (AuNCs), one can observe highly contrasting and unique physicochemical
behavior compared with AuNPs (with particle size >2 nm) [23,24]. AuNCs typically con-
sist of several to a few hundred gold atoms and specific ligands, which guarantee their
stability in solution [25]. Thanks to the size effect, nanoclusters can provide many more
exposed active sites than nanoparticles and therefore offer great potential in accelerating
the catalytic reaction kinetics. For example, Liu et al. [26] previously designed a flow-
through electro-Fenton system based on a carbon nanotube (CNT) filter functionalized
with atomically precise AuNCs, which outperformed their AuNP counterparts in terms of
the electro-Fenton reaction.

Although several Au nanocatalysts have been developed recently for ARPs, the neces-
sity for the post-separation of the used catalyst from the solution and their sluggish reaction
kinetics have significantly limited their wide application [27,28]. This post-separation
limitation can be resolved by integrating the Au nanocatalyst with optimized support-
ing materials to achieve easy recovery and reuse [29]. The support design avoids par-
ticle aggregation and exposes numerous active sites [30]. In terms of reaction kinetics,
the flow-through configuration usually outperforms conventional batch systems due to
the convection-enhanced mass transport, while conventional batch reactors are typically
diffusion-limited [26,31].

Herein, we developed an effective electrocatalytic flow-through system based on
atomically precise AuNCs for highly efficient hydrodechlorination. Highly conductive
CNTs served as an excellent framework to host these ultrasmall AuNC catalysts, which
attached to the CNTs via hydrogen bonding and/or hydrophobic interactions to form
AuNC@CNT hybrids. The one-dimensional CNTs easily formed three-dimensional CNT
networks by vacuum filtration to support a flow-through operation and electrochemistry
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involvement. Enhanced chlorophenol degradation kinetics were achieved because of the
combined effects of the ultrasmall AuNCs and their numerous catalytic sites, the electro-
chemical enhancement of the reaction and the flow-through design The effects of four
process parameters on the catalytic performance were identified and optimized. The
atomic H* activation and hydrodechlorination mechanism was investigated by combin-
ing experimental results and theoretical calculations. This study offers insights into the
design of stable and efficient flow-through electrocatalytic systems for the treatment of
polluted water.

2. Results
2.1. Electrochemical 2,4-Dichlorophenol Hydrodechlorination

The morphology of the as-synthesized AuNC@CNT nanohybrid filters is available
in our previous report, as well as in the Supplementary Materials (Figures S1–S6) [12,26].
The electrocatalytic hydrodechlorination of 2,4-DCP was performed in an AuNC@CNT
filtration system; the removal efficiency of 2,4-DCP reached up to 91.5% by exerting a
negative potential on the functional filter electrode under acidic conditions (Figure 1). In
comparison, control experiments using a pristine CNT filter electrode exhibited negligible
2,4-DCP removal under the same conditions, thereby emphasizing the indispensable role
played by the atomically precise AuNCs in the proposed technology. The AuNCs in this
study contained several to a few hundred Au atoms and were stabilized in solution by
ligands or organic components such as proteins and thiolates. The nanoscale size of the
AuNCs magnified the catalytic activity of the Au by exposing more active sites. Such
efficacy was comparable to or even higher than that of several state-of-the-art Pd-based
catalytic systems (Table 1).
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Figure 1. Comparison of electrocatalytic hydrodechlorination of 2,4-DCP using CNT and
AuNC@CNT nanohybrid filters. Experimental conditions: applied potential = −1 V vs. Ag/Ag/Cl,
[2,4-DCP]0 = 0.5 mM, flow rate = 2.0 mL·min−1 and pH0 = 3.0.
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Table 1. Comparison of the 2,4-DCP hydrodechlorination performance of proposed system with
reported systems.

Materials External Energy Pollutant
Concentration pH Removal

Efficiency Ref.

Pd-MBfR H2 0.1 mM 75% (2 h) [32]
Pd/C Electricity 0.31 mM 4.0 35.7% (2 h) [33]

Pd/TiN Electricity 0.31 mM 4.0 60.3% (2 h) [33]
C–Pd Electricity 0.31 mM 6.5 47.5% (2 h) [34]

Pd/TiN Electricity 0.31 mM 3.5 76.4% (2 h) [35]
Pd-NiMOF/Ni foam Electricity 0.045 mM 4.0 82.8% (2 h) [36]

AuNC@CNT Electricity 0.5 mM 3.0 91.5% (2 h) This work

2.2. H*-Mediated Electrocatalytic Hydrodechlorination Mechanism

We preliminarily inferred that two pathways could be responsible for the electrochem-
ical hydrodechlorination process: (i) direct reduction by electron transfer between 2,4-DCP
and the AuNC@CNT nanohybrid filter; and (ii) indirect reduction by atomic H* produced
during the electrolysis of water. CV was employed to elucidate the underlying mechanism.
The AuNC@CNT nanohybrid filter electrode was first activated by continuous CV cycling
between −1.5 and −0.5 V (vs. Ag/AgCl) at a sweep rate of 5 mV s−1 in N2-saturated
50 mM Na2SO4 until a stable voltammogram diagram was obtained. Three oxidative peaks
were detected in the CV measurements at different starting potentials (ranging from−1.5 to
−0.5 V vs. Ag/AgCl) within the ranges of −1.0 to −0.8, −0.3 to −0.1 and −0.1 to 0 V
(vs. Ag/AgCl), as shown in Figure 2a. The three characteristic peaks can be associated
with the oxidation of molecular H2 at −0.80 V vs. Ag/AgCl, adsorbed Habs (H* adsorbed
on the Au surface) at −0.30 to −0.10 V vs. Ag/AgCl and adsorbed Hads (H* adsorbed in
the Au crystal lattice) at −0.10 to 0.00 V vs. Ag/AgCl [37]. These peak positions could
shift depending on the practical operating conditions [38]. Additionally, the CV curves
of the AuNC@CNT nanohybrid filter electrode with and without 2,4-DCP addition were
compared to further clarify the role of H*ads and H*abs in the hydrodechlorination process.
Figure 2b shows that the oxidative peak corresponding to H*ads was no longer present after
the addition of 2,4-DCP, indicating that H*ads could serve as the primary active hydrogen
species, rather than H2 or H*abs. The mechanism of electrocatalytic hydrodechlorination was
considered to be divided into direct electron transfer and indirect reduction via atomic H*.

To further identify their contributions, quenching experiments were conducted using
t-BuOH as a H* scavenger. Figure 2c shows that the hydrodechlorination efficiency de-
creased from 91.5% to 70.3% when the concentration of the spiked t-BuOH increased from
0 to 100 mM, suggesting that atomic H* contributed to the hydrodechlorination process.
Noticeably, the degradation rate of 2,4-DCP with 100 mM t-BuOH could still reach 70.3%
over a 120 min reaction, suggesting that direct electron transfer also played an essential role
during 2,4-DCP hydrodechlorination. In addition, the contribution of atomic H* and direct
electron transfer to 2,4-DCP hydrodechlorination could be distinguished according to the
scavenging test [39]. The removal of 2,4-DCP declined from 91.5% to 70.3% once H* was
quenched, suggesting that these two parts contributed 23.2% and 76.8% toward 2,4-DCP
hydrodechlorination, respectively. EPR with DMPO as the spin trapping agent was used to
confirm the active species responsible for the hydrodechlorination. As shown in Figure 2d,
the reactive species were detected. No characteristic peak was observed for AuNC@CNT
in the absence of an electric field. Nine of the main characteristic peaks associated with
the DMPO-H* adduct were detected in the AuNC@CNT system in the presence of an
electric field, demonstrating the involvement of atomic H* [40]. The addition of 2,4-DCP
led to the formation of the DMPO-•OH adduct and the corresponding signals of DMPO-H*
disappeared consequently. To examine whether •OH contributed to 2,4-DCP, we further
quenched H* by purging O2 in the solution (Figure S7). Results suggested that the 2,4-DCP
removal was not enhanced compared with that quenched by t-BuOH.
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Figure 2. (a) CV curves of the AuNC@CNT nanohybrid filter with different starting potentials,
from −1.5 to −0.5 V. The electrolyte contains 50 mM Na2SO4. (b) CV curves of the AuNC@CNT
nanohybrid filter with and without 2,4-DCP. The electrolyte contains 50 mM Na2SO4 and 0.5 mM 2,4-
DCP. The CV scan rate was 5 mV/s. (c) The results of quenching with different t-BuOH concentrations.
(d) The EPR spectra of CNT and AuNC@CNT nanohybrid filter in different systems using DMPO as
the trapping agent during 2,4-DCP hydrodechlorination.

To obtain insights into the mechanism of 2,4-DCP hydrodechlorination, LC-MS was
used to identify the electrolyzed intermediates (Figure S8). Several chlorophenol interm-
ediates—for example, 2-CP, 4-CP (m/z = 128.0) and phenol (m/z = 94.04)—were identified
in the AuNC@CNT system. Based on the LC-MS analysis, a 2,4-DCP hydrodechlorination
pathway was developed (Scheme 1). The atomic H* reacted with the ortho and para Cl
atoms of 2,4-DCP to form 2- and 4-chlorohenol (2-CP and 4-CP, respectively). Notably, the
2-CP concentration stayed at a relatively high level throughout the process compared to
the 4-CP concentration. The higher concentration of 2-CP was due to chemical reactions
with lower Gibbs free energy (∆G) and redox potential (E) [6]. The reaction that generated
2-CP had a lower E and ∆G than the reaction that produced 4-CP, while the opposite
was true when 2- or 4-CP was the reactant. Finally, the fact that phenol was the primary
final metabolite provided more information regarding the electrocatalytic hydrodechlo-
rination process.
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To summarize, a schematic of the proposed hydrodechlorination mechanism of 2,4-
DCP by the AuNC@CNT nanohybrid filter is depicted in Scheme 1. In brief, the AuNCs
functioned as chemically selective, high-yielding nanoscale electrocatalysts that boosted
the formation of atomic H*. Among them, H*ads mediated the hydrodechlorination process
while H*abs remained inactive.

2.3. Density Functional Theory (DFT) Calculations

Density functional theory (DFT) calculations were employed to gain further insights
into the 2,4-DCP hydrodechlorination pathways of the AuNCs [41,42]. The fine struc-
ture and physicochemical attributes of AuNCs were provided in previous reports [20,26].
As shown in Figure 3a, 2,4-DCP (Ead −1.88 eV) exhibited a more negative adsorption
energy (Ead) on the surfaces of AuNCs compared to the atomic H* (Ead −1.35 eV). This
indicated a stronger interaction between 2,4-DCP and the Au sites, which would be ben-
eficial for a subsequent hydrodechlorination process. Figure 3b displays the proposed
2,4-DCP hydrodechlorination routes on the surfaces of AuNCs based on the ∆G dia-
gram. The electrocatalytic hydrodechlorination mechanism of 2,4-DCP can be expressed by
Equations (5)–(11) (M represents the catalyst) [21]:

M + 2,4-DCP→ M·[2,4-DCP]ads (5)

M + H3O+ + e− → M·[H∗] + H2O (6)

M·[H∗] + M·[2,4-DCP]ads → M·[HCl]ads+M·[CP]ads (7)

M·[H∗] + M·[CP]ads → M·[HCl]ads + M·[phenol]ads (8)

M·[HCl]ads → M + HCl (9)

M·[CP]ads → M + CP (10)

M·[phenol]ads → M + phenol (11)

The key step in 2,4-DCP hydrodechlorination was the reaction from 2,4-DCP to 2-
CP/4-CP, which needed to overcome a 1.36 eV activation energy barrier. In addition, the
secondary hydrodechlorination exhibited a relatively lower energy barrier for the first step.
Therefore, the subsequent reaction step was an energy release process and served to enable
complete conversion from 2-CP/4-CP to phenol.
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Figure 3. (a) Adsorption energies of atomic H (H*) and 2,4-DCP on AuNC surface. (b) Free energy
diagram of the hydrodechlorination (2,4-DCP) process on AuNCs. The insets are atomic structures.

2.4. System Optimization

We further optimized a number of important parameters that affected the performance
of the AuNC@CNT filters. To determine the optimal AuNC loading, we fabricated and
evaluated AuNC@CNT nanohybrid filters with different loadings of AuNCs. The results
indicated that as the AuNC concentration increased from 0 to 2 mM, the degradation yield
of 2,4-DCP increased from ~0% to 91.5% under similar conditions (Figure 4a). This was
expected because the Au atoms of AuNCs were active centers and higher Au loading was
conductive to more active sites. However, further increasing the AuNC loading to 3 mM
resulted in a reduction in 2,4-DCP degradation due to the inevitable agglomeration of
AuNCs at elevated concentrations.

Catalysts 2023, 13, x FOR PEER REVIEW 8 of 14 
 

 

 

Figure 4. Optimization of the hydrodechlorination of 2,4-DCP parameters: (a) AuNC loading, (b) 

initial pH, (c) applied potential and (d) 2,4-DCP concentration. 

The effect of the applied potential (0 to −2 V) on the 2,4-DCP hydrodechlorination 

efficiency using the AuNC@CNT filters was characterized by comparing the AuNC@CNT 

results with results obtained using only CNT without AuNCs. Figure 4c shows that the 

2,4-DCP degradation efficiency increased from 32.2% to 88.2% as the potential decreased 

from −0.5 V to −1.5 V (2 mM AuNC loading; pH 3; flow rate of 2 mL·min−1). However, a 

sharp drop in hydrodechlorination occurred when the applied potential was decreased to 

−2 V, possibly due to the increase in other reactions that competed with the electrocatalytic 

hydrodechlorination process (e.g., enhanced H2 formation at low potential). Based on 

these results, an applied potential of −1.5 V was selected as the best one for subsequent 

investigations. 

Moreover, the initial 2,4-DCP concentration affected the hydrodechlorination effi-

ciency as well. The best hydrodechlorination performance was recorded at an initial con-

centration of 0.5 mM, as shown in Figure 4d. A further increase in the 2,4-DCP concentra-

tion (>0.5 mM) could lead to incomplete hydrodechlorination. This could be due to the 

mass transport limitations of the specific construction of the AuNC@CNT membrane sys-

tem. Specifically, a high concentration could facilitate the diffusion of substrates to the 

electrode surface, while the hydrodechlorination efficiency could decrease due to the lim-

ited availability of active sites [43]. 

2.5. System Stability Evaluation 

The durability of heterogeneous ARPs relies on robust catalysts designed for practi-

cal applications. In this regard, the robustness of the AuNC@CNT nanohybrid filter was 

evaluated by consecutive cycles of 2,4-DCP hydrodechlorination. The amount of 2,4-DCP 

(a) (b)

(c) (d)

0 30 60 90 120 150 180

0

20

40

60

80

100

 0.1 mM
 0.5 mM
 1 mM

2
,4

-D
C

P
 R

em
o

v
a

l 
(%

)

Time (min)
0 20 40 60 80 100 120

0

20

40

60

80

100

 -2.0 V

 -1.5 V
 -1.0 V
 -0.5 V
 0 V

2,
4-

D
C

P
 R

em
o

v
a

l 
(%

)

Time (min)

0 20 40 60 80 100 120

0

20

40

60

80

100

 
 
 
 

2
,4

-D
C

P
 R

em
o

v
al

 (
%

)

Time (min)

pH = 2
pH = 3

pH = 5
pH = 7
pH = 10

0 20 40 60 80 100 120

0

20

40

60

80

100

 2 mM
 1 mM

 0.5 mM
 0 mM2
,4

-D
C

P
 R

em
o

v
al

 (
%

)

Time (min)

 3 mM

Figure 4. Optimization of the hydrodechlorination of 2,4-DCP parameters: (a) AuNC loading,
(b) initial pH, (c) applied potential and (d) 2,4-DCP concentration.
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The catholyte pH played a vital role in determining the hydrodechlorination perfor-
mance by impacting the H* yield, as illustrated in Equations (12)–(15) [6]:

M + H3O+ + e− → M·H∗ + H2O (Acidic solution) (12)

M·H∗ + H3O+ + e− → M + H2 + H2O (Acidic solution) (13)

M + H2O + e− → M·H∗ + OH− (Neutral or alkaline solution) (14)

M·H∗ + H2O + e− → M + H2 + OH− (Neutral or alkaline solution) (15)

Figure 4b shows that the greatest degradation efficiency of 91.5% was achieved at a pH
of 3.0. In contrast, a sharp decay in the efficiency was observed under neutral (pH 7, 38.7%)
or alkaline (pH 10, ~0%) conditions. The alkaline condition could inhibit the dominant
yield of atomic H*, while the competing effect of the hydrogen evolution reaction could not
be ignored in strongly acidic conditions (e.g., pH = 2). We also determined the dissolubility
of 2,4-DCP as a function of the solution pH and only a negligible difference was found. This
indicated that the pH effect on the hydrodechlorination performance was mainly derived
from the yield of atomic H*.

The effect of the applied potential (0 to −2 V) on the 2,4-DCP hydrodechlorination
efficiency using the AuNC@CNT filters was characterized by comparing the AuNC@CNT
results with results obtained using only CNT without AuNCs. Figure 4c shows that the
2,4-DCP degradation efficiency increased from 32.2% to 88.2% as the potential decreased
from −0.5 V to −1.5 V (2 mM AuNC loading; pH 3; flow rate of 2 mL·min−1). However, a
sharp drop in hydrodechlorination occurred when the applied potential was decreased to
−2 V, possibly due to the increase in other reactions that competed with the electrocatalytic
hydrodechlorination process (e.g., enhanced H2 formation at low potential). Based on
these results, an applied potential of −1.5 V was selected as the best one for subsequent
investigations.

Moreover, the initial 2,4-DCP concentration affected the hydrodechlorination efficiency
as well. The best hydrodechlorination performance was recorded at an initial concentration
of 0.5 mM, as shown in Figure 4d. A further increase in the 2,4-DCP concentration (>0.5 mM)
could lead to incomplete hydrodechlorination. This could be due to the mass transport
limitations of the specific construction of the AuNC@CNT membrane system. Specifically,
a high concentration could facilitate the diffusion of substrates to the electrode surface,
while the hydrodechlorination efficiency could decrease due to the limited availability of
active sites [43].

2.5. System Stability Evaluation

The durability of heterogeneous ARPs relies on robust catalysts designed for practical
applications. In this regard, the robustness of the AuNC@CNT nanohybrid filter was
evaluated by consecutive cycles of 2,4-DCP hydrodechlorination. The amount of 2,4-
DCP eliminated by the filter decreased by only 5% over eight consecutive running cycles
(Figure 5a), indicating that the nanohybrid filters had excellent stability. In addition, the
leachable Au in the effluent was analyzed with ICP-MS. The outcomes of the analysis
suggested that only negligible Au leakage was detected throughout the catalytic reaction.
This could be attributed to the stable and large-surface-area networks constructed by the
CNT. Moreover, the hydrophobic interactions and hydrogen bonding between the CNT
sidewalls and hydrophobic ligands of AuNCs enabled the safe anchoring of the AuNCs
onto the CNT networks, thereby preventing the AuNCs from aggregating and leaching
into the substrate solution.
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Figure 5. Evaluation of the hydrodegradation efficiency of 2,4-DCP over consecutive running cy-
cles (a) and in the presence of different competitive anions (b). Experimental conditions: applied
potential = −1 V vs. Ag/AgCl, [2,4-DCP]0 = 0.5 mM, flow rate = 2.0 mL·min−1 and pH0 = 3.0.

Analysis with FESEM revealed that the AuNC@CNT filters retained good morpholo-
gies after the operation (Figure S9). The surface chemistry of the AuNC@CNT nanohybrid
filters was characterized in terms of their XPS spectra after the reaction. The XPS data
confirmed that the O content decreased from 15.26 to 8.78 atom% for the fresh versus used
catalyst, respectively. The change in the surface chemistry could be attributed to the elec-
troreduction of the partially oxidized CNT and ligands of AuNCs by the excessive atomic
H* generated during the hydrodechlorination process. The Au valence state underwent
a significant change, with the ratio of Au(I) to Au(0) increasing from 2.39 to 3.12 after
the hydrodechlorination of 2,4-DCP (Figure S10). However, the overall Au content was
constant, indicating that the Au species were preserved well. These results demonstrate
that the AuNC@CNT nanohybrid filter was a robust electrocatalyst that could withstand
multiple cycles of reaction without a significant loss of activity.

To explore the feasibility of using an electroactive hybrid filter for practical applica-
tions, we conducted a thorough investigation of the elimination of 2,4-DCP in the presence
of competitive anions (e.g., Cl−, SO3

2−, NO2
−, NO3

− and HCO3
−) with an initial concen-

tration of 10 mM. The obtained results, as shown in Figure 5b, unraveled the effects of
coexisting ions on the performance of hydrodechlorination by the AuNC@CNT nanohybrid
filter. We observed that the addition of Cl− and SO3

2− had slight negative impacts on
the 2,4-DCP removal efficiency (87.9% and 86.9%, respectively). The addition of HCO3

−

also suppressed the dichlorination kinetics and ultimately led to the 70.3% removal of
2,4-DCP. However, the introduction of NO3

− resulted in a significant inhibitory effect on
hydrodechlorination, leading to a decrease in the removal efficiency of 2,4-DCP to 66.5%.
This was primarily due to NO3

− competing for the available atomic H*, leaving less H2
available for the hydrodechlorination process (Equation (16)) [36]. In addition to NO3

−,
the introduction of NO2

− also severely inhibited the hydrodechlorination process. NO2
−

possessed a significant inhibitory effect on hydrodechlorination, causing the removal yield
of 2,4-DCP to decrease to 33.1%. This inhibition was most likely due to competition from
NO2

− reduction for both electrons and atomic H* (Equation (17)) [44].

2NO−3 + 5H2 → N2 + 2OH− + 4H2O (16)

2NO−2 + 8H+ + 6e− → N2 + 4H2O (17)

Overall, these findings demonstrate the critical importance of considering the effects of
coexisting ions on the performance of electrocatalytic processes, particularly in the context
of wastewater treatment. By gaining a deeper understanding of the underlying mechanisms
at play, we can take steps to optimize these processes and pave the way for more efficient
and effective wastewater treatment technologies.
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3. Materials and Methods
3.1. Chemicals and Materials

All chemicals used were of analytical grade and used without further purification.
Multiwalled carbon nanotubes (CNTs) were provided by TimesNano Co., Ltd. (Chengdu,
China). Au(III) chloride trihydrate (HAuCl4·3H2O, ≥49%), sodium borohydride (NaBH4,
≥98%) and 6-mercaptohexanoic acid (6-MHA, 90%) were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Sodium hydroxide (NaOH, ≥96%), N-methyl-2-pyrrolidinone (NMP,
≥99.5%), methanol (CH3OH, ≥96%), ethanol (C2H5OH, ≥96%), hydrochloric acid (HCl,
36.0%~38.0%), sodium sulfate (Na2SO4, ≥99%), sodium nitrate (NaNO3, ≥99%), sodium
nitrite (NaNO2, ≥99%), sodium chloride (NaCl, ≥99%), sodium sulfide (Na2S, ≥99%) and
2,4-dichlorophenol (2,4-DCP, C6H4Cl2O, ≥99%) were obtained from Sinopharm Chemical
Reagent Co., Ltd. (Shanghai, China). Ultrapure water produced from a Milli-Q Direct
8 purification system (Millipore, Billerica, MA, USA) was used for all experiments.

3.2. Preparation of AuNC@CNT Nanohybrid Filter

The CNT filter was fabricated by dispersing 30 mg of CNTs into 60 mL of NMP with
probe ultrasonic treatment for 45 min; it was then loaded onto a PTFE membrane using
vacuum filtration. The Au25(MHA)18 NCs were synthesized using a NaOH-mediated
NaBH4

− reduction strategy [26]. The as-synthesized AuNCs were dialyzed at 0 ◦C for 3 h
for further purification. The AuNC@CNT nanohybrid filters were prepared via a facile
adsorption method. Briefly, 40 mL of AuNC solution was continuously passed through a
CNT filter cathode for 90 min at a flow rate of 2 mL·min−1 and recirculated. The loaded
AuNCs could be controlled by changing the concentration of the AuNCs from 0.25 to 1 mM.

3.3. Characterization

The morphology of the catalytic filters was characterized with a Hitachi S-4800 field
emission scanning electron microscope (FESEM) and a JEM-2100F transmission electron mi-
croscope (TEM). A Thermo Fisher Scientific Escalab 250Xi X-ray photoelectron spectroscope
(XPS) and Rigaku Smartlab X-ray diffractor (XRD) were utilized to examine the elemental
compositions and crystal phases of the catalytic filters. The electrochemical activity of the
catalytic filters was probed with cyclic voltammetry (CV) and electrochemical impedance
spectroscopy (EIS) using a CHI 660E electrochemical workstation (CH Instrument, China)
in a three-electrode configuration consisting of a AuNC@CNT working electrode, a Pt foil
counter electrode and an Ag/AgCl reference electrode. CV analysis was performed at a
scan rate of 5 mV/s in the 50 mM Na2SO4 solution. EIS analysis was performed over a
frequency range of 105 to 10−2 Hz at an amplitude of 5 mV. A Thermo Scientific iCAP-Q
inductively coupled plasma mass spectrometer (ICP-MS) was used to measure the Au
concentration in the effluent. Electron paramagnetic resonance (EPR) spectra were obtained
with a Bruker EMXnano EPR spectroscope (Germany) with 5,5-dimethyl-1-n-oxide (DMPO)
as a spin trapping agent. The 2,4-DCP hydrodechlorination products were determined by
a liquid chromatography–mass spectrometry (LC-MS) system that combined an Agilent
6545 quadrupole time-of-flight mass spectrometry system with an Agilent 1290 Infinity II.

3.4. Electrochemical 2,4-Dichlorophenol Filtration Experiments

Electrochemical 2,4-DCP reduction experiments were run on commercial Whatman
polycarbonate filtration casing with modifications for electrochemistry. A 10 mM 2,4-
DCP stock solution in methanol was diluted with water to 0.5 mM. To avoid the effects
of physical adsorption on the filtration of the 2,4-DCP, 100 mL of the 0.5 mM 2,4-DCP
solution was first passed through the AuNC@CNT nanohybrid filter at 2.0 mL·min−1

for 1 h to achieve adsorption saturation. In a typical example of the recirculation mode
of filtration, 2,4-DCP (0.5 mM) and a Na2SO4 (20 mM) electrolyte solution were passed
through the AuNC@CNT nanohybrid filter and recirculated. The applied potential was
determined with a CHI 660E electrochemical workstation in a three-electrode configuration.
The impacts of the operational parameters (e.g., solution pH, AuNC loading and applied
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filtration potential) on the catalytic performance were examined. The solution pH was
controlled with 1 M NaOH or HCl. The system stability was evaluated with continuous
2,4-DCP filtration tests at a pH of 3 in recirculation mode. All electrocatalytic experiments
were performed in triplicate to ensure reproducibility.

3.5. Analytical Methods

Effluent samples of 1 mL were taken at pre-determined intervals and immediately
filtered through a 0.22 µm cellulose acetate membrane for further analysis. The concen-
tration of 2,4-DCP was measured with high-performance liquid chromatography (HPLC,
Shimadzu LC-20A, Japan). The parameters were set as follows: acetonitrile/water (0.1%
phosphoric acid) (60:40, v/v) at room temperature. The injection volume was 10 µL and the
UV detection wavelength was 220 nm. The flow rate of the mobile phase was 1 mL·min−1

with a Poroshell 120 EC-C18 column (4.6 × 100 mm2, 2.7 µm). The conversion efficiency
(%) was calculated as

Conversion efficiency (%) = 100 × (C 0 − C)/C0 (18)

where C0 and C are the substrate concentrations before and after passing through the
AuNC@CNT nanohybrid filter, respectively.

4. Conclusions

In this study, we designed a AuNC-based electrocatalytic nanohybrid filter through
an electro-adsorption method. The hydrodechlorination of 2,4-DCP using the AuNC@CNT
nanohybrid filter was systematically investigated. Experimental results revealed that H*
mediated the hydrodechlorination process and that cathode electrons can also reduce
2,4-DCP. DFT calculations and molecular characterizations clarified a two-step pathway
for the hydrodechlorination of 2,4-DCP. The performance of the AuNC@CNT filter was
enhanced by optimizing key factors such as the AuNC load, applied potential and initial pH.
Additionally, the morphologically constrained structure of the CNT and the hydrophobic
interactions and hydrogen bonding between the CNT sidewalls protected the active Au
nanocatalysts from leaching into the solution, thus ensuring excellent sustainability and
stability. Overall, the electrocatalytic filtration system based on AuNC@CNT provides a
promising strategy for the effective elimination of persistent halogenated organic pollutants
in groundwater.

Supplementary Materials: The following supporting information (Details on the theoretical calcu-
lations, LC-MS settings, characterization of the catalytic materials) can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal13071045/s1. Text S1: DFT calculations; Text S2: LC-MS
method; Text S3: Catalyst characterizations; Figure S1: FESEM image of (a) AuNC@CNT; (b) agglom-
erated AuNC@CNT; Figure S2: TEM images of AuNC@CNT; Figure S3: FESEM-EDS mapping images
of AuNC@CNT; Figure S4: TGA curve of AuNC@CNT nanohybrid filter; Figure S5: (a) Comparison
of the XPS survey spectrums of CNT and AuNC@CNT; (b) High resolution Au 4f XPS spectrum of
AuNC@CNT; Figure S6: EIS spectra of the AuNC@CNT; Figure S7: Comparison of 2,4-DCP removal
using different quenching agents; Figure S8: The MS spectra of (a) m/z = 160.9600, (b) m/z = 126.9962,
(c) m/z = 93.9603; Figure S9: FESEM image of the AuNC@CNT after reaction; Figure S10: Comparison
of the XPS survey spectrums of the Au 4f before and after reaction. Refs. [32–36,45–50] cited in
Supplementary Materials.
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