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Abstract: Perovskite barium titanate (BaTiO3) has received a lot of interest due to its extraordinary
dielectric and ferroelectric properties, along with its moderate biocompatibility. Here, we investigated
how Zn doping tuned the physicochemical characteristics, photocatalytic activity, and anticancer
potential of BaTiO3 nanoparticles synthesized from banana peel extract. XRD, TEM, SEM, EDS,
XPS, BET, Raman, and PL were utilized to characterize the as-synthesized pure and Zn (1 and
3 mol%)-doped BaTiO3 nanoparticles. All of the synthesized samples showed evidence of the
BaTiO3 tetragonal phase, and the XRD patterns of the Zn-doped BaTiO3 nanoparticles showed
the presence of a Zn peak. The particle size of BaTiO3 decreased with increasing levels of Zn
doping without morphological changes. After Zn doping, the PL intensity of BaTiO3 decreased,
suggesting a lower electron–hole recombination rate. BET analysis found that the surface area of
Zn-doped BaTiO3 nanoparticles was higher than that of pure BaTiO3. Under visible irradiation, the
photocatalytic activity of pure and Zn-doped BaTiO3 nanoparticles was compared, and a remarkable
85% photocatalytic activity of Zn (3%)-doped BaTiO3 nanoparticles was measured. As a result,
Zn-doped BaTiO3 nanoparticles are recognized as excellent photocatalysts for degrading organic
pollutants. According to cytotoxicity data, Zn (3%)-doped BaTiO3 nanoparticles display four-fold
greater anticancer activity against human lung carcinoma (A549) than pure BaTiO3 nanoparticles. It
was also observed that Zn-doped BaTiO3 nanoparticles kill cancer cells by increasing the intracellular
level of reactive oxygen species. Furthermore, compared to pure BaTiO3, the Zn-doped BaTiO3

nanostructure showed better cytocompatibility in non-cancerous human lung fibroblasts (IMR90).
The Zn-doped BaTiO3 nanoparticles have a reduced particle size, increased surface area, and a
lower electron–hole recombination rate, which are highly beneficial for enhanced photocatalytic and
anticancer activity. Overall, current data showed that green-fabricated Zn-BaTiO3 nanoparticles have
superior photocatalytic and anticancer effects along with improved biocompatibility compared to
those of pure BaTiO3. This work underlines the significance of utilizing agricultural waste (e.g., fruit
peel) for the fabrication of BaTiO3-based nanostructures, which hold great promise for biomedical
and environmental applications.

Keywords: perovskite BaTiO3; Zn doping; eco-friendly synthesis; photocatalysis; cytotoxicity;
biocompatibility

1. Introduction

Nanoscale barium titanate (BaTiO3) is a remarkable perovskite-type material that
exhibits exceptional dielectric and ferroelectric properties [1,2]. BaTiO3 nanoparticles find
extensive usage in various technological applications, including transducers, infrared
detectors, electromechanical devices, actuators, multilayer capacitors, and electro-optical
devices [3,4]. Additionally, BaTiO3 nanoparticles exhibit promising potential for biomedical
applications such as drug delivery, tissue engineering, and cancer therapy [5,6].
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Different crystallographic phases exist for BaTiO3, with cubic and tetragonal phases
being the most stable [2]. The effectiveness of a semiconductor photocatalyst depends on a
number of factors, such as band gap, light absorption, charge carrier recombination rate,
crystal orientation, morphology, and particle size [7,8]. The preparation of a photocatalyst
that operates in visible light is typically accomplished by doping a semiconductor with
an appropriate metal element [9]. Recent studies of metal ion-doped oxide semiconductor
nanoparticles have gained attention due to the fact that the presence of metal ions in oxide
semiconductors (e.g., BaTiO3) results in a narrow band gap, high visible light absorption,
and a low recombination rate of electron–hole pairs [10].

The catalytic efficiency of BaTiO3 could be significantly improved by doping it with
metal ions (e.g., Zn2+) [11]. Metal ion doping causes a narrow bandgap and a diminishing
electron–hole recombination rate in BaTiO3 nanoparticles [12]. Hence, tuning the physico-
chemical properties of BaTiO3 via metal ion doping can be a promising tool for their use
in photocatalysis and anticancer activity [6]. Pure and metal-doped BaTiO3 nanoparticles
can be synthesized using a variety of physical and chemical methods. However, physi-
cal methods are expensive, energy-intensive, and temperature-dependent, and chemical
approaches often result in the release of harmful chemicals into the environment [13].
Furthermore, chemical and physical routes for the synthesis of nanostructures are not
suitable for biomedical applications [14]. Currently, eco-friendly green methods are being
applied to synthesize semiconductor nanoparticles because of the benefits they provide in
terms of particle homogeneity, crystallinity, particle size distribution, processing ease, cost
effectiveness, and sustainability [15].

Here, we developed a facile, low-cost, and environmentally friendly approach for
the synthesis of pure and Zn (1 and 3 mol%)-doped BaTiO3 nanoparticles from banana
peel extract. Banana peel contains several health-beneficial phytochemicals [16]. The
compounds derived from banana peel extract were used in the green synthesis of both
pristine and Zn-doped BaTiO3 nanoparticles as reducing and stabilizing agents. Banana
peel has excellent antioxidant, antimicrobial, and antibiotic properties due to its high
concentration of phenolic compounds and dietary fibers [17]. The high concentration of
flavonoids found in banana peel has been observed to possess anticancer properties [18].
The aim of this research was to integrate the advantageous properties of Zn and BaTiO3,
provided by banana peel extract, in order to augment the photocatalytic and anticancer
effect. Prepared pure and Zn-doped BaTiO3 nanoparticles were characterized via field
emission transmission electron microscopy (FETEM), energy-dispersive spectroscopy (EDS),
field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), X-ray
photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) analysis, Raman, and
photoluminescence (PL) spectroscopy. Synthesized nanoparticles were assessed for their
photocatalytic activity against methylene blue (MB) dye under visible light. Human lung
cancer (A549) cells were used to examine the anticancer potential of the as-synthesized pure
and Zn-doped BaTiO3 nanoparticles. Reactive oxygen species (ROS) were investigated to
delineate the plausible mechanism of the anticancer activity of the synthesized samples.
Human lung fibroblast (IMR90) cells were used to determine the cytocompatibility of the
prepared nanoparticles.

2. Results and Discussion
2.1. XRD Analysis

In Figure 1A, the XRD patterns in the 2θ range of 20–90 degrees demonstrate the phase
structure of the pure and Zn-doped BaTiO3 nanoparticles. Main diffraction peaks of pure
BaTiO3 nanoparticles are found at 2θ values of 22.39, 31.39, 39.14, 45.38, 51.11, 56.40, 66.07,
70.67, 75.04, 79.39, and 83.76, corresponding to the (100), (110), (111), (200), (210), (211),
(220), (221), (310), (311), and (320) crystal planes of tetragonal-phase BaTiO3 (JCPDS no.
05-0626) (Khan et al., 2021b). All of the above-mentioned peaks were also seen in Zn (1 and
3%)-doped BaTiO3 nanostructures, as was an additional peak at 43.33°that matched the
(101) crystal plane of the face-centered cubic phase of Zn (JCPDS no. 004-0831) [19]. Both
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the pure and Zn-doped BaTiO3 nanostructures lacked any peaks indicative of impurities.
Scherrer’s equation was used to calculate the average particle size [20]. Pure and Zn (1 and
3 mol%)-doped nanoparticles have crystallite sizes of 57.4, 48.5, and 35.2 nm, respectively.
A very prevalent pattern that was also mentioned in our earlier work is the reduction
in particle size following metal ion doping [21]. The substitution of Zn2+ for Ba2+ in the
BaTiO3 crystalline structure is responsible for the reduction in the particle size of the doped
BaTiO3 in comparison to that of the pure BaTiO3. This might be because Zn2+ ions have
a smaller ionic radius (74 pm) than does Ba2+ (135 pm). Furthermore, we found that the
XRD peak (111) in the Zn-doped BaTiO3 nanostructures slightly shifted to a lower value
compared to that of the pure BaTiO3 (Figure 1B). In the context of lattice strain, a peak shift
toward a lower value suggests lattice expansion. Lattice strain refers to the deformation
of a crystal lattice from its ideal structure. It can result from various factors, including
mechanical stress, the presence of impurities (e.g., via doping), or crystal defects. The peak
shift is further evidence of the integration of Zn ions in BaTiO3 nanoparticles.
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2.2. Electron Microscopy Analysis

The microstructure, particle size, and morphology of pure BaTiO3 and Zn-doped BaTiO3
nanoparticles were analyzed via TEM and SEM. The particle size distribution obtained from
the TEM images is presented in Figure 2A–C. The TEM micrographs depicted in Figure 2D–F
serve as representations of the pure BaTiO3, 1% Zn–BaTiO3, and 3% Zn–BaTiO3 nanoparticles,
respectively. As we can see in the TEM images, the synthesized samples have a nearly
spherical shape. Particle size is reduced by Zn doping without changing the shape. Based on
TEM measurements, the average particle size (calculated from 100 particles) of pure BaTiO3,
1% Zn–BaTiO3, and 3% Zn–BaTiO3 nanoparticles was determined to be 59.7, 51.3, and 38.5 nm,
respectively. These findings are in accordance with the XRD estimations. The tetragonal
phase of the prepared nanoparticles is confirmed by the visible lattice fringes observed in
the high-resolution TEM images, as depicted in Figure 2G–I. The lattice’s interplanar spacing
was measured to be approximately 0.281–0.285 nm, corresponding to the interplanar distance
of the (100) plane within the tetragonal phase of the BaTiO3 nanostructure. The interplanar
spacing of zinc (Zn) lattice fringes is observed in the range of 0.241–0.243 nm, indicating the
presence of the cubic crystal structure of Zn with the (101) crystallographic plane. The lattice
distances were found to be consistent with the XRD results.
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The typical SEM images of nanostructures constructed of pure BaTiO3, 1% Zn–BaTiO3,
and 3% Zn–BaTiO3 are shown in Figure 3A–C, respectively. These images suggested the
spherical form of nanoparticles, and it was found that the size of BaTiO3 particles decreases with
increasing Zn doping. According to SEM-coupled EDS analysis (Figure 3D), 3% Zn–BaTiO3
included stoichiometric levels of Ba (68.46%), Ti (21.20%), O (7.64%), and Zn (2.71%). The
SEM elemental mapping of 3% Zn–BaTiO3 (Figure 4) provided additional confirmation of the
presence of Zn, Ba, Ti, and O in the synthesized Zn-doped BaTiO3 nanoparticles.
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2.3. XPS Analysis

The surface chemical content of the prepared materials was analyzed using XPS.
Figure 5A–E shows the XPS survey spectra of Zn-doped BaTiO3 nanoparticles and the
high-resolution signals of individual elements such as Ba 3d, Ti 2p, Zn 2p, and O 1s. The Ba
3d signal of the XPS spectra shows two bands, Ba 3d5/2 and Ba 3d3/2, located at 781.9 eV
and 797.1 eV, respectively (Figure 5B). The valence of Ti in BaTiO3 nanoparticles was
demonstrated by the Ti 2p signal, which had two peaks, Ti 2p3/2 and Ti 2p1/2, at 460.9 eV
and 466.2 eV, respectively (Figure 5C) [8]. The binding energies of Zn 2p3/2 and Zn 2p1/2
were observed to be in the XPS spectra of Zn2p at 1021.98 eV and 1045.1 eV, respectively
(Figure 5D). The differences in peak energies (24 eV) indicate that Zn mostly exists in the
Zn2+ state [22]. As we can see in Figure 5E, O1s is divided into two peaks that are present at
about 529.73 eV and 530.71 eV, respectively. These two peaks of O1s correspond to oxygen
atoms in the forms of Ba-O-Ti and Ti-O-Ti [1].
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2.4. Brunauer–Emmett–Teller (BET) Analysis

The BET surface area and porosity of synthesized samples were assessed using the
N2 gas adsorption protocol. Figure 6A,B shows the adsorption–desorption isotherms and
pore width distribution (insets) of pure and Zn (3%)-doped BaTiO3 nanoparticles. These
results suggest that both pure BaTiO3 and Zn-doped BaTiO3 nanoparticles exhibit a type
IV pattern with a mesoporous nature per the IUPAC classification [3]. BET analysis shows
that the surface area and pore size of Zn (3%)-doped BaTiO3 nanoparticles were 14.4 m2/g
and 2.1 nm, which were different from those of pure BaTiO3 nanoparticles (9.3 m2/g and
3.2 nm, respectively). In comparison to pure BaTiO3 nanoparticles, the higher surface area
and lower pore diameter of Zn (3%)-doped BaTiO3 nanoparticles are beneficial for higher
photocatalytic and anticancer effects [23].
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2.5. Raman Analysis

Raman spectroscopy was used to further assess the impact of Zn doping on the
structural properties of BaTiO3 nanoparticles. The range of wavenumbers of 200–1000 cm−1

was evaluated in the room temperature Raman spectra of pure and Zn-doped BaTiO3
nanoparticles (Figure 7). The major peaks of the tetragonal phase of BaTiO3 were found
at 306, 509, and 720 cm−1 [24]. The peak at 306 cm−1 was caused by the vibration of the
TiO6 group. Oxygen atom displacement was thought to be the source of the vibrations
that caused the peak at 509 cm−1. In addition, the ability to distinguish between the
phase transition in pure BaTiO3 and Zn-doped BaTiO3 nanoparticles was facilitated by
the appearance of a peak at 720 cm−1, which could be attributed to the tetragonal phase
of BaTiO3. Furthermore, the strength of Raman peaks altered with increasing Zn doping,
revealing that the higher the Zn doping, the lower the peak intensity. The tetragonal phase
and decreased peak intensity of BaTiO3 nanoparticles after Zn doping are desirable for
enhanced photocatalytic and anticancer activity.
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2.6. Photoluminescence (PL) Analysis

Prepared nanoparticles were investigated using PL spectra to better comprehend the
segregation of photogenerated charge carriers from their excited state. Pure BaTiO3, 1%
Zn–BaTiO3, and 3% Zn–BaTiO3 nanoparticles were excited at 350 nm, and their PL spectra
were recorded at room temperature (Figure 5). In this case, the emission maxima of all three
nanoparticles were located around 400 and 486 nm. The PL intensity of Zn-doped BaTiO3
nanoparticles was lower compared to that of pure BaTiO3 nanoparticles, and it reduced as
the Zn concentration increased. The recombination rate of photogenerated electron–hole
pairs is projected to be lower and the photocatalytic activity is projected to be higher at lower
PL intensities [8]. Figure 8 shows that Zn (3%)-doped BaTiO3 nanostructures effectively
inhibit recombination between charge carriers because their peak intensity is lower than
that of pure BaTiO3 nanoparticles. Zn doping creates oxygen vacancies within the crystal
lattice of BaTiO3 nanoparticles due to the charge imbalance caused by the substitution of
zinc ions with titanium or barium ions. The oxygen vacancies trapped the photo-induced
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charge carriers (electrons/holes). This phenomenon enhances the generation of reactive
oxygen species (ROS), leading to enhanced photocatalytic and anticancer activity.
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2.7. Photocatalytic Analysis

The photocatalytic activity of pure BaTiO3 and Zn (1% and 3%)-doped BaTiO3 nanopar-
ticles was tested by watching how methylene blue (MB) dye degraded over time when
exposed to visible light. The results are shown in Figure 9A–C. All of the synthesized
nanoparticles had a MB absorption peak at 663 nm, which decreased with time and dis-
appeared after around 80 min, suggesting that all of the MB molecules were digested.
Based on the relation provided in the experimental section, the decomposition efficiency
of nanoparticles was determined. Degradation profiles show that after 80 min of expo-
sure to visible light, the pure BaTiO3, 1% Zn–BaTiO3, and 3% Zn–BaTiO3 nanoparticles
had photocatalytic activities of 58%, 70%, and 85%, respectively (Figure 9D). Zn-doped
BaTiO3 nanoparticles had a reduced electron–hole recombination rate, a smaller particle
size, and a higher surface area, all of which contributed to their increased photocatalytic
activity [8]. We also compare the organic pollutant degradation efficiency of Zn-doped
BaTiO3 nanoparticles with that found in earlier studies (Table 1).

Green-fabricated Zn-doped BaTiO3 nanoparticles may have more potential for use if
they are durable and can be used several times [12]. Five photodegradation cycles were
performed under constant research circumstances to determine the reusability and stability of
3% Zn–BaTiO3 nanoparticles. There was just a little drop in photocatalytic effectiveness from
85 to 83% after five test cycles. This demonstrates that the Zn-doped BaTiO3 photocatalysts
prepared from banana peel extract are reasonably stable when exposed to visible light, which
is encouraging for their potential use in environmental remediation.
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Table 1. A comparison of the pollutant degradation efficiency of Zn-doped BaTiO3 nanoparticles
with that found in earlier studies.

Samples Pollutants Light Source Exposure Time Degradation
Efficiency (%) References

Zn–BaTiO3 nanoparticles Methylene blue Visible 80 min 85% Present work

Cu–BaTiO3 nanoparticles methyl violet Visible 120 min 99% [25]

Ag–BaTiO3 nanoparticles Rhodamine B UV 105 min 79% [3]

Ag–BaTiO3 nanoparticles Rhodamine B UV 75 min 83% [26]

BaTiO3@rGO nanocomposites Methylene blue Visible 200 min 96% [8]

BaTiO3/γ–Al2O3 composite tetracycline hydrochloride Visible 120 min 91% [27]

Bi4Ti3O12–BaTiO3 nanocomposite Rhodamine B Solar 60 min 43% [28]

2.8. Anticancer Study

Currently, there is ongoing research into the potential application of semiconductor
nanoparticles doped with metal ions in the field of cancer therapy [29,30]. Recent reports
suggest that BaTiO3 nanoparticles may have potential for use in biomedical applications,
such as cancer treatment [6,31]. The impact of metal ion doping on the anticancer prop-
erties of BaTiO3 has not been extensively studied. This study investigates the potential
anticancer effect of pure and Zn-doped BaTiO3 nanoparticles on human lung cancer cells
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(A549). Cancer cells were exposed to varying concentrations (1–200 µg/mL) of pure BaTiO3,
1% Zn–BaTiO3, and 3% Zn–BaTiO3 nanoparticles for 24 h. Anticancer activity was assessed
using the MTT assay. The results depicted in Figure 10A indicate that both the pure and
Zn-doped BaTiO3 nanoparticles exhibited dose-dependent anticancer activity in cancer
(A549) cells. Moreover, the anticancer efficacy of BaTiO3 nanoparticles increases with
increasing amounts of Zn doping. The inhibitory concentration (IC50) of pure BaTiO3,
1% Zn–BaTiO3, and 3% Zn–BaTiO3 nanoparticles was 64.4, 35.9, and 15.4 µg/mL, respec-
tively. This finding indicates that the incorporation of Zn2+ ions is a significant factor in
augmenting the anticancer efficacy of BaTiO3 nanoparticles.
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Figure 10. Anticancer activity (A) and ROS generation (B) of pure and Zn-doped BaTiO3 nanoparticles
in human lung cancer A549 cells. Cytocompatibility of the same nanoparticles in non-cancerous
human lung fibroblasts (IMR90) (C). The results are shown as the mean and standard deviation of
three separate experiments (n = 3). * denotes significant difference from the control (p < 0.05 level).
GraphPad Prism (version 6.05) was used for the statistical analysis.

Semiconductor nanomaterials have been proposed to exhibit anticancer activity through
the potential mechanism of ROS-induced oxidative stress [32,33]. Therefore, we investigated
the intracellular level of ROS in the cancer (A549) cells after exposure to various concentrations
(1–200 µg/mL) of pure BaTiO3, 1% Zn–BaTiO3, and 3% Zn–BaTiO3 nanoparticles for 24 h.
The results depicted in Figure 10B indicate that the prepared samples elicited a statistically
significant, dose-dependent increase in ROS generation in cancer cells. Furthermore, when
compared to pure BaTiO3 nanoparticles, the Zn-doped BaTiO3 nanoparticles exhibited a
higher ROS level, and ROS generation increased with increasing the percentage of Zn dopant.

Zn doping creates several beneficial modifications in BaTiO3 nanoparticles, which
are highly beneficial for enhanced anticancer activity. Zn doping reduced particle size,
increased surface area, and reduced the rate of electron/hole recombination in BaTiO3
nanoparticles. This is a perfect setting for surface redox reactions that can cause cancer cells
to produce ROS. Our results indicated that Zn-doped BaTiO3 nanoparticles destroy cancer
cells through ROS generation.
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2.9. Cytocompatibility Study

The biocompatibility of possible anticancer agents should also be investigated in nor-
mal cells. This prompted us to assess the effect of pure and Zn-doped BaTiO3 nanoparticles
on normal lung fibroblasts (IMR90). Figure 10C showed that the normal IMR90 cells were
not affected by either pure or Zn-doped BaTiO3 nanoparticles. Interestingly, the cytocom-
patibility of BaTiO3 nanoparticles improves with increasing the percentage of Zn doping.
Overall, these results suggest that Zn-doped BaTiO3 nanoparticles might destroy cancer
cells while having minimal effect on healthy cells. Based on these findings, researchers may
investigate the anticancer effects of Zn-BaTiO3 nanoparticles in other human cancer cell
lines and appropriate in vivo systems.

3. Materials and Methods
3.1. Preparation of Banana Peel Extract

Locally purchased ripped bananas were used to obtain the banana peels. Fruit peels
were washed in deionized water and dried using a food dryer. Dried peels were ground
into a powder using an electric grinder. The banana peel powder (10 g) was added to
500 mL of deionized water and stirred constantly for 6 h. After that, it was placed in a water
bath at 60 ◦C for 1 h. The final step was to filter the mixture through filter paper (pore size
0.2 µm), and the filtrate (extract) was stored at 4 ◦C for further use in nanoparticle synthesis.

3.2. Eco-Friendly Production of Zn-Doped BaTiO3 Nanoparticles

Banana peel extract, barium acetate, tetrabutyl titanate, and zinc acetate were used
as precursors for the synthesis of Zn-doped BaTiO3 nanoparticles. In brief, stoichiometric
amounts of barium acetate, tetrabutyl titanate, and zinc acetate were initially dissolved in
deionized water in individual flasks. These solutions were then added to the banana peel
extract and stirred for 1 h. After that, the mixture was kept in a water bath at 60 ◦C for 12 h.
In order to obtain Zn-doped BaTiO3 nanostructures, the dried samples (1 g) were calcined
at 900 ◦C for 5 h in a muffle furnace. A similar method was used to synthesize pure BaTiO3
nanoparticles without the addition of zinc acetate. A graphical illustration of the green
synthesis of Zn-doped BaTiO3 nanoparticles is presented in Figure 11.
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3.3. Characterization

XRD (PanAlytical X’pert Pro) was employed to characterize the crystallinity and phase
purity of prepared nanoparticles. Shape, size, surface morphology, and elemental analysis
were further determined via field emission scanning electron microscopy (FESEM, JSM-7600F,
JEOL, Inc., Tokyo, Japan), field emission transmission electron microscopy (FETEM, JEM-2100,
JEOL), and energy-dispersive X-ray spectroscopy (EDS). A fluorescence spectrophotometer
(Hitachi F-4600) was used to record the luminescence spectra. XPS analysis was carried out
in the ESCA system (VG 3000) with monochromatic MgKα (1253.6 eV) radiation. Raman
spectroscopy was used to examine the existing phases of synthesized samples (Perkin-Elmer
400F) using a 514 nm laser beam. The specific surface area and pore size distribution were
determined via BET analysis under nitrogen gas adsorption (Gemini VII 2390, Micromeritics).

3.4. Photocatalytic Evaluation

The degradation of methylene blue (MB) dye under visible-light irradiation was used
to measure the photocatalytic activity of pure and Zn-doped BaTiO3 nanoparticles. In 60 mL
of the MB aqueous solution, the necessary amount of nanoparticles was added (the MB dye
concentration in the aqueous solution without catalyst was 20 mg/L). Prior to exposure,
the dye and nanoparticle suspensions were magnetically agitated for 90 min in the dark.
The goal was to keep the dye and nanoparticles in equilibrium between adsorption and
desorption. The resulting mixture was then poured into a 50 mL quartz test tube and
exposed to visible light. A 400 W sodium lamp (Philips) in the 300–900 nm wavelength was
used as a visible light source for the irradiation of solution. The ability of nanoparticles to
degrade dye was observed by measuring the strength of the absorption peak at 663 nm. The
degradation efficiency of nanoparticles was estimated using the equation photodegradation
(%) = [1 − (C/Co)] × 100%, where Co and C display the original concentration of the dye
solution at the initial level and after a certain duration of light irradiation.

3.5. Biological Assays

Human lung cancer cells (A549) and their normal counterparts, lung fibroblast cells
(IMR90), were employed for cytotoxicity studies. The cells were cultured in DMEM
supplemented with 10% FBS, 100 U/mL penicillin, and 100 µg/mL streptomycin. The cells
were maintained in a humidified incubator at 37 ◦C with a 5% CO2 supply. Cells were
exposed to various concentrations (1–200 µg/mL) of nanoparticles for 24 h. The cytotoxicity
of nanoparticles in cancer and normal cells was investigated using an MTT assay with
minor changes, as described earlier [34,35].

The ROS level in cancer cells following exposure to 1–200 µg/mL nanoparticles
for 24 h was determined using the probe 2,7-dichlorofluorescin diacetate (DCFH-DA).
This is a cell-permeable nonfluorescent dye that is oxidized by ROS to produce highly
fluorescent DCF [36]. Using a microplate reader (Synergy-HT, BioTek, Winooski, VT, USA),
the fluorescence of DCF was measured at the 485/520 nm excitation/emission wavelength.

4. Conclusions

Banana peel extract was used to successfully synthesize pure and Zn-doped BaTiO3
nanoparticles. The XRD, XPS, TEM, SEM, EDS, BET, Raman, and PL methods were used to
characterize the as-synthesized samples. In XRD analysis, the tetragonal phase of BaTiO3
was observed in all the prepared samples, and a new Zn peak was observed in the Zn-
doped BaTiO3. XRD, TEM, and SET data found that Zn doping decreased the particle
size without changing the morphology of BaTiO3. BET adsorption–desorption isotherms
indicate that Zn doping increases the surface area of BaTiO3 nanoparticles. The inten-
sity of the PL spectra of BaTiO3 decreased following Zn doping, indicating a declining
recombination rate of electron–hole pairs. The degradation efficiency of pure BaTiO3,
1% Zn–BaTiO3, and 3% Zn–BaTiO3 nanoparticles for MB dye under visible light was 58%,
70%, and 85%, respectively. In vitro studies demonstrated that Zn-doped BaTiO3 nanoparti-
cles were more effective than pure BaTiO3 nanoparticles at killing human lung cancer (A549)
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cells. Additionally, Zn-doped BaTiO3 nanoparticles have high cytocompatibility in normal
lung fibroblasts (IMR90) compared to pure BaTiO3. The improved photocatalytic and
anticancer activity of Zn–BaTiO3 nanoparticles can be attributed to their reduced particle
size, increased surface area, and reduced electron–hole recombination rates in comparison
to those of pure BaTiO3 nanoparticles. Further investigation into the photocatalytic activity
and cancer fighting potential of green-fabricated Zn–BaTiO3 nanoparticles is warranted.
This research also underlines that agricultural waste (e.g., fruit peel) is useful for fabricating
nanoparticles with potential environmental and therapeutic benefits.
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