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Abstract: Exploring environmentally friendly, efficient, cheap and recyclable catalysts are essential for
the development of green, sustainable and mild processes for the liquid-phase Beckmann rearrange-
ment. Herein, a novel caprolactam-based Brønsted acidic ionic liquid ([CPL][2MSA]) was developed
for the conversion of cyclohexanone oxime (CHO) to caprolactam (CPL), not only as a catalyst, but
also as a mild reaction medium. Under the reaction conditions for the reaction temperature (90 ◦C),
reaction time (2 h) and mole ratio ([CPL][2MSA]: CHO = 3:1), [CPL][2MSA] possesses plenty of high
sulfonate groups, which exhibit high conversion (100%) and selectivity (95%) without any other
co-catalysts or metals. Based on the thermogravimetric (TGA) and differential scanning calorimetry
(DSC) analyses, the decomposition and glass transition temperatures are gradually increased with the
increase in MSA mole content, revealing the existence of hydrogen-bonded clusters. Interestingly, the
occurrent route of the liquid-phase Beckmann rearrangement for CHO in [CPL][2MSA] is revealed by
in situ FT-Raman. In addition, the dominating H-bond combination between CHO and [CPL][2MSA]
is further confirmed by COSMO-RS model. The activation energy (Ea) of the reaction is calculated by
the first-order reaction kinetics. Thus, the [CPL][2MSA] with plenty of acidic catalytic active species
is an environmentally friendly and efficient candidate for the liquid-phase Beckmann rearrangement.

Keywords: Brønsted acidic ionic liquid; Beckmann rearrangement; kinetics; H-bond

1. Introduction

The transformation of cyclohexanone oxime (CHO) to caprolactam (CPL), known
as the Beckmann rearrangement (Scheme 1), has been researched in many fields, and is
widely used in pharmaceuticals, textile and the electronic industries. CPL, as a precursor,
is used to prepare the detergents, lubricants, Nylon-6 and resins [1–4]. In the liquid-phase
Beckmann rearrangement, sulfuric acid and oleum, as catalysts and reaction medium,
have been used for the industrial processes. One crucial issue is that sulfuric acid and
oleum as catalysts produce a large amount of ammonium sulfate (as by-product) and
cause serious erosion of the equipment. In addition, the neutralization of these acids is
unavoidable when using ammonium hydroxide, and the formation of ammonium sul-
fate prevents the adequate recovery of CPL by incurring a 10–15% product loss [5–7]. At
present, a method of vapor-phase Beckmann rearrangement is attracting researchers. In the
vapor-phase rearrangement of CHO, a variety of solid acid catalysts have been investigated
to replace the environmentally unfriendly process using sulfuric acid, including zeolites,
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heteropoly acids (HPAs), sulfonated carbon materials, ion exchange resins and supported
metal oxides [8–12]. However, these above solid acid catalysts also have disadvantages,
such as catalyst deposition and deactivation. It is a key point that the vapor-phase pro-
cess always occurs at a highly reactive temperatures (T > 300 ◦C), causing high energy
consumption, and often leads to low selectivity and fast catalyst deactivation arising from
coke formation. In addition, it is difficult for the Beckmann rearrangement process to
change some important oximes to lactams, due to the instability of the precursors in the
vapor-phase [13,14]. Therefore, the development of a mild and green liquid-phase catalytic
Beckmann rearrangement process is urgently required.
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In the liquid-phase Beckmann rearrangement, some reports have been made fol-
lowing those of [15–20]. Srivastava et al. [21], reported a catalytic system in which
[C3SO3Hmim][TFA] (catalyst) and ZnCl2 (additives) achieved a high selectivity (99%)
for the Beckmann rearrangement. Wang et al. [22] completed the first study of an in situ
incorporated sulfonic group and polymeric skeleton (H-PDVB-SO3H) for use as catalyst in
the liquid-phase Beckmann rearrangement; H-PDVB-SO3H exhibited a high yield (75%)
and excellent repeatability. Xia et al. [23] synthesized a series of novel Brønsted acidic ionic
liquids (ILs), and a high yield was obtained by using ILs–ZnCl2 catalysts. However, the
synthesis processes for the above-mentioned catalysts are complex and the price of raw
materials is expensive industrially. Therefore, it is particularly important to develop a novel
liquid-phase Beckmann rearrangement catalyst in order to overcome these problems.

The caprolactam-based Brønsted acidic ILs have been reported as novel catalysts
and reaction media for the Beckmann rearrangement of CHO to CPL. Caprolactam-based
Brønsted acidic ILs have more advantages than imidazolium, pyridine and quaternary am-
monium, such as cheapness, environmental benignity, easy preparation, etc. Furthermore,
a great challenge is that organic solvents (acetonitrile, benzonitrile, dimethyl formamide) as
the reaction medium can lead to higher costs and to the environmental pollution associated
with sustainability concerns [24]. Unfortunately, the existence of the above problems may
hinder the development of CPL industry. Therefore, the road towards a CPL industry
involves much work to be done in achieving green chemistry processes.

Recently, Brønsted acidic ILs with SO3H groups have been used in the catalytic reac-
tion, including 3-methyl-1-(butyl-4-sulfonyl) imidazolium hydrogen sulfate
([HO3SBMIM][HSO4]), hydroxylamine N,N,N-trimethyl-N-sulfobutyl hydrosulfate salt
([NH2OH]2[HSO3-b-N(CH3)3][HSO4]), [3-(1-methylimidazolium-3-yl)propane-1-sulfonate]3
PW12O40([MIMPS]3PW12O40) [25–27]. Their superior advantages are that Brønsted acidic
ILs with SO3H groups, for example 3-methyl-1-(butyl-4-sulfonyl) imidazolium tosilate
([MBsIm][Ts-OH]), 3-hexyl-1-(butyl-4-sulfonyl) imidazolium trifluoromethanesulfonate
([HBsIm][OTf]), ect. have provided satisfactory acid strength to catalyze the Beckmann
rearrangement of several oximes [23]. Interestingly, some researches in recent decades
have investigate functionalized ILs with SO3H groups, used as the reaction catalyst for the
Beckmann rearrangement of CHO into CPL. However, in some cases, various amounts of
the SO3H groups need to be introduced into ILs in order to enhance acidity, and thus to
improve the catalytic effect [28,29].
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In this paper, a novel caprolactam-based Brønsted acidic ionic liquid ([CPL][2MSA]) is
directly synthesized through one-step solvent-free based on the buffer solution theory. The
catalytic performances are evaluated in the liquid-phase Beckmann rearrangement. When
the reaction time is 2 h, [CPL][2MSA] shows a high conversion (100%) and selectivity (95%)
without other any co-catalysts or metals. On the bases of the thermogravimetric analysis
(TGA) and differential scanning calorimetry (DSC), with an increase in MSA mole content,
the obtained results show that the decomposition and glass transition temperatures are
gradually increased. According to in situ FT-Raman, it revealed the occurrent route for the
liquid-phase Beckmann rearrangement of CHO into CPL. Interestingly, the results of the
COSMO-RS calculation show that the transformation of CHO into CPL is mainly attributed
to the intermolecular interaction (H-bond). On the basis of the kinetic model calculation
results, the first order reaction kinetics satisfy the conversion process of CHO to CPL, and
activation energy (Ea) of the reaction is calculated as 29.8 KJ mol−1. More importantly,
CPL, as one component of ILs used, can be conjectured to achieve a dynamic exchange
between CPL-based ILs and the produced CPL during the rearrangement reaction, and
this would be largely avoided its strong chemical combination with acidic catalyst. In
addition, [CPL][2MSA] with the existence of abundant acidic catalytic active species, as a
novel catalyst, shows excellently selective for the liquid phase Beckmann rearrangement.

2. Results and Discussion
Characterization of the Synthesized [CPL][XMSA]

The 1H NMR and 13C NMR of the synthesized [CPL][2MSA] are shown in Figure S1a,b.
[CPL][2MSA] exhibits an excellent structure. The structure of [CPL][XMSA] is further
confirmed by FT-IR spectra. From Figure 1a, it can be seen that the single bond of S–O
stretching vibration appears in range of 840 cm−1–945 cm−1, the double bond of S=O
stretching vibration is listed in 1000 cm−1–1150 cm−1 and the bond of S–OH stretching
vibration fall from 1340 cm−1 to 1400 cm−1 [28,30]. For [CPL][MSA], it only contains S–OH
vibration (842.2 cm−1), S=O stretch (1020.5 cm−1) and a complex multiple vibration of
SO3 unit (the most intense bond at 1150.5 cm−1). With the increase of MSA molar ratios,
the structure of [CPL][2MSA] or [CPL][3MSA] is similar to that of MSA, and the S–OH
vibration occurs blue shift from 842.2 cm−1 to 942.5 cm−1. In addition, the S = O stretching
vibration ([CPL][2MSA], [CPL][3MSA]) is intermediate between MSA and [CPL][MSA],
since this motion is restricted by very strong hydrogen bonding in the cluster. Based on the
UV–Vis DRS spectra (Figure 1b), the Hammett Brønsted acid scales (H0) of [CPL][XMSA]
are tested. The H0 values of [CPL][MSA], [CPL][2MSA], [CPL][3MSA] are 2.43, 2.03 and
1.89 in Table 1 (Entry 2−4), respectively. The results show H0 gradually becomes stronger
with increase of MSA content. In order to confirm the acid values, 0.05 mol/L KOH solution
is used to titrate the [CPL][XMSA] (Table 1) by using phenolphthalein as the indicator,
and the result is consistent with H0. According to thermogravimetric analysis (TGA), the
synthesized CPL in different molar ratios (MSA) were tested in Figure 2a. With increase
of MSA molar ratio, the decomposition temperatures (Tg) increase slightly, indicating
the formation of hydrogen bonds between CPL and MSA. Compare with CPL, Tg of
synthesized [CPL][MSA] decreases with the increase of MSA content, indicating that more
hydrogen bonds (H-band) are formed between CPL and MSA. Due to the presence of the
strong H-bond, the structure of [CPL][XMSA] is really stable. As shown in Figure 2b, the
glass transition temperatures (Tg) of CPL and [CPL][XMSA] are investigated in the range
of –22–10 ◦C. The result shows that Tg of [CPL][XMSA] are much lower than that of CPL.
The result indicates that H-band between CPL and MSA decreases the melting point of
CPL, ultimately forming a homogeneous and transparent liquid at room temperature. The
detailed data of the TGA and DSC of the samples are listed in Table 2.
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Table 1. Acidity of [CPL][XMSA] synthesized with different molar ratios of MSA.

Entry ILs Amax H0
Acid Value

(0.05 mol KOH/mL)

1 Blank 2.73 − −
2 [CPL][MSA] 2.63 2.43 10.87
3 [CPL][2MSA] 2.48 2.03 15.39
4 [CPL][3MSA] 2.39 1.89 18.25

(H0 = pKa(I) + 1g[I]s/[HI+]s)[31], Amax (Maximum absorbance)
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Table 2 also lists the physicochemical properties of [CPL][XMSA], the conductiv-
ity of [CPL][MSA] (6.67 × 10−4 S/cm−1) is slightly lower than that of [CPL][2MSA]
(4.45 × 10−4 S/cm−1) and [CPL][3MSA] (3.24·10−4 S/cm−1). As shown in Figure S2, rela-
tively narrow electrochemical windows (1.7–2.1 V) were observed due to the presence of
H-bond in [CPL][XMSA]. The result shows that the electrochemical windows also become
wider with the increase of MSA content in CPL, which is consistent with the results of
conductivities. The molecular orbitals represent the electron density in space, reflecting
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chemical and physical properties. Further, the chemical and physical properties are evalu-
ated by these functions in reported literature [32–36]. In this work, the frontier molecular
orbital properties for [CPL][XMSA] are optimized through B3LYP/6-311G+(d,p) basis set.
The stable conformation of structure and the spontaneity of any reaction can be predicted by
thermodynamic properties, such as HOMO–LUMO gap (∆E), free energy and Dipole mo-
ment (Debye) [32,37]. In Table 3, [CPL][2MSA] exhibits the highest level of dipole moment,
which will accelerate the chemical bond formation, non-bonding interaction and binding
affinity. In addition, the free energy of all substances is negative, indicating that the reaction
will occur spontaneously. Based on the values of HOMO and LUMO (Table 3), the ∆E are
calculated according to ∆E = HOMO–LUMO gap. As shown in Figure 3, HOMO–LUMO
gap (∆E) also decreases with the increase of MSA, suggesting that the introduction of
MSA can improve the conductivity of CPL. In order to verify the reactive nature of any
given compound, molecular electrostatic potentials of CPL, [CPL][MSA], [CPL][2MSA]
and [CPL][3MSA] are calculated. With the increase of MSA, the molecular electrostatic
potentials (MEP) of the compound changes accordingly, as shown in Figure 4. In addition,
the density and viscosity of [CPL][XMSA] slightly increase with the introduction of MSA,
indicating that [CPL][XMSA] has adjustable physical and chemical properties, which is
more conducive to screening material suitable for rearrangement reactions.

Table 2. The physicochemical properties of CPL, [CPL][MSA], [CPL][2MSA], [CPL][3MSA].

Ionic Liquid Tg (◦C) Td (◦C) Conductivity
(S/cm−1)

Density
(g/cm3)

Viscosity
(cP)

E
(V)

H2O a

(ppm)
H2O b

(ppm)

CPL 10 259.3 − 1.03 − 1.7 87 −
[CPL][MSA] −4 271.2 6.67·10−4 1.18 78 1.8 187 186
[CPL][2MSA] −16 276.4 4.45·10−4 1.27 54 2.0 245 379
[CPL][3MSA] −22 287.7 3.24·10−4 1.33 37 2.1 319 567

a: the water content before reaction; b: the water content after reaction.

Table 3. Selected thermodynamic parameters of CPL, [CPL][MSA], [CPL][2MSA] and [CPL][3MSA].

Ionic Liquid E(V) εLUMO εHUMO Free Energy (Hartree) Dipole Moment (Debye)

CPL 6.78 −0.2314 −7.0114 −365.6195 4.4833
[CPL][MSA] 6.31 −0.2709 −6.5809 −1029.6246 1.4170

[CPL][2MSA] 5.99 −0.2914 −6.2814 −1694.2665 5.2633
[CPL][3MSA] 5.58 −0.3183 −5.8983 −2358.6316 3.4694
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The catalytic activities of the synthesized [CPL][XMSA] for the rearrangement reaction
are investigated and the results are summarized in Table 4. It can be seen that pure MSA ex-
hibits low selectivity at 90 ◦C. Interestingly, the selectivity of [CPL][XMSA] (Entries 2–4) in-
creases greatly from 47% to 94% at the same experimental conditions, and the experimental
results show that the optimal catalyst is [CPL][2MSA]. For comparison, [CPL]Cl, [CPL][BF4],
[CPL][CSA], [CPL][2Cl], [CPL][2BF4], [CPL][2CSA], [CPL][2HSO4], [CPL][2TsOH] and
[CPL][2TfOH] as catalysts and solvents were tested (Table 4, Entries 5–13) under the same
experimental conditions. The experimental results show that the selectivity of the above-
mentioned ILs catalysts was relatively low. According to experimental results, the impor-
tant factor of Beckmann rearrangement reaction is acidity of ILs, but not the only factor.
Interestingly, the Beckmann rearrangement may not be necessary to use a strong Brønsted
acid as the catalyst and reaction medium. Figure 5a investigates the effects of different
reaction temperatures on the experimental results. As the reaction temperature increases
from 60 ◦C to 90 ◦C, the conversion of CHO and the selectivity of CPL gradually increase.
When the reaction temperature is 100 ◦C, the conversion of CHO and the selectivity of
CPL sharply decrease. In addition, Figure 5b also investigates the effect of different re-
action times; the results show that the optimal reaction time is 2 h. Figure 5c shows the
influence of the molar ratio of [CPL][2MSA]/oxime from 1/1 to 5/1, As the molar ratio
([CPL][2MSA]/oxime) increases, the selectivity first increases and then decreases, and
the optimum molar ratio is 2:1 ([CPL][2MSA]/oxime). Figure 5d further investigates the
repeatability of [CPL][2MSA]; only a little change happens during ten consecutive cycles
of catalytic activity for liquid-phase Beckmann rearrangement. The results show that
[CPL][2MSA] has excellent repeatability in the Beckmann rearrangement process. Based on
these experimental results, the reason for the reduction of conversion and selectivity is that
CHO may occurs polymerization reaction and CPL may undergo ring opening and poly-
merization reactions at high temperature. In addition, the content of water (Table 2, Entry 8)
in [CPL][XMSA] is detected by the Karl Fischer method, and the water content in [CPL],
[CPL][MSA], [CPL][2MSA] and [CPL][3MSA] are 87 ppm, 187 ppm, 245 ppm and 319 ppm,
respectively. We also tested the content of water after the reaction (Table 2, Entry 9). In
comparison with the dried ILs before the reaction, the water content of [CPL][2MSA] and
[CPL][3MSA] get slightly higher with the increase of MSA content. But, the MSA content
is too high, resulting in high acidity of the ILs and low selectivity of the catalytic system.
Therefore, the optimal [CPL][2MSA] used may be able to sequester the water formed
during the reaction and thus minimize hydrolysis as a competing reaction. Due to the small
amount of water contained in IL, it further catalyzes the hydrolysis of CHO to produce
by-products (cyclohexanone). According to the above possibility, the route of the Beckmann
rearrangement of CHO catalyzed by acidic [CPL][2MSA] is shown in Scheme 2.
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Table 4. Results of the liquid-phase Beckmann rearrangement of cyclohexanone oxime to caprolactam.

Entry Catalysts n (ILs: CHO) (mol) T (◦C) t (h) Conv. (%) Sel. (%)

1 MSA 3:1 90 2 100 29
2 [CPL][MSA] 3:1 90 2 100 47
3 [CPL][2MSA] 3:1 90 2 100 95.4
4 [CPL][3MSA] 3:1 90 2 100 65
5 [CPL]Cl 3:1 90 2 100 43
6 [CPL][BF4] 3:1 90 2 100 14
7 [CPL][CSA] 3:1 90 2 100 34
8 [CPL][2Cl] 3:1 90 2 100 47
9 [CPL][2BF4] 3:1 90 2 100 57

10 [CPL][2CSA] 3:1 90 2 100 84
11 [CPL][2HSO4] 3:1 90 2 100 37
12 [CPL][2TsOH] 3:1 90 2 100 71
13 [CPL][2TfOH] 3:1 90 2 100 64
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Figure 5. (a) The influence of reaction temperature, (b) reaction time, (c) molar ratio (d) catalytic
reaction run of [CPL][2MSA] in the Beckmann rearrangement process.

COSMO-RS model as a powerful thermodynamic tool only requires the structural
information to predict the solubility and other thermodynamic properties [38–43]. In our
previous work, we successfully verified the accuracy of COSMO-RS in predicting the
solubility of CHO in solutions against experimental results [44–46]. As shown in Figure S3,
it predicts the solubility of CHO in [CPL][2MSA] at different temperatures; the result shows
that the solubility of CHO gradually increases from 25 ◦C to 90 ◦C. However, when the
temperature is above 90 ◦C, the solubility of CHO sharply descends, which is consistent
with the experimental results. The σ-profile and σ-potential are two parameters in the
COSMO-RS model. Then, the σ-potential represents the affinity of the system to a surface
of polarity σ, σ-profile represents the ability of the substance to interact with itself or
others, which were divided into three regions: (1) σ < −0.0085 e/Å2: H-bond donor region;
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(2) σ > 0.0085 e/Å2: H-bond acceptor region; (3) −0.0085 e/Å2< σ < 0.0085 e/Å2: the non-
polar region. In order to verify the polarity and reactivity of substances, the σ-profiles and
σ-potentials of CPL, MSA and CHO were calculated by using the COSMO-RS model as
shown in Figure 6. From Figure 6a, the peaks of CPL, MSA and CHO are located in both the
negative and positive regions, indicating that they can act as H-bond donor and acceptor.
In addition, the peak intensity of MSA is higher than that of CPL and CHO due to the
large number of oxygen atoms. In σ-potentials (Figure 6b), CHO only reflects the ability to
interact with the H-bond donor. However, CPL and MSA not only exhibit the ability to
interact with H-bond donor, but also with H-bond acceptor, which can better explain the
favorable liquid phase Beckmann rearrangement ability of [CPL][2MSA], and this result is
in accordance with the experimental results.
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Figure 6. (a) σ-profiles and (b) σ-potentials of CHO, CPL, MSA.

In order to investigate the mechanism of the Beckmann rearrangement reaction of
CHO, Figure 7 shows the in-situ FT-Raman spectra of CHO in [CPL][2MSA] under the
different times, the typical C = N and C = O stretching vibration peak of pure CHO (a) and
pure CPL (c) are located at 1660 cm−1and 1637 cm−1, respectively [24,47]. For [CPL][2MSA],
the typical C = O stretching vibration peak is shifted from 1637 cm−1 to 1690 cm−1, in-
dicating that the N of CPL may cause the protonation with MSA and further produce
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H-bond between CPL and MSA. In addition, with the extension of reaction time, a new
peak appears at 1673 cm−1, indicating that the N of CHO is protonated on the surface of
[CPL][2MSA] and then the peak strength gradually reduced. Meanwhile, the typical C = O
stretching vibration peak of CPL becomes stronger, indicating the CHO transfer to CPL
by the Beckmann rearrangement process. In addition, the excess enthalpies are also calcu-
lated by the COSMO-RS model of CHO in [CPL][2MSA]. The intermolecular interaction
including misfit (EMF), hydrogen bond interaction (EHB) and van der Waals energy (EvdW)
are described in Equations (1)−(3). The excess enthalpy mainly consists of electrostatic
misfit interaction energy (misfit), hydrogen bond (H−bond) interaction energy and van der
Waals (vdW) interaction energy, which can be expressed by Equation (4) [40,48–50]. The
detail calculation result of the excess enthalpy of the mixture is shown in Figure S4; it can
be seen from the calculation result that the system is dominated by the H−bond. Based on
the in-situ FT-Raman spectra and the calculation result, a possible catalytic mechanism for
Beckmann rearrangement of CHO into CPL in [CPL][2MSA] has been proposed as shown
in Scheme 3.

EMF
(
σ, σ′

)
= αeff

α′

2
(
σ, σ′

)2 (1)

EHB
(
σ, σ′

)
= αeffCHBmin

(
0, min(0, σdonor + σHB)max

(
0, σacceptor − σHB

))
(2)

EvdW
(
σ, σ′

)
= αeff

(
τvdW + τ′vdW

)
(3)

E = EMF + EHB + EvdW (4)

where σ, σ′ are the screening charge densities of two different segments, α′ is a general
misfit constant, αeff is the effective contact surface area, CHB and σHB are the hydrogen bond
coefficient and the cutoff of hydrogen bond, respectively. σdonnor, σacceptor represent the
screening charge densities of hydrogen bond donor and acceptor segments, respectively;
τvdW is the element-specific vdW interaction parameter.
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(a) CHO; (b) [CPL][2MSA]; (c) CPL; (d) 0 min (reaction mixture); (e) 60 min; (f) 120 min.
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Scheme 3. A possible catalytic mechanism of the liquid-phase Beckmann rearrangement for CHO in
[CPL][2MSA].

Based on the reaction mechanism, the kinetics of the CHO conversion to CPL are
further studied in this work. Figure 8a shows the effect of CPL yield on different times
without considering the influence of by-products, and the yield of CPL have no change
within the 2 h. Therefore, it has been confirmed that a pseudo-first-order reaction is applied
to the catalytic conversion of CHO to CPL by Equation (5) [6,51–53]. The yield of CPL
significantly increases within the 2 h, indicating that high activation energy is required
during this time. In addition, the reaction rate equation is expressed in terms of CPL yield
by Equation (6). From Figure 8b, it can be seen that the rate constants with different times
(30 min, 60 min, 90 min, 120 min) of the conversion of CHO to CPL in [CPL][2MSA] are
0.0101, 0.0148, 0.0186, 0.0252, respectively. According to Arrhenius equation, Figure 8c
shows the Plot of lnk against 1/T and Ea is calculated as 29.8 KJ mol−1. In Table 5, the Ea of a
series of liquid catalysts are listed, it can be seen that this work is lower than other reported.
Therefore, [CPL][2MSA] would be a promising catalyst for the liquid phase Beckmann
rearrangement due to high yield, low activation energy and the mild reaction condition. In
addition, we also explored the substrate scope of Beckmann rearrangement catalyzed by
[CPL][2MSA], various ketoximes substrates are examined. In Table 6 (entries 1–4), aromatic
ketoximes show the higher yields (92.7–98.4%) and cyclododecanone oxime also exhibits a
comparative yield (94.9%) under the same experimental conditions. This again evidences
the high catalytic activity of [CPL][2MSA] for Beckmann reactions.

d(CCHO)

dt
= −kCCHO (5)

The reaction rate equation is expressed in terms of CPL yield by Equation (6):

d(YCHO)

dt
= k(1−YCPL) (6)

Equation (6) is integrated against reaction time to give Equation (7).

− ln(1−YCPL) = kt (7)

where k, t, CCHO and YCPL are the rate constant, the reaction time, the concentration of
CHO and the yield of CPL, respectively.

ln k = − Ea
RT

+ ln A (8)
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where A is the pre-exponential factor, R is the gas constant (8.314 J (mol K)−1) and T is the
temperature in Kelvin; Ea is the values of apparent activation energy.

Table 5. The Beckmann rearrangement over the recently reported catalysts.

Catalysts Experimental Conditions Ea(kJ/mol) Ref.

Trifluoroacetic acid (TFA) 0.16 mol/L, TFA/acetonitrile = 2:1 93 (CHO), CPL (167) [6]
Trifluoroacetic acid (TFA) 0.16 mol/L, TFA/acetonitrile = 4:1 96 (CHO), CPL (159) [6]
Trifluoroacetic acid (TFA) 0.16 mol/L, TFA/acetonitrile = 9:1 92 (CHO), CPL (120) [6]

Trifluoroacetic acid/oleum (T/A) T/A ratio = 10, A/O ratio = 1.0 104.6 [5]
Trifluoroacetic acid (TFA) acetonitrile 15%wt., COX concentration 0.16 mol L−1 169 [18]

[H2SO4] + [SO3] ([H2SO4] + [SO3])/([caprolactam] +
[cyclohexanone oxime] = 1.4 254 [54]

[CPL][2MSA] [CPL][2MSA]: CHO = 2:1 29.8 This work

Table 6. Beckmann rearrangements of various substrates catalyzed by [CPL][2MSA].

Entry Oxime Substrate Amide Product Yield (%)

1
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For comparison, [CPL][2Cl], [CPL][2BF4], [CPL][2CSA], [CPL][2HSO4], 

[CPL][2TsOH] and [CPL][2TfOH] were also fabricated with as–prepared [CPL][2MSA] 
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3. Materials and Methods
3.1. Chemicals

All reagents were purchased from Aladdin Industrial Corporation, (Shanghai, China)
and used as received. Reagents: Methanesulfonic acid, p−toluenesulfonic acid (TsOH),
trifluoromethanesulfonic acid (TfOH), hydrochloric acid (HCl), sulfuric acid (H2SO4),
caprolactam, n-dodecane (GC 99.99 wt%), acetone.

3.2. Synthesis of ILs ([CPL][XMSA])

According to the reported method [55–57], a novel caprolactam-based Brønsted acidic
ionic liquid ([CPL][2MSA]) was prepared through the one-step method as shown in
Scheme 4. Firstly, methanesulfonic acid was added dropwise to a certain amount of
caprolactam in an ice bath, and then the solution was stirred for 30 min and heated at
130 ◦C for 4 h. After reaction, a clear solution was extracted three times with acetone.
Finally, the mixture solution was evaporated to remove extractant, and then the obtained
product was dried in an oven at 80 ◦C for 12 h. The obtained sample was recorded as
[CPL][XMSA], in which X stands for mole percent of MSA.1H NMR: δ 4.82 (s), 3.33 (s),
3.03 (m), 2.68 (s), 2.48 (s), 2.30 (m), 2.09 (s). 13C NMR: δ 182.74, 42.64, 38.27, 33.70, 29.23,
27.10, 21.79.
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For comparison, [CPL][2Cl], [CPL][2BF4], [CPL][2CSA], [CPL][2HSO4], [CPL][2TsOH]
and [CPL][2TfOH] were also fabricated with as–prepared [CPL][2MSA] through the
same process.

3.3. Characterization
3.3.1. Nuclear Magnetic Resonance (NMR)

Nuclear magnetic resonance (NMR) (1H and 13C) spectra were recorded by using the
JEOL ECA−600 (JEOL, Tokyo, Japan) spectrometer at room temperature, with CDCl3 as
the solvent.
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3.3.2. Fourier Transform Infrared (FT-IR) Spectrometer

FT–IR spectra of samples with KBr as the diluents were recorded on a Bruker Equinox
55 spectrometer (Bruker, Billerica, MA, USA).

3.3.3. In Situ FT-Raman

In situ Fourier transform (FT) Raman spectroscopy analysis was carried out in an
in-situ diffuse reflectance pool with a Bruker Vector FT–IR spectrometer (6700) and MCT
detector which was cooled by liquid N2. Firstly, the [CPL][2MSA] and CHO were filled
into the reaction cell with a molar ratio 3:1, and then the reaction cell was placed in the test
chamber and heated to 90 ◦C under N2 flow for 30 min to remove adsorbed impurities and
the spectra were recorded in different times.

3.3.4. Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC)

TGA and DSC were carried out on a Q500 instrument and a Q2000 V24.11 Build 124,
respectively. First, the sample was placed in a platinum pan with an average weight
of 10–12 mg, then heated from 50 ◦C to 600 ◦C with a rate of 10 ◦C/min under a dry
nitrogen atmosphere.

3.4. Catalytic Reaction

[CPL][2MSA] and CHO (molar ratio of ILs/CHO = 1/1–3/1) were filled into a 25 mL
three-necked round bottom flask under nitrogen atmosphere. Then, the mixture was stirred
and heated to different temperatures (60, 70, 80, 90, 100, 110, 120) with a reflux condenser in
an oil bath pan. After the reaction finished, 20 mL acetone was added to the three-necked
round bottom flask, and then the product was separated by filtration and washed three
times through organic solvent (acetone) from [CPL][2MSA]. Then, the organic solvent
(acetone) was removed by using a rotary evaporator. Finally, the product was dried in
an oven at 80 ◦C for 12 h. The products were characterized quantitatively with Kromat
PC−17 column (30 m × 0.53 mm × 1.0 µm) SP3420 GC system equipped with FID detector
and n-dodecane as the internal standard. According to the area of each chromatograph
peak of all products, the concentrations were directly shown by the system of GC chemical
station. The effect of ILs/CHO (molar ratio), reaction time, reaction temperature and the
types of catalysts were explored according to the same experimental process (Section 3.4).

3.5. Catalyst Recycling

In order to test the catalytic recyclability of [CPL][2MSA], the catalyst was extracted
by organic solvent (acetone) three times after reaction and then dried in a vacuum at 80 ◦C.
After each consecutive run, the above steps were repeated with the mixture. According
to the optimal experimental conditions, recovering [CPL][2MSA] was reused for ten runs
without adding new substances.

3.6. COSMO-RS

The thermophysical properties of the molecular surface charge densities (σ) of ILs
were calculated by COSMO-RS model. The first step is that chemical structures of ILs
were optimized using TmoleX (Molex, Lisle, IL, USA) (Version 4.5 N) software at the
density functional theory (DFT) with empirical dispersion correction level, apply with
parameterization BP_TZVPD_FINE_20.ctd). All energy calculations and the estimated
molecular surface charge density values in the ILs have been stored as .cosmo files into
COSMOthermX (version 19.0.0 COSMOlogic GmbH & Co. KG, Leverkusen, Germany) for
further thermophysical property calculations.

3.7. DFT Calculation

The Gaussian View 5.0 (Gaussian, New York, NY, USA) was used to draw all the
molecular structure. All the compounds of geometrical optimizations were performed in
gas phase by using the DFT 6-311G + (d, p) basis set. The molecular orbitals known as
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HOMO & LUMO and the Molecular Electrostatic Potential were performed employing the
same basis sets.

4. Conclusions

In this work, [CPL][2MSA], as a novel Brønsted acidic ionic liquids, has been syn-
thesized by one step solvent-free process. It should be pointed out that [CPL][2MSA]
exhibits the high conversion (100%) and selectivity (95%) without other any co-catalysts or
metals. Based on the results of thermogravimetric analysis (TGA) and differential scanning
calorimetry (DSC), the decomposition and glass transition temperatures are gradually in-
crease with the increase of MSA mole content. The path of the reaction is further verified by
in-situ FT-Raman spectra and COSMO-RS conclusion, and the result shows that the H-bond
is the dominant mode in this catalytic system. Interestingly, the process of converting CHO
to CPL follows the first order reaction kinetics, and the required activation energy for this
process is calculated (29.8 KJ mol−1). In conclusion, this work not only provides a new
environmentally friendly and low-cost catalyst ([CPL][2MSA]), but also develops a feasible
technical route for the CPL production process.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/catal13060978/s1. Figure S1. NMR spectrum of [CPL][2MSA];
Figure S2. The electrochemical spectra of different samples; Figure S3. Predicted results for capacity
of CHO in [CPL][2MSA] by COSMO-RS; Figure S4. Excess enthalpies of CHO in [CPL][2MSA] at
T = 363.15 K.
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