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Abstract: Exploration of high-efficiency stabilization and abundant source-conjugated polymers
semiconductor materials with suitable molecular orbital energy levels has always been a hot topic
in the field of photocatalytic hydrogen evolution (PHE) from water splitting. In the recent years,
constructing the intramolecular donor-acceptor (D-A)-conjugated architecture copolymers has been
proved as one of the most excellent photocatalyst modification tactics for optimizing the PHE
properties because of unique advantages, including easy regulate band-gap position, fast transfer
charge carrier in the intramolecular architecture, superior sunlight absorption capacity and range,
large interfacial areas, and so forth. Therefore, in this minireview, we summarize the latest research
progress of D-A architecture semiconductor materials for PHE from water splitting. First, we briefly
overview the fundamental description and principles for the construction D-A heterostructures in the
photocatalytic system. After that, the application of D-A architecture photocatalyst for PHE reaction
over different classes of organic semiconductors have been discussed in detail. At last, the present
development prospects and future potential challenges of D-A architecture materials are proposed.
We hope this minireview has some parameter values for the further developments of intermolecular
special structured organic semiconductor material in the future PHE research.

Keywords: organic semiconductor; intramolecular donor-acceptor architectures; photocatalysis;
hydrogen evolution; water splitting

1. Introduction

With the rapid development of industrialization in modern society, the consequent
energy shortage issue is becoming more and more serious. Exploitation of the green and
pollution-free new energy sources has become the only way which must be passed to
the sustainable development of humankind and nature. As the typical alternative and
renewable energy source, hydrogen (H;) has drawn on extensive attention due to some
unique advantages, including wide range of sources, high combustion calorific value and
energy utilization rate, green non-pollution products [1-7]. Among the various reported
strategies for producing hydrogen, the photocatalytic H, evolution (PHE) from water
splitting based on endless stream of solar energy has been considered as the optimizing
pathway because it can convert solar to hydrogen energy directly without using complex
technology and causing secondary pollution [8-16]. As for the photocatalytic technology,
the most important step is to select the appropriate semiconductor photocatalyst to satisfy
the thermodynamic and dynamic characteristics of solar energy conversion and obtain
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the desired solar-to-hydrogen conversion efficiency [17-20]. The currently reported pho-
tocatalysts are mainly divided into inorganic semiconductor and organic semiconductor;
the latter displays the remarkable photocatalytic activities in contrast to the former owing
to many unique advantages such as easily adjustable structure, broad light absorption
range, excellent electrical conductivity, forceful bonding effects, favorable stability, and low
toxicity [21-23]. However, a single non-metallic photocatalyst cannot meet the needs of
practical applications owing to lower PHE activity resulting from the poor charge carrier
separation efficiency, solar energy utilization, and stability [24,25]. In recent years, a variety
of modification methods have been developed over the non-metallic photocatalyst to boost
PHE activity and ease the current energy crisis.

Among the reported modification strategies of nonmetallic photocatalysts so far, in-
tramolecular regulatory manners have been confirmed to play a very positive function in
optimizing PHE activity owing to their adjusted electronic band-gap structure, induced
charge redistribution, enhanced absorption capacity and widened absorption range for
solar light, and facilitated migration and separation of photogenic charge carriers [26-28].
In particular, the construction of intramolecular-conjugated polymers for electron donor—
acceptor (D-A) architectures with different electron appetency of building units have been
extensively applied in the PHE field, in which the electron D-units and A-units can com-
mendably regulate band-gap position and electrons redistribution resulting from pushing
and pulling the highest occupied molecular orbitals (HOMO) and lowest unoccupied
molecular orbitals (LUMO), respectively [29-33]. Furthermore, the intramolecular charge
carrier transfer from donor units to acceptor units over D-A molecular architecture in the
PHE process can expedite Frenkel excitons migration and reduce the Coulomb interaction
of photoinduced charge carriers owing to the formation of internal polarized electric field.
Additionally, self-organization of D and A units can also possess the large interfacial areas
by the formation of the bicontinuous interpenetrating network structure contributing to
the transfer of charge carrier. Specifically, some reported organic semiconductors have
been used to fabricate D-A polymeric coupling heterojunction, such as g-C3Ny [34], 1,3,6,8-
tetrabromopyrene [35], benzo[b]thiophene-2-carboxylic acid [36], polyarylether [37], and
so on. The building units of the above involved several characteristics or requirements:
(1) Organic molecules usually possess relatively large dipole in favor of the formation of
build-in electric field; (2) it should have unique electron donor or acceptor properties with
regard to the transfer and separation of charge carrier; (3) relatively high molar absorption
efficiency for enhanced light-harvesting capacity; (4) the m-electron system should be highly
delocalized reducing the likelihood of recombination of photoproduced electrons and holes
in the photocatalytic reaction process. Based on the above multiple advantages, a growing
number of organic D-A coupling systems photocatalyst with various donor and acceptor
building units have been established, and displayed great potential in the PHE field with
desired transfer and separation capabilities of charge carrier.

Therefore, in this minireview, we have summarized the recent research progress of
D-A architectures heterojunction photocatalysts for PHE from water splitting. First, we
present a brief and fundamental description of D—-A heterostructures to offer some in-
sightful principles of the construction of this photocatalytic system. Second, the possible
intramolecular charge transfer and PHE reaction mechanism over D-A heterostructures
have been proposed in this review. Afterward, the composition of D-A heterostructures
involved in carbon-nitride-based polymers (g-C3Ny), covalent organic frameworks (COFs),
covalent triazine-based frameworks (CTFs), and other photocatalysts for PHE reaction are
discussed in detail and analysis of the current research results was carried out. Finally,
the challenges, opportunities, and development prospects based on non-metallic D-A het-
erostructures photocatalyst in the PHE domain have been proposed. We sincerely hope this
minireview can contribute to the in-depth studies on highly effective D-A heterostructures
photocatalysts for meeting the prospective practical applications.
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2. Fundamental Description and Mechanism of D-A Heterostructures
2.1. Fundamental Description of D-A Heterostructures

The space charge region formed by the interface between different P-type and N-
type semiconductors, which is called “P-N heterojunction” in physics, is one of the most
effective strategies for photoinduced charge separations. Analogous to the concept of
P-N heterojunction, D-A heterostructure can be defined as a system in which the electron-
donor and electron-acceptor are directly connected through covalent or non-covalent
interaction (such as supramolecular assembly), and the donor and acceptor units should be
semiconductive components [30,38,39]. Electrons in the donor or acceptor components are
photoexcited to produce coupled electron-hole pairs (Frenkel excitons). After migrating
to the D-A interface, these excitons dissociate into free charges driven by the energy level
difference between the donor unit and acceptor unit. The electrons are driven into the
acceptor phase and the holes into the donor phase. Subsequently, the charge carriers are
further transported to the corresponding electrodes, respectively, thus forming a long-lived
charge-separated state (Figure 1A) [40-45]. The construction of a interpenetrating structure
and a bicontinuous model between the donor and the acceptor can increase the contact of
the active interfaces and form the so-called bulk heterojunctions (BH]Js), thus significantly
accelerating the separation of photogenerated charge carriers, while providing a continuous
and short channel for charge migration to the electrodes (Figure 1B,C) [30,46].

A. Bilayer B. Bulk heterojunction
Cathode

(=) -

Anode

C. Ideal heterojunction

Figure 1. Donor-acceptor heterojunction morphologies. (A) Bilayer structure. (B) BHJ and (C) het-
erojunction optimized to increase junction area, while providing contiguous pathways for charges to
migrate to the electrodes [41].

2.2. Mechanism of D—A Heterostructures

According to the mechanism of photocatalytic reaction, the PHE process can be im-
proved by three strategies: (1) Enhancing the range and intensity of visible light absorption;
(2) promoting the separation and transfer of charge carriers and inhibiting the rapid re-
combination of electron-hole pairs; (3) improving the redox activity of surface reaction,
in which the separation and transfer of electron-hole pairs has been considered to be the
most crucial step in the photocatalytic process. The introduction of D-A structure is an
efficient method to accelerate exciton dissociation and migration in conjugated polymers.
By selecting the different electron-deficient and electron-rich units to form the D-A struc-
tures in conjugated polymers can not only adjust the molecular orbital energy level and
intermolecular interaction, but also can extend the conjugated system, thus affecting the
intramolecular charge transfer in conjugated polymers [47-51].

Intramolecular charge transfer (ICT) describes the transfer of electrons from donor to
acceptor or the holes from acceptor to donor during photoexcitation. The strength of ICT
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depends on the relative electron affinity of the two units. Exciton binding energy (E}) is a
key parameter involved in charge separation in D-A structure, and it can be significantly
reduced by appropriate regulation of ICT process. Meanwhile, adjusting the energy levels
of the HOMO and LUMO can change the band gap and affect the exciton production. The
spontaneous and continuous transfer of charge from electron donor to electron acceptor
mainly depends on the energy of photoexcited excitons (Eexc), the energy of charge transfer
(CT) states (Ect), and the energy of LUMO level of electron acceptor (Epymo). Obviously,
Eexc is generally larger than Ect and Ep ypmo. Simultaneously, the charges can continuously
transfer only when the Ecrt is also larger than the Ej ymo of the electron acceptor. Otherwise,
the excited charges will quickly reassemble back to the ground state. Thus, increasing the
energy difference between the donor and the acceptor and minimizing the energy loss in
the CT state can facilitate a reduction in E, and enhance the charge transfer process which
is beneficial to produce more electrons at the LUMO level of the acceptor [41,42,52,53]. All
the above involved in charge transfer process are shown in Figure 2.
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\: Direction of charge transfer
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Figure 2. Illustration of the energy levels summarizing the main processes involved in charge
transfer [52].

In addition, the distance between the donor unit and the acceptor unit is important for
charge separation and transfer, which mainly involves the insertion of various aromatic
groups in the D-A structure as m-spacers [54]. Different molar ratios of D/A can also
significantly affect the separation and transfer efficiency of photogenerated carriers, thus
improving the photocatalytic performance [35].

3. CPs-Based D-A Photocatalysts for Photocatalytic Hydrogen Evolution

So far, in order to improve the photocatalytic hydrogen evolution performance of
conjugated polymers (CPs) and better explore its catalytic mechanism, many material
design strategies have been proposed. These improvements include expanding the optical
absorption range, adjusting the band gap between the valence and conduction bands,
increasing the specific surface area of the catalyst, etc., thus enhancing the mobility of
charge carriers and achieving more efficient electron-hole pair separation. D-A-conjugated
polymers have proved to be a promising material for the development of high-performance
photocatalysts due to their basically meeting the above advantages. Recent studies have fo-
cused on conjugated polymers such as g-C3Ny, COFs, CTFs, and others, emphasizing their
synthesis methods and structure modification in order to further improve the PHE activity.

3.1. D-A Structure Based on g-C3Ny

g-C3Ny, as an efficient and environmentally friendly metal-free photocatalyst, has been
widely studied in photocatalysis due to its simple and low-cost synthesis route, suitable
optical band gap (=2.70 eV), high thermal and chemical stability, and good photo-response
capability. However, the photocatalytic performance of the pristine g-C3Ny is seriously
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hampered by two aspects: insufficient light absorption in the visible region and rapid
recombination of photogenerated carriers. Therefore, researchers have actively developed
various methods to enhance the visible light response and accelerate the separation and
migration of photogenerated carriers. In recent years, the concept of D-A g-C3Ny has
been introduced into the field of photocatalysis. The synthesis and design of D-A g-C3Ny
photocatalysts have become a research hotspot, which shows the excellent PHE activ-
ity. This is because rapid charge transfer channels can be formed between the organic
units and g-C3Ny to realize efficient intramolecular charge transfer, inducing charge re-
distribution and promoting the separation and transport of the photogenerated charge
carriers. Consequently, these factors are conducive to improving the PHE performance
of g-C3Ny [29,55,56]. The design strategy of intramolecular D-A g-C3Ny is similar to that
of molecular-doped g-C3Ny, but the difference is that the doped monomers usually have
a strong ability to donate or accept electrons, which can form electron donor—acceptor
structures and accelerate the separation of charge carriers. In addition, intramolecular D-A
g-C3Ny is no longer merely substituted by the original fragment or element of g-C3Ny skele-
ton, but is prepared by grafting an electron donor or an electron acceptor onto the edge of
g-C3Ny4 by means of nucleophilic reaction. For instance, our group prepared a novel g-C3Ny
D-A-conjugated polymer with a porous structure by thermal copolymerization of urea and
melamine formaldehyde (MF) resin, named as g-C3N4-MFx. The obtained polymer not
only has a large specific surface area, but also enhances visible-light absorption capacity
and accelerates charge carriers’ separation. As shown in Figure 3a—f, the SEM and TEM
images of pure g-C3N, present a wrinkled nanosheet-like structure, but when MF resin
is copolymerized with urea, the morphology of g-C3Nys-MFjyy copolymer changed from
a nanosheet-like to a porous structure. Compared with pure g-C3Ny, the g-C3N4-MFqq
polymer shows clear porous structure. Due to the regular porous structure of g-C3N4-MFx,
it not only increases the specific surface area, exposes more reaction sites, but also shortens
the electron transfer distance, greatly improving the PHE activity. As expected, g-C3Ny-
MF; 9 exhibits an excellent PHE rate (3612.7 umol h—! g’l), which is over 8.87 times higher
than the pure g-C3Ny. However, when MF resin is excessive incorporated into the g-C3Ny
skeleton, the PHE rate decreases sharply. This may be caused by accelerated recombination
of charge carriers (Figure 3g,h). In addition, Figure 3i shows an apparent quantum yield
(AQY) of 8.6% for g-C3N4-MFqq at 420 nm, which is much higher than that of the most
reported g-C3Ny-based D-A-conjugated polymers and porous g-C3N,. More surprisingly,
the PHE rate of g-C3N4-MFjy changes not significantly after six runs within 30 h. It is
shown that the porous g-C3N4-MF has excellent stability (Figure 3j). This work provides
a novel strategy for integrating porous structures and intramolecular D-A-conjugated
structures into g-C3Ny, significantly enhancing the PHE activity [57].

Blesg

300 400 500 600 700 Kml; o s 10 15
Wavelength (nm) Time (h)

Figure 3. Typical SEM images of pure g-C3Ny (a) and the porous g-C3Ny-MF;g9g D-A-conjugated
polymer (b,c). Typical TEM images of pure g-C3Ny (d) and the g-C3Ny4-MFjg9 D-A-conjugated
polymer (e, f). (g) Time courses of the PHE activity and (h) PHE rate for pure g-C3Ny and g-C3Njy-
MFy under visible-light irradiation. (i) The wavelength-dependent AQY for the H, evolution of
8-C3N4-MFygg. (j) The stability test of PHE over g-C3Ny-MFqqg [57].
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Moreover, in recent work, Che et al. prepared the ultrathin g-C3Ny (UCN)-based
D-A-conjugated copolymers with high degree of crystallinity by copolymerizing benzoyl
isothiocyanate (BI) with urea, UCN-BI. The resultant UCN-BI; D-A-conjugated copoly-
mers simultaneously achieve excellent PHE activity. As shown in Figure 4a,b, the pure
g-C3Ny and UCN-Blyg9 D-A-conjugated copolymer exhibits an obvious ultrathin nanosheet
structure. The ultrathin nanosheets of UCN-Blyy D-A-conjugated copolymer become
smaller relative to the g-C3N4. More importantly, the UCN-Blsp9 D-A-conjugated copoly-
mer shows clear lattice fringes, indicating that the UCN-Bly9 D-A-conjugated copolymer
has good crystallinity (Figure 4c). The improved crystallinity accelerates the transfer of
electrons in the plane, which further enhances the photocatalytic activity. In addition, the
element mapping images show the homogeneous distribution of C, N, and O elements in
the UCN-Bly99 D-A-conjugated copolymer (Figure 4d). It is worth noting that the free Gibbs
energies of Hy adsorption (AGpyx) for the ultrathin D-A conjugated copolymer is investi-
gated by density functional theory (DFT) calculations, and the absolute value of the AGy+
of UCN-BI, D-A-conjugated copolymer decreases dramatically (0.05 eV) compared with
that of pure g-C3Ny (0.34 eV). The smaller absolute value of AGy: with UCN-BIy indicates
a more likely PHE reaction. With the addition of BI precursors, the PHE reaction rate of
UCN-BIx D-A-conjugated copolymer increases gradually. The UCN-Bl99 D—-A-conjugated
copolymer shows the highest PHE reaction rate, which was 5442.74 umol g~! h™!, approx-
imately 12 times higher than that of the pristine g-C3Ny (Figure 4e,f). More unexpectedly,
the AQY of UCN-Blyyy D-A-conjugated copolymer reaches 23.3% at 420 nm and 7.0%
at 450 nm, respectively, but decreases significantly with the increase in light wavelength
(Figure 4g). Most importantly, cyclic experiments show that the PHE activity of UCN-Blygg
D-A-conjugated copolymer displays no obvious difference after eight runs within 40 h
(Figure 4h), revealing the excellent stability of UCN-BI, D-A-conjugated copolymer. This
work presents a novel design concept that effectively combines ultra-thin structures with
D-A-conjugated structures, while improving PHE activity and AQY [58].
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Figure 4. Typical TEM images of (a) the g-C3Ny and (b) UCN-Blspy D-A-conjugated copolymer.
(c) The HRTEM and (d) elemental mapping images of UCN-Blyy D-A-conjugated copolymer.
(e) Time courses of PHE activity and (f) PHE rate of the pure g-C3N4 and UCN-BI, D-A-conjugated
copolymers. (g) The AQY and (h) stability test of the UCN-BIspy D-A-conjugated copolymer [58].

Furthermore, it is universally acknowledged that extended n—m-conjugated electron
systems can effectively enhance electron delocalization and reduce photogenerated electron—
hole pairs recombination, thus improving the photocatalytic activity. Inspired by the ex-
tended conjugation effect in D-A system, Sun and colleagues designed a novel D-ni-A
mesoporous carbon nitride photocatalyst (J-CNx) by nucleophile substitution reaction
between urea and aromatic halogenides as well as Schiff-base reaction between urea and
aromatic aldehydes. Inserted benzene as mt-spacer by forming covalent bonds C-N (D unit)
and C=N (A unit) interrupts the 3s-triazine units while it extends the m—m-conjugated elec-
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tron system. Polarization-induced intramolecular charge transfer provides forces-directed
migration of electrons, which accelerates the separation and migration of photogenerated
charge carriers (Figure 5a). Owing to the large specific surface area in mesoporous structure
and significantly enhanced optical and electronic properties, the PHE reaction rate of the
optimal sample J-CN20 reaches 2880.98 umol g~! h~!, which is about five times higher than
that of the pristine g-C3Ny (568.45 umol g~! h~1) (Figure 5b). Furthermore, the AQY of
J-CN20 achieves 5.49% at 420 nm, but remains 1.87% at 500 nm (Figure 5c). In addition, as
shown in Figure 5d, the PHE performance of ]-CN20 retains at a high level after five cycles
of testing, indicating that J-CN20 has robust stability and excellent resistance to photocor-
rosion (Figure 5d). Finally, other aromatic heterocyclic compounds (i.e., furan, pyridine,
and thiophene) were investigated as 7-spacer to construct D-7-A structures, in which the
thiophenyl D-7i-A structure exhibits the best PHE performance (3882.09 pmol g~ h™1),
which is about seven times greater than that of g-C3Ny4 (Figure 5e). This work provides an
inspiration for the design of D-A polymers with extended conjugation effect to achieve
efficient solar energy conversion [56].

©)]
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W s 6w
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W s w LR T
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Figure 5. (a) Schematic for intramolecular charge transfer in D-nt-A type conjugated carbon nitride.
(b) PHE rates for CN and all J-CN samples under visible light irradiation. (c) Wavelength-dependent
AQY and (d) cycling stability test of ]-CN20. (e) The corresponding PHE rates under visible light
irradiation [56].

All the above results explained that g-C3Ny can be used as the perfect ingredient
of D-A architectonic photocatalyst, more suitable synthesis strategies can be used in the
future for obtaining the ideal PHE performance. The summary of the PHE activities of
some important D-A architectonic based on g-C3Ny is shown in Table 1 [59-68].

Table 1. The summary of PHE activities of some important D-A architectonic based on g-C3Njy.

T-CN-0.010 300 W Xe-lamp A > 420 nm 0.05/10% TEOA /100 mL 1.618 4.8% at 420 nm [59]
UCCN CEL-HXF300 A >420 nm 0.025/10% TEOA /100 mL 9.7 73.6% at 420 nm [60]
MSCN 300 W Xe-lamp A > 420 nm 0.05/10% TEOA /100 mL 1.0856 - [61]

CDM PLS-SEX300D A >420 nm 0.001/10% TEOA /100 mL 9.454 8.41% at 420 nm [62]
NP-CN 300 W Xe-lamp A > 420 nm 0.05/20% TEOA /100 mL 2.7914 6.4% at 400 nm [63]
3DCN 300 W Xe-lamp A > 420 nm 0.05/15% TEOA /100 mL 2.5212 8.21% at 420 nm [64]
UCN-BTD 300 W Xe-lamp A > 420 nm 0.05/10% TEOA /100 mL 244 6.8% at 450 nm [65]
CN-abIMj 3 300 W Xe-lamp A > 420 nm 0.02/10% TEOA /80 mL 2.566 - [66]
CN-NaK LED A >420 nm 0.05/10% TEOA /38 mL 11.72 60% at 420 nm [67]

CNSO-20 300 W Xe-lamp A > 420 nm 0.05/14.3% TEOA /70 mL 5.02 10.16% at 420 nm [68]
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3.2. Covalent Organic Frameworks (COFs)

COFs, as organic polymers with periodic arrangement, are usually formed by conden-
sation of monomers with specific geometric structure, which usually have high crystallinity
and high porosity. COFs consist of selected organic building blocks via covalent bond
linkages such as imine [69], imide [70], boronic-ester [71], triazine [72], hydrazone [73],
and C = C [74] linkages. They exhibit high thermal and chemical stability due to robust
covalent bond connections between the structural units relying on the size of building
blocks; two-dimensional (2D) or three-dimensional (3D) COFs can be constructed. In
addition, various structural units of COFs are highly planar and conjugated, such as tri-
azine, pyrene, thiophene, porphyrin, etc. These structural units form regular stacking and
ni-delocalization system in the COFs framework, so that the band structure and electronic
properties of COFs can be adjusted reasonably, so that COFs has excellent photoelectric
performance. Due to the strong m-force among the donor units and the acceptor units,
the ordered arrangement of D and A fragments in donor-acceptor COFs (D-A COFs) can
effectively improve the separation efficiency of photogenerated electron-hole pairs and
accelerate the directed charge transfer. Combined with the above advantages, COFs are
attractive photocatalysts with broad prospects for solving outstanding problems in the field
of photocatalysis [75-78].

Many D-A COFs have been found to be effective catalysts for PHE due to their porous
network structure, narrow band gap, and extended delocalization in 7-conjugated systems.
In recent work, Zhang et al. designed and synthesized a series of D-A COFs (Nankai
University COFs, NKCOFs) with high crystallinity, porosity, and good stability, in which
pyrene was used as the electron donor, and benzothiadiazole and its fluorinated derivatives
were selected as electron acceptors. The electronegative fluorine group can effectively
enhance the reducing capacity of the electron acceptor, among which the monofluorinated
benzothiadiazoles in NKCOF-108 can not only improve the strength of the electron acceptor,
but also enable the transfer of electrons to the active centers as much as possible. Notably,
the best NKCOF-108 sample exhibits PHE activity at 120 pumol h~!, while AQY at 520 nm
is 2.96%. The high hydrogen evolution rate of NKCOEF-108 is related to its highly ordered
layered structure and wide visible light response range. Its high crystallinity and large
surface area also ensure that sufficient active sites are available for H, production [79].

Structural modulation of organic semiconductor building blocks through molecular
engineering has proved to be a potentially effective method to improve the carrier mobilities
and photoelectrical conversion efficiencies in organic semiconductors, thus further improv-
ing PHE performance. For example, Chen and coworkers constructed a series of efficient
photocatalysts via the polycondensation of terphenyl based diamines (XTP-BT-NH,) with
4,4 4" 4" -(Pyrene 1,3,6, 8-tetraethyl) tetrabenzaldehyde (Py-CHO) under solvothermal
conditions named as Py-XTP-BT-COFs (X = H, F, Cl). Herein, the chemical structure of Py-
HTP-BT-COF is slightly modulated by chlorination and fluorination strategies (Figure 6a).
The results show that both the PHE rate of Py-CITP-BT-COF and Py-FTP-BT-COF are much
higher than that of Py-XTP-BT-COF before and after the addition of Pt cocatalyst. The PHE
rate of Py-CITP-BT-COF (177.50 umol h™1) is 8.2 times higher than that of Py-HTP-BT-COF
after the addition of Pt cocatalyst, and the PHE activity is significantly higher than that of
most COF-based photocatalysts (Figure 6b,c). In addition, AQY is measured at incident
wavelengths of 420, 500, 550, 600, and 650 nm, respectively (Figure 6d), in which the AQE of
Py-CITP-BT-COF reaches 8.45% at 420 nm. Meanwhile, as shown in Figure 6e, no significant
decrease is observed in photocatalytic performances of all Py-XTP-BT-COFs during cyclic
tests, showing excellent stability. The halogenation strategy of benzothiadiazole moiety
not only promotes the effective charge separation, but also significantly reduces the energy
barrier for the hydrogen evolution reaction, and obviously improve the photocatalytic
performance of COF-based photocatalyst. This work provides a strategy for molecular
engineering to regulate novel COFs for future solar-chemical energy conversion [80].
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Figure 6. (a) The proposed PHE reaction pathway on the halogen substituted carbon of Py-XTP-BT-
COFs. (b) The PHE performances of Py-XTP-BT-COFs with and without co-catalyst. (¢) The PHE
performance comparison of Py-CITP-BT-COF with other representative COF-based photocatalysts.
(d) Wavelength-dependent AQY of photocatalytic water splitting by Py-CITP-BT-COF photocatalyst.
(e) Time course of H; evolutions of Py-XTP-BT-COFs [80].

In order to optimize the photocatalytic performance of COFs, the optimal combi-
nation between organic building blocks is usually considered to form a suitable COF
skeleton. However, covalent linkages between these groups are also important for pho-
tocatalytic properties, such as imine COFs, which have been widely studied recently.
For example, Yang et al. synthesized three D-A type imine COFs with alternating net-
work structure and high crystallinity by using tris(4-formylphenyl)amine (Tfa), 2,4,6-tris(4-
aminophenyl)triazine (Tta), 1,3,5-tris(4-formylphenyl)benzene(Tpa-CHO), and 1,3,5-tris(4-
aminophenyl)benzene (TpaNH;) as building blocks. As shown in Figure 7a,b, the skeleton
structure features of TtaTfa are observed by high-resolution transmission electron mi-
croscopy (HRTEM), and the honeycomb-type pore structure with periodic arrangement
can be clearly visualized. Simultaneously, when ascorbic acid is used as the sacrifice
electron donor, protonation of imide COFs occurred. Protonated COFs shows significant
photocatalytic activity, and the COF TtaTfa which combines the strongest donor (trianiline)
and the strongest acceptor (triazine) shows the best PHE performance, achieving a rate
of 20.7 mmol g~! h~!. The COFs TpaTfa with strong donor and weak acceptor or TtaTpa
with weak donor and strong acceptor still have high HER rates of 14.9 mmol g~ ! h™!
and 10.8 mmol g~! h™!, respectively (Figure 7c,d). However, when using triethanolamine
(TEOA) as the sacrifice electron donor, the activity of the three COFs becomes negligible
(Figure 7e). In addition, the results of long-term photocatalytic experiments show that
TtaTfa can perform PHE experiment for at least 26 h (Figure 7f). The photocatalytic activity
of these COFs indicates that protonation of imine bonds not only improves the charge
separation efficiency and light absorption capacity, but also leads to an increase in hy-
drophilicity. In this work, a novel protonation strategy was proposed to significantly affect
the photocatalytic performance of imine COFs [81].
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Figure 7. (a) Low-dose TEM image of TtaTfa under cryogenic conditions. (b) Low-dose HRTEM
image under cryogenic conditions of the region indicated by white square in (a). (c) Time course of
PHE for TtaTfa, TpaTfa, and TtaTpa. Comparison of photocatalytic PHE rates of the above COFs
using AC as SED (d) and using TEOA as SED (e). (f) Time course of PHE for TtaTfa [81].

Although many COFs with excellent PHE rates have been reported, structural op-
timization of COFs at the molecular and nanoscale levels is helpful to further promote
efficient hydrogen evolution. For instance, Yu and coworkers designed and synthesized a
D-A type COF with layered pore structure by hydrothermal method using electron-rich
tetraphenylethylene (4PE) and electron-deficient thiazol [5, 4-d] thiazole (TZ) as raw mate-
rials, named as PETZ-COF. A non-D-A type COF(PEBP-COF) was also synthesized as a
control. The nitrogen adsorption isotherm at 77k and BET results reveal that the PETZ-COF
shows a high specific surface area of 830 m? g~! and uniform pore size distribution with
two centers at 1.4 nm and 3.5 nm (Figure 8a). In addition, the microscopic morphology of
PETZ-COF is observed by using a scanning electron microscope (SEM), and the PETZ-COF
shows a hollow spherical structure with diameters between 200 and 400 nm (Figure 8b).
TEM also reveals an inerratic pore structure with an aperture of 3.8 nm and a d-spacing
of 0.44 nm, corresponding to the (001) crystal surface (Figure 8c,d). Due to its special mi-
crostructure, PETZ-COF exhibits remarkable PHE performance in visible light with a rate of
7324.3 umol g~! h~!, an order of magnitude higher than that of PEBP-COF without a D-A
structure (217.1 pmol g~! h=1) (Figure 8e). Notably, the AQY of PETZ-COF is prominent
at 520 nm, indicating high light utilization at this wavelength (Figure 8f). Simultaneously,
the hydrogen evolution cycle test is carried out under optimal conditions. The PHE rate of
PETZ-COF shows no obvious decrease during the test for more than 20 h, which proves its
relative stability and continuous photocatalytic activity (Figure 8g). In addition, although
PETZ-COF has a suitable band structure for O, generation, the oxygen evolution rate (OER)
of PETZ-COF is still very small, and it is necessary to continue to explore other necessary
thermodynamic conditions to improve the process in subsequent work (Figure 8h). This
work provided an effective design and synthesis strategy for highly active COF-based
catalysts that are regulated at the molecular and nanoscale levels [82]. In PHE application,
COF-based D-A structure photocatalysts may present valuable insight into the high PHE
activity in the future. However, efforts are required in developing more efficient patterns
to ease the current energy crisis. The summary of PHE performance based on COF-based
D-A structure is shown in Table 2 [83-91].
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Figure 8. (a) Nitrogen adsorption isotherm of the PETZ-COF, and the inset shows the derived pore
size distribution. (b) SEM image of the PETZ-COF. (c,d) HRTEM images of the PETZ-COF. The inset
of the Fourier transform (d). PHE rate of the PETZ-COF and PEBP-COF (e). AQY of the PETZ-COF
at the incident light wavelengths of 420 nm and 520 nm (f). (g) Cycling stability of H, evolution of
the PETZ-COF tested (g). O, evolution rate of PETZ-COF in pure water (h) [82].

Table 2. PHE activities of various COFs-based D-A polymers.

Photocatalyst Light Source A Ma‘sli[lgu] gseo[lgii?n)/ Activth; (E:: I(;l::lt 1g0111 h-1) E ff?:;:ﬁ?;l?% ) Ref.
DABT-Py-COF 300 W Xe-lamp A > 420 nm 0.005/0.1 M Aa/10 mL 5.458 - [83]
HBT-COF 300 W Xe-lamp A > 420 nm 0.005/0.1 M Aa/20 mL 0.019 - [84]
Tz-COF-3 300 W Xe-lamp - 0.05/10% TEOA /100 mL 43.2 6.9% at 420 nm [85]
PyTz-COF 300 W Xe-lamp - 0.01/1M Aa/20 mL 2.0724 - [86]
BTH-3 300 W Xe-lamp A >420 nm 0.005/0.1 M Aa/- 15.1 1.25% at 500 nm [87]
Zn-Por-TT COF 300 W Xe-lamp A > 420 nm 0.005/1 M Aal/50 mL 8.2 - [88]
BDF-TAPT-COF - A > 420 nm 0.01/1M Aa/20 mL 1.39 7.8% at 420 nm [89]
CYANO-COF 300 W Xe-lamp A > 420 nm 0.02/0.1M Aa/30 mL 60.85 82.6% at 450 nm [90]
PyTP-COF 300 W Xe-lamp A > 420 nm 0.02/0.1 M Aa/30 mL 7.542 0.56% at 420 nm [91]

3.3. Covalent Triazine-Based Frameworks (CTFs)

The basic skeleton of covalent triazine-based frameworks (CTFs) is composed of
alternating triazines and phenyl groups [92]. Compared with other organic semiconductor
photocatalysts, CTFs have a larger continuous m-conjugated structure, which enables
rapid charge transfer. Meanwhile, the nitrogen atom of the triazine ring contains a lone
pair of electrons, which can be easily excited to form high density photoelectrons. In
addition, the energy band structure of CTFs can be adjusted by changing the copolymer,
by modification, and other methods to increase its charge transfer and separation ability,
and improve its chemical and thermal stability. However, the synthesis of CTFs requires
harsh conditions such as high temperature and strong acid catalysis, thus easily breaking
the regular molecular skeleton. Therefore, developing structurally stable and efficient CTFs
remains challenging [93-97].

The adjustment of the ratio and structure of donor-acceptor (D-A) components in
organic semiconductors has a significant effect on the efficiency of charge transfer in CTFs
photocatalyst. Cai et al. designed and synthesized three D-A type covalent triazine
framework materials (BDT-CTFs) using benzodithiophene (BDT) as the electron donor
and the triazine ring as the electron acceptor. Because the BDT moieties matches the
HOMO and LUMO levels of the triazine units, the direct connection between them not
only improves the stability of BDT-CTFs, but also ensures more efficient transfer and
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separation of photogenerated charge. In addition, the change in D/A ratio in BDT-CTFs
greatly modulated energy band structure and pore structure of BDT-CTFs. Among the
three synthesized photocatalysts, BDT-CTF-1 has the highest performance and its PHE rate
is up to 4500 umol h~! g~1. The low activities of BDT-CTF-2 and BDT-CTF-3 is attributed
to the narrow optical band gap, unfavorable valence band position and pore structure
caused by inappropriate D/ A ratio, which affects the separation and migration efficiency
of electron—hole pairs. This work reveals the intrinsic relationship between the design of
D-A structure and the charge transfer, providing a strategy for developing the CTFs with
high performance [98].

Organic heterostructures can be reasonably prepared by selectively incorporating
different donor units or acceptor units into the covalent triazine frameworks (CTFs). Huang
and coworkers reported a novel molecular heterostructure based on covalent triazine
frameworks (CTFs). Electron-withdrawing benzothiadiazole (BT) and electron-donating
thiophene (Th) groups are selectively added to CTFs by adopting a sequential polymeriza-
tion strategy, and the resulting heterostructures (CTE-BT/Th) exhibit significantly improved
charge-carrier separation efficiency and PHE performance. Meanwhile, the excellent PHE
performance of CTF-BT/Th is also attributed to the covalently interconnected molecular
heterostructures (Figure 9a). As shown in Figure 9b,c, CTF-BT/Th formed by appropriate
hybridization shows obviously enhanced PHE activity, and the best sample CTF-BT/Th-1
reaches the PHE rate of 6.6 mmol g~! h™!, which is about 4-6 times greater than those
of CTF-BT (1.8 mmol g~! h™!) and CTF-Th (1.1 mmol g~ h™!), respectively. In addition,
the AQY of CTF-BT/Th-1 reaches an astonishing 7.3% at 420 nm (Figure 9d). Besides its
excellent photoresponse ability, CTF-BT/Th-1 shows impressive photostability in the cycle
test, with only a slight decrease in activity observed after four cycles, which is most likely
caused by heavy consumption of TEOA (Figure 9e). This work provides a new strategy for
the rational design and preparation of novel molecular heterostructure photocatalysts [99].
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Figure 9. (a) Illustration of the facilitated charge-carrier separation across the covalently intercon-
nected molecular heterostructure. PHE performance of CTFs incorporating BT and/or Th. (b) Time-
dependent PHE on CTF-BT/Th-1, CTF-BT, and CTF-Th. (c) Average PHE rates on different materials.
(d) Wavelength-dependent AQY of CTF-BT/Th-1 superimposed with its absorption curve. (e) Photo-
stability test of CTF-BT/Th-1 [99].

Recent studies have found that the separation and migration of anisotropic carriers
can be achieved by modifying polymer semiconductors by the reasonable incorporation
of organic monomers with different structures and properties. For example, Lan et al.
synthesized two CTFs with anisotropic molecular structure (CTF-0.5Th and CTF-0.5BT,
which are prepared by adding a certain amount (0.5 wt%) of 2,5-dicyanothiophene and
benzo[c][1,2,5]thiadiazole-4,7-dicarbonitrile as doping monomers, respectively) by substi-
tuting the original phenyl sequence in CIF-B with thiophene (Th) or benzothiadiazole (BT)
unit. Theoretically, charge separation and transfer in the pristine CTFs is isotropic because
of the regular and uniform distribution of D-A units in the CTFs skeleton (Figure 10a,
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top). However, in order to further promote the PHE activity of CTFs in visible light, it is
particularly important to develop anisotropic carrier migration (Figure 10a, bottom). In
the presence of TEOA as electron donor and Pt cocatalyst, the PHE rate of pure CTF-B
under visible light irradiation is 45 umol h~!. Both CTF-0.5Th (62 umol h—!) and CTF-0.5
BT (112 umol h™1) show better photocatalytic activity compared to the pristine CTF-B,
suggesting that Th- and BT-modified CTFs have faster carrier separation and transfer and
enhanced optical absorption (Figure 10b). Simultaneously, the AQY of CTF-0.5BT reaches
4% at 420 nm and the AQY matches well with the wavelength (Figure 10c). Notably, com-
pared to the bulk structure, CTFs designed with hollow porous morphology can expose
more surface-active sites, thus significantly improving the photocatalytic activity of CTFs
(Figure 10d). In addition, the photocatalytic activity of CTF-0.5BT remains stable after four
consecutive cycles (Figure 10e). This study provides a promising strategy for the design of
conjugate polymer photocatalysts with anisotropic carrier transfer effect [100].
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Figure 10. (a) Graphical representation of charge migration in two kinds of D-A polymer. (b) PHE
rates of the polymers. (c) Wavelength dependence of AQY on PHE using CTF-0.5BT. (d) Time
course of PHE of CTF-0.5BT. (e) The influence of morphology on the photocatalytic performance of
CTFs [100].

Conjugated donor-acceptor polymers promote forward separation of intramolecular
charges. However, the conjugated systems also suffer from backward charge recombination
concurrently, which will result in lower photocatalytic activity and quantum efficiency.
Therefore, it is of great significance to explore effective ways to inhibit charge recombination
to improve photocatalytic efficiency. Guo and co-workers reported a strategy to promote
charge separation and inhibit charge recombination by constructing a D-A;—A; system
in conjugated porous polymers (CPPs). CTFs (ter-CTF-X) with different ratios of donor
(carbazole) and acceptors (triazine and benzothiadiazole) were constructed by polyconden-
sation. The D-A;—A; system utilizes the difference in the energy level gradients between
different donors and acceptors to facilitate charge separation. Simultaneously, the copoly-
mer constitutes an efficient photoinduced electron transfer system by electron transition
between the HOMO and the LUMO, which allows electrons flow directionally from the
donor units with higher energy levels to the acceptor units with lower energy levels, thus
effectively retarding the backward recombination of charge (Figure 11a). As shown in
Figure 11b,c, the PHE rate of the optimal terpolymer (ter-CTF-0.7) is up to 966 pmol h~!
after adding Pt cocatalyst, which is 2 and 5.3 times higher than that of the original CTF-CBZ
and CTF-BT, respectively. However, the PHE rate decreases gradually with the increase in
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BT content. At the same time, the average PHE rate of ter-CTF-0.7 sample maintains great
stability after five photocatalytic cycle tests (Figure 11d). In addition, ter-CTF-0.7 has the
highest AQY at 420 nm, reaching a surprising 22.8%, which is superior to a majority of the
CPPs, and also reaches 14.7% at 500 nm (Figure 11e). This work provides a new thought
for the design and synthesis of photocatalytic systems based on CPPs to achieve maximum
photocatalytic efficiency [101].

0 4 8 12 16 20
Time (h)
Figure 11. (a) D-A; —A; system in the photoinduced electron-transfer process. (b) Time course of
PHE of CTFs. (c) HER of CTFs. (d) Recycle tests for Hy evolution. (e) AQY measurements of H,
under 420 and 500 nm of CTFs [101].

Through CTF-based D-A, structure materials show higher PHE performance in a new
way. However, the complicated preparation process is still an important research work in
the future.

3.4. Other Photocatalysts

As is reported, the lifetime and mobility of the charge carriers in linear conjugated
polymers are mainly determined by the intrinsic properties of the structural units, so the
linear conjugated skeleton can be modified by some specific ways, such as introducing
heteroatoms into the structural units and increasing the length and width of the conjugated
chains [102-104].

In a recently constructed D-A architectonics work, Wang et al. designed a side-chain
extended conjugated modification strategy to synthesize three polymers PO, P1, and P2
based on benzodithiophene(BDT) and dibenzothiophene S, S-dioxide(DBTSO). There are
two additional thiophene units on the skeleton of P1 and P2 along the main-chain and
side-chain directions, respectively. The conjugated functionalization of the side chain in P2
enhances the interchain 7—7 interaction, reduces the polymer bandgap, redshifts optical
absorption bands, prolongs the exciton lifetime, regulates HOMO and LUMO energy levels,
and improves the interchain transfer and transport of charges. Surprisingly, P2 reaches an
PHE rate of 20 314 pmol g~ ! h™! in the presence of Pt cocatalyst and achieves a AQY 7.04%
at 500 nm [105].

Tan et al. facilely synthesized a series of -conjugated polymer photocatalysts based
on EDOT through a strategy of atom-economic C-H direct arylation polymerization (DArP).
SEM images exhibit that BSO,-EDOT, DBT-EDOT, and DFB-EDOT show semblable layer-
stacking morphology with flat surfaces, while Py-EDOT shows staggered rod-like structure
(Figure 12a—d). The HER rate of D-A type BSO,-EDOT is up to 0.95 mmol h~!/6 mg, which
is the highest among the linear CPs ever reported (Figure 12e). As shown in Figure 12f,
the PHE rate of CPs dispersed in NMP is 1.5-44 times higher than that of CPs dispersed
in MeOH, which is mainly attributed to the exfoliation effect in NMP that causes CPs
to expose more active sites. Simultaneously, BSO,-EDOT successfully achieves an ap-
parent quantum yield of 13.6% at 550 nm (Figure 12g). In addition, in the presence of
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NMP-based colloid, BSO,-EDOT which is processed into a thin film and dispersed on
a glass substrate still retains its photocatalytic activity (Figure 12h). The photocatalytic
activities of CPs synthesized by DATrP are significantly superior to those synthesized via
Stile coupling, indicating that DArP is more beneficial to the preparation of CPs based
on EDOT. The experimental results show that BSO,-EDOT has enhanced hydrophilicity,
enhanced electron-donating ability through C-O polar bonds and p-m conjugation, and
improved electron transfer through D-A structure [106].
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Figure 12. SEM images of (a) BSO,—EDOT, (b) DBT-EDOT, (c) Py-EDOT, and (d) DFB-EDOT.
(e) Photocatalytic hydrogen production as a function of time for 6 mg CPs under visible light
irradiation. (f) Normalized PHE rate of CPs dispersed in AA/H,O/NMP and AA/H,;O/MeOH.
(g8) AQYs of PHP for BSO,-EDOT at five different incident light wavelengths. (h) PHP from H,O for
the BSO,—-EDOT film (inset: film photograph) [106].

Although various organic semiconductor materials have been reported for construct-
ing D-A structure photocatalyst for PHE application, it is still a grand challenge for the
large-scale application to overcome the energy crisis. Other organic semiconductor materi-
als are also worth further development and utilization to obtain efficient PHE performance
in the future.

4. Conclusions and Outlook

In summary, this minireview describes D—A heterostructure photocatalyst for PHE
application. We introduced that the unique D-A heterostructure is a system formed by
direct connection of semiconductor components acting as donor and acceptor through
covalent or non-covalent interaction, which is especially beneficial to realize the efficient
separation and transfer of photogenerated charges under photoexcitation, so as to acceler-
ate the PHE reaction. In addition, this review also summarizes the recent applications of
various conjugated polymer-based D-A materials for PHE, including carbon-nitride-based
polymers (g-C3Ny), covalent organic frameworks (COFs), covalent triazine-based frame-
works (CTFs), and other photocatalysts. Although some breakthrough progress has been
made in the synthesis strategies and properties of these D-A-conjugated polymer-based
photocatalysts, the PHE yield is still not sufficient to meet the industrial demand and
there is much room for development. Based on D-A structure, enhancing visible light
absorption, promoting the separation and transfer of charge carriers, inhibiting the rapid
recombination of electron-hole pairs, and raising the number of active sites on the surface
of the photocatalyst to improve the redox activity are the three key steps to optimize the
photocatalytic performance of D-A photocatalyst. Inspired by these steps, this review
presents some new analyses and perspectives based on the existing problems:

(i) D-A g-C3Njy is one of the most promising modification methods to improve the pho-
tocatalytic activity of g-C3Ny under visible light. In future works, further reasonable
design of photocatalyst can be carried out in the following aspects. The separation
and migration of photogenerated carriers can be further enhanced by loading suitable
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cocatalyst onto the electron acceptor of D-A g-C3Ny. In addition, the combination of
molecular structure design and morphological modulation can also greatly improve
the PHE performance, including the preparation of porous structures and ultra-thin
nanosheet structures. Finally, the appropriate ratio of D-A monomer and the extension
of conjugate structure also have significant effects on the photocatalytic activity.

(ii) The synthesis of highly crystalline D-A COFs requires many strict conditions, such
as time, temperature, reaction rate, and preparation method. Therefore, the use of
high throughput synthesis method is very promising. In addition, the active site of
the reaction can be increased by anchoring uniformly dispersed metal atoms on D-A
COFs. At the same time, the selection of appropriate skeleton and D-A repeating
element are also extremely important to achieve the required geometric match between
D and A elements.

(iii) Unlike COFs, which are linked by reversible covalent bonds, CTFs are composed of
stable C=N bonds, which is not conducive to dynamic association and dissociation of
bonds during the reaction. In addition, the synthesis of D-A CTFs generally requires
relatively harsher reaction conditions, such as high temperature, high pressure, and
strong acids or bases. Therefore, it is necessary to explore an environmental-friendly
synthesis of CTFs. Finally, most CTFs are amorphous or have poor crystallinity, so
some design strategies such as improving crystallinity or even achieving crystal plane
modulation should be further investigated.
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