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Abstract: Heterojunction photocatalysts (PC) with controllable compositions and in-built electric
fields have attracted extensive research interest for their use in the remediation of environmental
pollutants, owing to their supreme photocatalytic activity. Here, a simple hydrothermal route
synthesizing different mole ratios of BiVO4/Sb2S3 is reported as the PC. The inclusion of Sb2S3 with
BiVO4 in the BiVO4/Sb2S3 composite possesses the ability to harvest a wide spectrum of solar light,
an increased surface area, and an effective charge separation of the charge carriers. The efficacy
of the synthesized catalyst was gauged by the photocatalytic abatement of a recalcitrant pollutant,
tetracycline. The highest decomposition efficacy of 88.7% (rate constant 0.01557 min−1) was achieved
with 0.3 g/L of 1:3 BiVO4:Sb2S3 photocatalyst for the tetracycline under sunlight illumination for
120 min. The catalyst was found stable for up to five cycles with a significant retention of its
efficacy. The post-degradation characterizations revealed that the photocatalyst is stable due to the
intactness of its crystalline planes, morphology, and surface area. Further, gas chromatography–mass
spectrometry (GC–MS) was performed to study the decomposed products formed by the abatement
of tetracycline. Moreover, chemical oxygen demand/ total organic carbon (COD/TOC) removals of
80.9% and 85.4%, respectively, were observed for the tetracycline standards, while for real TC pills, it
was found to be 78.3% and 82.1%, respectively. This signifies that the photocatalyst has good surface
catalytic properties in comparison to the existing expensive and time-consuming physicochemical
approaches used in industry.

Keywords: BiVO4/Sb2S3; photocatalytic decomposition; solar light; tetracycline

1. Introduction

Some of the most pressing global problems, such as environmental contamination
and growing energy demands, have been greatly exacerbated by the relentless spread of
industrialization [1,2]. Water contamination has recently become one of the major global
environmental problems as a result of increasing industrialization and humans’ excessive
resource use [3]. According to reports, more than two billion people lack access to clean
drinking water, and millions of people pass away each year from illnesses caused by con-
taminated water [4]. The discharge of pharmaceutical contaminants into environmental
resources, such as sediment, surface water, soil, ground water, and even drinking water,
poses a major threat to both freshwater ecosystems and humans, in addition to marine
ones [5]. Antibiotics are not well-absorbed by living things and are eliminated as unmetabo-
lized parent chemicals through urine and feces. One of the most significant pharmaceutical
pollutants, tetracycline (TC), is used extensively in both veterinary and human medicine
throughout the world to treat infections [6]. However, the presence of TC in the aquatic
environment can result in genetic transfer, bacterial drug resistance, and pose a hazard to
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human health as well as to aquatic organisms [7]. It is essential to take serious action to
remove this detrimental organic contaminant from the water [8].

Several approaches, including microbiological elimination, physical absorption, elec-
trochemical oxidation, advanced oxidation, electrolysis, and membrane separation, have
been developed to remove and degrade TC efficiently [9]. The effectiveness of these
methods is diminished by the production of secondary pollutants during the last stage of
treatment, and an inevitable rise in pressure as well as temperature [10]. Moreover, TC is
difficult to remove by conventional wastewater treatment techniques owing to its stable
molecular structure and poor biodegradability [11]. Therefore, it is imperative to find an
effective method for eliminating TC from aquatic environments.

Photocatalysis have drawn much interest because it is an environmentally friendly,
inexpensive, non-toxic, and very effective method [12,13]. In addition, the photocatalytic
decomposition method helps to eradicate the refractory organic pollutants of TC from
water by completely changing them into water and carbon dioxide [14]. Developing an
efficient visible-light-driven photocatalyst is essential for photocatalysis.

BiVO4 (BV) has emerged as a promising option due to its greater chemical stability,
low band gap of ~2.4 eV, non-toxicity, and ability to absorb an optimum amount of sun-
light [15]. Additionally, the holes present in the valence band (VB) of BiVO4 have a high
oxidizing property that is advantageous for the decomposition of organic contaminants [16].
However, pure BiVO4 has poor photocatalytic performance since it possesses a higher re-
combination rate of photogenerated charges [17,18]. The hybridization of BiVO4 with other
semiconductor photocatalysts has become a popular choice, as the heterojunction formation
reduces recombination and prolongs the lifetime of photoinduced charges owing to its
synergistic effect [19]. About 80.6%, 90.3%, and 86.7% degradation of phenol, norfloxacin,
and ciprofloxacin was attained with BiVO4/g-C3N4/carbon nanotubes, BiVO4/LDH, and
CuS/BiVO4, respectively, under the illumination of solar light for 120 min and visible light
for 90 min [20–22].

Sb2S3 (SBS) is thought to be a potential photocatalyst because of its narrow band
gap of ~1.84 eV, its ability to absorb solar light, its non-carcinogenicity, and its inexpen-
siveness [23]. Therefore, the hybridization of Sb2S3 with BiVO4 tends to enhance the
photocatalytic performance of the latter by reducing the reintegration rate of charge carri-
ers. Sb2S3/rGO, Sb2S3/αAg2WO4 was synthesized and 89% of rhodamine B and 91.23% of
methylene blue were degraded under solar light and visible light for 150 min and 120 min,
respectively [24,25].

Several photocatalytic degradation experiments have been reported in the literature
with pristine BiVO4 and Sb2S3 [26]. Although BiVO4/Sb2S3 composites have been previ-
ously synthesized [27], but the different mole ratios of BiVO4/Sb2S3 composites have not
yet been synthesized. In addition, the impact of different mole ratios on photodegradation
experiments with the colorless pollutant under natural sunlight has not yet, to the author’s
knowledge, been reported. A comparison of the synthesized heterojunction photocatalyst
with the commercial TiO2-P25 under different light sources has not been conducted.

Here, different mole ratios of BiVO4/Sb2S3 (BVSBS) nanocomposite have been pre-
pared using the hydrothermal method. The performance of the fabricated photocatalyst
was tested using the photocatalytic degradation of the noxious colorless pollutant, TC,
under the irradiation of natural sunlight. Different experiments, including the concen-
tration of the photocatalyst, kinetic studies, the impact of pH, reusability, and scavenger
studies, were conducted. The impact of different light sources on the degradation effi-
cacy of TC was compared. In addition, the superiority of the synthesized photocatalysts
was tested by comparing the degradation efficacy with that of commercial TiO2-P25. Gas
chromatography–Mass spectrometry (GC–MS) was performed to analyze the decomposed
products which were formed. Mineralization studies were also carried out. Lastly, the
photocatalytic mechanism was proposed.
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2. Results and Discussions
2.1. X-ray Photo Electron Study (XPS)

The elemental composition, binding energy of the core electrons, and oxidation state
of the elements were examined using XPS analysis. The XPS can distinguish between
the spin-orbit splitting of metal ions into two conceivable states, i.e., when they have
different binding energies. The survey spectra of the as-prepared composite are presented
in Figure 1a. The peaks specify that antimony, sulfur, oxygen, bismuth, and vanadium are
the main elements in the 13BVSBS composite. The presence of C 1s may be accredited to
the adventitious carbon of the instrument. The least-square Gaussian-fit model was used to
deconvolute. In the core level spectra of Bi, V, and O, the presence of deconvoluted peaks
at binding energies of 159.3 and 164.7 eV (Figure 1b), 516.9 and 524.6 eV (Figure 1c), and
530.1 eV (Figure 1d) can be ascribed to Bi 4f7/2 and 4f5/2, V 2p3/2 and 2p1/2, and O 1’s
attributes to the +3, +5, and −2 oxidation states of Bi, V, and O, respectively. This confirms
the successful synthesis of BV in the composite [28–31]. As depicted in Figure 1e, the
doublet peak centered at a binding energy of 529.8 and 539.2 eV corresponds to Sb 3d5/2
and 3d3/2, respectively, and suggests the +3 oxidation state of Sb [32]. The doublet peak of
S at a binding energy of 161.3 and 163.1 eV, related to S 2p1/2 and S 2p3/2 due to spin-orbit
coupling, were credited to the −2 oxidation state as represented in Figure 1f [32].
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Figure 1. XPS spectrum of 13BVSBS photocatalyst: (a) survey spectra, (b) Bi 4f, (c) V 2p, (d) O 1s, (e) Sb
3d, and (f) S 2p.

2.2. X-ray Diffraction Analysis (XRD)

The crystallite phase, structural analyses, and purity of the photocatalysts were an-
alyzed using XRD [33]. The XRD pattern of the prepared photocatalysts is provided in
Figure 2a. The successful formation of hexagonal BiVO4 was confirmed by the existence of
peaks at 19.0◦ (011), 24.5◦ (102), 28.8◦ (112), 30.6◦ (004), 34.8◦ (200), 35.2◦ (020), 40.0◦ (211),
42.6◦ (015), 46.1◦ (123), 46.9◦ (204), 47.4◦ (024), 50.1◦ (220), 53.2◦ (301), and 58.3◦ (303), which
matches the standard JCPDS card 83–1699 of BV. The diffraction peaks indexed at planes
(110), (020), (120), (220), (130), (111), (230), (211), (221), (301), (311), (240), (231), (041), (141),
(520), (440), (501), (531), and (132) corresponds to the 2θ value of 11.01◦, 15.7◦, 17.5◦, 22.2◦,



Catalysts 2023, 13, 731 4 of 19

24.9◦, 25.8◦, 28.4◦, 29.0◦, 32.3◦, 33.5◦, 34.4◦, 35.6◦, 37.0◦, 39.4◦, 40.6◦, 43.1◦, 45.3◦, 46.8◦, 53.1◦,
and 54.2◦, respectively, which matches well with the JCPDS card 00-006-0474, and confirms
the efficacious formation of orthorhombic Sb2S3. The synthesized BVSBS composites lack
any impurity peaks. Further, little peak shifting was observed, indicating that the binary
photocatalysts were of excellent purity and had a two-phase composition [34]. Addition-
ally, the intensity of the peaks became stronger by increasing the concentration of SBS in
the composite.
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2.3. Photoluminescence Spectra (PL)

The migration, separation, and recombination of the photogenerated charge carriers
can be examined using the PL spectra [35,36]. An efficacious photocatalyst should possess
a low recombination rate, high carrier charge transport ability, and efficient separation of
the charges [5,37]. The intensity of the PL signal is directly correlated to the recombination
rate of the photogenerated excitons. The lower the PL emission intensity of a photocatalyst
is, the less the recombination ability of the photoexcited carriers is, and thus the better the
charge transfer efficiency is, which is advantageous for the photocatalytic performance
of the photocatalyst [38]. An excitation wavelength of 325 nm was used to record the
PL spectra. Pristine BV and SBS have the highest PL intensity, while the 13BVSBS and
15BVSBS photocatalysts have an analogous, and the lowest, PL intensity amongst all the
photocatalysts, signifying the lowest recombination rate, good charge separation, and
higher charge transport ability, as shown in Figure S1 (Supplementary Materials). This
might be due to the formation of a heterojunction between BV and SBS, and the increased
electron transport aids in decreasing the recombination rate of charges [39]. It was also
analyzed that by increasing the amount of SBS in the composite, the PL intensity was
considerably reduced.

2.4. Surface Area Analyses

The surface area of the photocatalysts is an important parameter in the field of pho-
tocatalysis. Nitrogen physisorption experiments were carried out to evaluate the surface
area characteristics and pore size distribution of the prepared materials. The photocata-
lysts exhibit a type-IV N2 adsorption curve, specifying that they possess a mesoporous
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nature (Figure 2b,c). The pore size distribution was determined using the BJH plot. Ta-
ble 1 summarizes the specific surface area results, and the mean pore diameter along with
the pore volume calculated from the BJH plot. It was observed that the specific surface
area and pore volume of the 13BVSBS and 15BVSBS hetero-composites are comparable
and the highest among the prepared photocatalysts. The large surface area of the hetero-
junction photocatalysts facilitates greater interfacial contact between both components for
photoinduced charge migration and provides abundantly exposed surface-active sites to
adsorb more pollutant, thereby improving photocatalytic activity [40]. The 13BVSBS and
15BVSBS catalyst composites exhibit the highest value among the various compositions of
the synthesized photocatalyst.

Table 1. The surface area characteristics of the BVSBS photocatalysts.

Sample Specific Surface Area (m2/g) Mean Pore Volume (cm3/g) Mean Pore Diameter (nm)

BV 33 0.582 13.81
SBS 12 0.187 9.72

11BVSBS 38 0.242 11.10
13BVSBS 42 0.481 14.52
31BVSBS 39 0.372 11.70
15BVSBS 43 0.521 14.96

2.5. Absorption Studies

An optimum light absorption capability and a narrow band gap are the key features of
a good photocatalyst. The absorption characteristics were measured using DRS to scrutinize
the absorption range as well as the band gap of the synthesized photocatalysts. From Figure
S2a, it can be seen that they display a significant visible light absorption capacity in the
absorption range of 400–800 nm. A Tauc plot was used to calculate the band gap of the
semiconductors according to Equation (1) [41].

(αhν)1/2 = hν − Eg (1)

where α = absorption coefficient, h = Planck’s constant, ν = light’s frequency, and
Eg = intercepts of the tangents of the graphs depicting the band gap energy.

The Tauc plot was extrapolated to the photon energy (hν) axis to attain the Eg val-
ues [42]. Therefore, the band gaps of BV, SBS, 11BVSBS, 13BVSBS, 31BVSBS, and 15BVSBS
were calculated to be 2.40, 1.80, 1.71, 1.51, 1.63, and 1.41 eV, respectively (Figure S2b). These
results demonstrate that the 13BVSBS and 15BVSBS composites exhibit a narrow band gap,
and the widest visible light absorption capacity among the synthesized catalysts.

2.6. Scanning Electron Microscopy (SEM) Analysis

The surface morphology of the BV, SBS, and 13BVSBS composites was examined using
SEM at a differential magnification. According to the analysis, BV possesses a nano-rod-like
structure, whereas SBS has a nano-sphere-like morphology (Figure 3a,b). The 13BVSBS
composite features nano-spheres deposited onto a nano-rod-like structure, as shown in
Figure 3c,d. Hence, the successful fabrication of the composite was validated due to the
presence of both kinds of morphology. In addition, this type of morphology provides an
ample number of active sites, therefore promoting more photocatalytic activity.

2.7. Energy Dispersive Spectroscopy (EDS) and Elemental Mapping

EDS was performed to gauge the elemental distribution, composition, and purity of
the photocatalyst [43]. The EDS spectrum displays a significant signal from Bi, V, O, Sb,
and S, all of which were effectively embedded inside the chosen regions of the 13BVSBS
composite, as represented in Figure 4a. The lack of any other elemental peaks in the
EDS spectrum suggests that the surface of the synthesized composite is devoid of any
impurities, confirming its successful formation. The spatial distribution of Bi, V, O, Sb,
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and S agrees well with the SEM of the composite, indicating that all the elements were
uniformly dispersed (Figure 4b–f). These results demonstrate an excellent distribution of
SBS onto BV, which is favorable for a heterojunction photocatalyst.
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2.8. Photocatalytic Studies

A kinetic analysis of the photocatalytic deterioration of TC is represented in Figure 5a,b.
The colorless pollutant, TC, was decomposed under sunlight to gauge the performance
of the photocatalysts. When exposed to sunlight for 120 min, a 20 mL solution of TC
decomposes at a low rate (8.9%) in the absence of a photocatalyst, as TC is a stable molecule.
However, in the presence of 0.3 g/L of the 13BVSBS and 15BVSBS photocatalysts, up to
88.7% and 89.6% degradation of the TC was achieved, respectively. The photocatalytic
activity of commercial TiO2-P25 powder was also compared to the synthesized catalysts and
was found to exhibit a photoactivity of 47.0%. The lower performance of TiO2-P25 could be
due to its wide band gap, thus rendering it responsive to UV light only. Therefore, the study
revealed that the prepared photocatalysts exhibited superior photocatalytic activity over
commercial TiO2-P25. The rate constant for the observed catalytic activity was determined
using Equation (2), where k, C0, and C are the rate constant, initial concentration of the
pollutant, and concentration at any time (t), respectively, and the outcomes are shown in
Figure 5b.

ln (C/C0) = −kt (2)
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It can be seen from Figure 5b that the reaction followed pseudo-first-order kinetics,
i.e., the Langmuir–Hinshelwood kinetic model, owing to the good linear fitting of the
lines (R2 > 98.5%) [44]. The 13BVSBS and 15BVSBS nanocomposites had the highest and
analogous rate constants of 0.01557 min−1 and 0.01655 min−1, respectively, among the
prepared composites; meanwhile, the pristine BV and SBS exhibited rate constants of
0.00419 min−1 and 0.00447 min−1, respectively. The rate constant of commercial TiO2-P25
powder was also evaluated and found to be 0.00413 min−1, which was the lowest among
all the photocatalysts, revealing the superiority of the synthesized materials. Detailed
photocatalytic studies were further carried out using 13BVSBS, since it was more efficient
and cost-effective than 15BVSBS. The 15BVSBS exhibits similar activity but entails the use
of a larger amount of SBS (the precursor salt of SBS is more expensive than BV). For the
quantification of the degree of the synergistic effect of the composites, the synergy factor
(R) was calculated using Equation (3).

R =

kBV
kSBS

kBV + kSBS
(3)

Here, k, kBV/kSBS, kBV, and kSBS stand for the rate constant, the rate constant of hybrid
BV and SBS, the bare BV, and SBS, respectively. The 13BVSBS had the highest R factor (1.75).
This indicates that it had the highest efficiency amongst all the prepared materials owing
to its higher synergistic effect on BV and SBS. The degradation efficacy, rate constant, and
the value of the synergistic constant of the different photocatalysts are also tabularized in
Table 2.

Table 2. Degradation efficacy, rate constant, and synergistic factor of the prepared photocatalysts.

Photocatalyst Degradation (%) Rate Constant (min−1) Synergy (R) Factor

TiO2-P25 47.0 0.00413 ± 2.57 × 10−4 -
BV 49.1 0.00419 ± 5.84 × 10−5 -
SBS 51.2 0.00447 ± 1.54 × 10−4 -

11BVSBS 58.9 0.00559 ± 1.62 × 10−4 0.64
13BVSBS 88.7 0.01557 ± 9.57 × 10−4 1.75
31BVSBS 66.5 0.00674 ± 2.60 × 10−4 0.77
15BVSBS 89.6 0.01655 ± 9.15 × 10−4 1.91

No catalyst 8.90 0.00079 ± 1.46 × 10−4 -

2.8.1. Impact of the Amount of Catalyst Loading

The ideal amount of catalyst used is one of the most important parameters affecting
the degradation efficacy of the photocatalytic process. The use of the optimum amount
of catalyst is crucial to avoid its excess use, which may promote the agglomeration of the
particles, as well as to ensure the maximal absorption of photons for efficient photodecom-
position [45]. As represented in Figure 5c, the degree of abatement of the TC was enhanced
from 76.8% to 88.7% with an increase in the amount of the catalyst from 0.1 to 0.3 g/L, due
to the increase in the sum of reaction sites. However, the decomposition efficacy declined
slightly with a further increase in the amount of catalyst to 0.4 g/L. This is because when
more of the catalyst is added to the solution, the turbidity of the solution increases, which
disperses the light and reduces its impact on the solution [46]. In addition, the emergence
of the active species is reduced as precipitation of the photocatalyst occurs. Therefore, for
the subsequent experiments, a photocatalyst dose of 0.3 g/L was chosen as the best dosage
based on the removal efficiency [47]. Thus, it can be inferred that even a little dose of the
photocatalyst is enough for the photocatalytic abatement of TC under natural sunlight.

2.8.2. Effect of Light Sources

A similar experiment was conducted using different light sources (UV light and
visible light) under optimum conditions to draw a comparison. From Figure 5d it can
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be seen that TC degraded to 51.4% in UV light and 76.5% in visible light. However, the
highest degradation rate of 88.7% was observed under natural sunlight with the 13BVSBS
photocatalyst. Thus, sunlight is sufficient for the degradation of the pollutant using the
synthesized photocatalysts.

2.8.3. Impact of pH

The pH is the most significant parameter in the photocatalytic decomposition process
because it affects the capability of adsorption, the distribution of electric charges over the
surface of the photocatalyst, and the degradation of the targeted organic contaminant by
altering the surface charge properties of the photocatalyst, as well as varying the ionization
state [48]. Thus, experiments were performed with varying pH values ranging from 2 to 12
to determine the influence of pH on the degrading efficacy of the TC. It was determined that
with a rise in the pH of the solution, the degradation efficiency was first increased and then
decreased, i.e., the composite’s ability to degrade the TC was lower in an acidic environment
than in an alkaline. A maximum degradation efficiency of 88.7% was observed at pH 7.
The point of zero charge (pzc) of the photocatalyst was determined to be 5.8 (Figure 6a).
TC is an amphoteric molecule and has three different acidic constants (pKa1 = 3.30, pKa2
= 7.7, and pKa3 = 9.80). At different pH values, the different ionizing functional groups
of TC have different pKa values. TC exists as a cationic molecule (TCH3

+ and TCH2
+),

because of the protonation of the dimethyl ammonium group, at pH < 3.3. It exists as
an anionic species (TC2

− and TCH−), owing to the deprotonation of the tricarbon or
diketone group of phenol, at pH > 7.7. However, it exists as an amphoteric form (TCH±)
when the pH ranges from 3.3 to 7.7, due to the abstraction of a proton from the diketone
group of phenol [49]. The removal efficacy of TC using the 13BVSBS photocatalyst was
decreased in acidic and alkaline environments due to the repulsive electrostatic forces
emerging between the cationic and anionic forms of TC, and the surface of the positively
and negatively charged photocatalyst, respectively. However, the electrostatic attraction
between the negatively charged catalyst and the zwitterionic form of the pollutant enhanced
the degradation efficiency of the pharmaceutical pollutant, TC. Hence, TC removal using
the 13BVSBS composite was maximized at pH 7 and was higher in an alkaline than in
an acidic environment, owing to the affinity of TC for the surface of the photocatalyst, as
shown in Figure 6b.

2.8.4. Scavenger Studies

To scrutinize the role of the active radical species which are responsible for the photo-
catalytic elimination of TC, a trapping experiment was performed with commonly used
quenchers. The chemical quenchers methanol, dimethyl sulfoxide (DMSO), and benzo-
quinone (BQ), each of 1 mM concentration, were used to investigate the role of holes (h+),
hydroxyl radicles (•OH), and superoxide radicals (O2

−•), respectively, in the photocatalytic
experiments [50]. In the absence of any trapping agent, a maximum degradation of the
TC (88.7%) was observed. The inclusion of the above-mentioned scavengers in the reac-
tion media efficiently quenched the photocatalytic decomposition of the TC. As shown
in Figure 6c, the addition of DMSO significantly reduced the photocatalytic performance
(32.4%) of the 13BVSBS composite, indicating that •OH is the major species responsible for
pollutant decomposition. The degradation process was similarly affected by BQ (54.2%),
albeit by a smaller amount, suggesting that O2

−• plays a small but important role in the
antibiotic elimination process. These findings demonstrate the susceptibility of •OH as the
active species responsible for the photocatalytic elimination of TC in the presence of the
13BVSBS nanocomposite.
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2.8.5. Mineralization Experiment

A total organic carbon (TOC) experiment was conducted to calculate the amount of
TC mineralized by the 13BVSBS photocatalyst. The existence of a substantial amount of
organic substances in the pollutant, TC, was initially demonstrated by a higher TOC and
chemical oxygen demand (COD) levels. When the experiment was conducted utilizing
the 13BVSBS photocatalyst under natural sunlight for 120 min, there was a 80.9% and
85.4% reduction in COD and TOC, respectively (Figure 6d). The % TOC removal was
lower than the % degradation owing to the formation of sequential organic intermediates
during the process before the complete breakdown of TC into carbon dioxide and other
simpler products. In an aqueous solution, the degradation rate does not always imply
extensive mineralization and the full destruction of organic compounds [23]. Due to ethical
permission issues, experiments with real medical/pharmaceutical waste water cannot
be performed. Therefore, the degradation efficacy of the 13BVSBS photocatalyst was
tested by carrying out a COD and TOC analysis of a TC tablet (company name Abbott,
Tetracycline capsules, I.P. Restecline 250, having a concentration of 250 mg) and was found
to be 78.3% and 82.1%, respectively. This verifies that the photocatalyst has a good surface
catalytic property in comparison to industries’ existing expensive and time-consuming
physicochemical approaches.

Photocatalytic materials must be stable and reusable in order to be used in real-world
applications. Therefore, a reusability experiment was performed for five cycles to determine
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the usefulness and stability of the photocatalyst for the photocatalytic degradation of
TC [51]. 13BVSBS was chosen as the potential photocatalyst because it is easily separable,
as the pollutant is physically adsorbed on its surface. The photocatalyst was centrifuged
and rinsed with double distilled water before being dried at 50 ◦C for 10 h and reused for
the next cycle. Following the fourth cycle, the decomposition of TC declined to 71.9%, in
comparison to 88.7%, as depicted in Figure 7a. Loss of the photocatalyst may occur during
the washing and the drying processes. Hence, the 13BVSBS nanocomposite is advantageous
for use as a photocatalysis as it is reusable. In addition, the XRD pattern of the photocatalyst
after carrying out reusability studies revealed no significant variations. Furthermore, the
intensities and locations of all the diffraction peaks of BV and SBS remained intact after the
reaction. No additional diffraction peaks, attributed to crystalline impurities formed after
the recycling process, were observed (Figure 7b). In addition, a BET analysis performed
after the recycling experiment confirmed that the photocatalyst had a specific surface area
of 37 m2/g, a mean pore diameter of 11.22 nm, and a pore volume of 0.231 nm, respectively,
as shown in Figure 7c,d. Although the surface area decreased, it was enough to proceed
with the photocatalytic decomposition. As demonstrated in Figure 7e, the morphology of
the 13BVSBS photocatalyst post-degradation experiment remained intact. Thus, it can be
confirmed that the 13BVSBS photocatalyst had good recycling photocatalytic stability.
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Table 3 summarizes a comparison study of different photocatalysts for the photocat-
alytic abatement of TC under different light sources. In comparison to the existing literature,
the highest degradation efficacy can be achieved by using a small amount of the 13BVSBS
photocatalyst under natural sunlight and optimum reaction conditions, such as pH and
catalyst loading amount.

2.9. GC–MS Analysis

A GC–MS study was carried out to scrutinize the products and the intermediates
formed in the photocatalytic breakdown process of TC. Figure S3a,b depicts the GC
chromatogram and mass spectra, respectively. As represented in Figure 8, the photo-
catalytic decomposition follows three pathways. In the first route, deamination, ring
opening, and demethylation of 4-(dimethylamino)-3,6,10,12,12a-pentahydroxy-6-methyl-
1,11-dioxo-1,4,4a,5,5a,6,11,12a-octahydrotetracene-2-carboxamide resulted in the formation
of 1-(2-(2-hydroxy-3-(propylamino) propoxy) phenyl)-3-phenylpropan-1-one. Further,
3,4-dimethylbenzaldehyde and 2,4-di-tert-butylphenol were formed by the addition of
O2

−• and •OH to 1-(2-(2-hydroxy-3-(propylamino) propoxy) phenyl)-3-phenylpropan-1-
one. Oxidation of the intermediate species, the addition of •OH, and the ring opening
of 3,4-dimethylbenzaldehyde and 2,4-di-tert-butylphenol resulted in the formation of 2-
ethylhexan-1-ol. Lastly, H2O, CO2, and the simpler products were formed as a result of
the abstraction of •OH and bond cleavage [52]. The second degradation route involved
the formation of 5-hydroxy-2-phenyl-3a,4,7,7a-tetrahydro-1H-isoindole-1,3(2H)-dione by
the abstraction of the electron from the organic moiety by the h+ from 4-(dimethylamino)-
3,6,10,12,12a-pentahydroxy-6-methyl-1,11-dioxo-1,4,4a,5,5a,6,11,12a-octahydrotetracene-2-
carboxamide. The addition or substitution of •OH and ring cleavage led to the formation
of 1,2,3,4-tetrahydronaphthalene. Furthermore, oxidation and ring cleavage resulted in the
formation of o-cresol and ethane-1,2-diol, respectively [53]. In the third route, the indirect
addition or substitution of •OH and the ring opening of 4-(dimethylamino)-3,6,10,12,12a-
pentahydroxy-6-methyl-1,11-dioxo-1,4,4a,5,5a,6,11,12a-octahydrotetracene-2-carboxamide
led to the production of two intermediate structures, 4-hydroxy-2,5-dimethylfuran-3(2H)-
one and 3-(methoxycarbonyl)benzoic acid. After that, oxidation of these intermediate
structures occurred and 3-hydroxybutanoic acid was formed. Finally, water and carbon
dioxide were formed as products by fragmentation [54].

Table 3. Comparison of the different photocatalysts for the photocatalytic abatement of the colorless
pollutant, TC.

Photocatalyst Concentration
of Pollutant

Reaction
Time (min) Light Source Rate Constant k Degradation

Efficiency (%) Ref.

BiVO4/BiOI 10 ppm 60 Visible light 0.0133 min−1 69.57 [55]
BiVO4/Bi2SiO5 10 ppm 120 Visible light 0.0072 min−1 72.2 [56]
ZnInS4/Sb2S3 10 ppm 140 Visible light 0.009 min−1 85.36 [57]

Ag2WO4/Sb2S3 10 ppm 180 Visible light 0.0041 min−1 53.06 [25]
BiOBr/g-

C3N4/carbon
nanofibers

- 120 Visible light 0.015 min−1 86.1 [9]

BVSBS 10 ppm 120 Sunlight 0.01557 min−1 88.7 Current work
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Figure 8. The deteriorated intermediate products formed by the photocatalytic remediation of TC by
the 13BVSBS composite.

2.10. Photocatalytic Degradation Mechanism

To understand the photocatalytic abatement of TC and the charge transport mechanism
for photoactivity, the valence and the conduction band potential of the fabricated catalyst
were gauged with Mulliken’s Equations (4) and (5).

EVB = χ − Ee + 1/2Eg (4)

ECB = EVB - Eg (5)

Here, Mulliken’s electronegativity, valence, and conduction band edge potential values
are symbolized by χ, EVB, and ECB, respectively. The band gap edge value and the free
electron energy on the hydrogen scale (4.5 eV) are signified by Eg and Ee, respectively.
As a result, the ECB potential values for BV and SBS were 0.34 and 0.23 eV, while the EVB
potential values were 2.74 and 2.03 eV, respectively [58,59]. Even after a longer period
of illumination of the light, the accumulation of electrons is prevented due to the higher
reintegration rate of the charge carriers of BV. During the illumination of light, electrons
were transferred to the conduction band of both semiconductors as both are activated
by sunlight. To avoid the reintegration rate of the photogenerated charge carriers of BV,
electrons from the BV instinctively diffuse to the SBS when both semiconductors are in
close proximity, forming an electron accumulation layer and depletion layer close to the
interface of BV and SBS. An internal electric field that flows from BV to SBS is formed,
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accelerating the migration of electrons from SBS to BV. In addition, the electrons in the
conduction band of SBS and the holes in the valence band of BV are urged to reintegrate
at the interface region by band bending. Thus, electrons present in the conduction band
of SBS have the ability to react with O2

−• and later have the potential to react with water
to form OH•. This OH• radical can either directly oxidize and decompose the organic
pollutants, or produce decomposed products from the oxidation of hazardous pollutants.
In addition, the h+ present in the valence band of BV has the ability to react with water to
form OH•, which can further oxidize the detrimental pollutant to less toxic and simpler
products. As depicted the Scheme 1, the photocatalysts follow a S-scheme heterojunction.
Then the photocatalytic performance of the catalyst was compared to existing reports.
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3. Materials and Methods

Ethanol, sodium hydroxide pellets (NaOH), and acetic acid were purchased from
Merck. Bismuth nitrate pentahydrate (Bi(NO3)3·5H2O), nitric acid (HNO3), antimony
chloride (SbCl3), and ammonium metavanadate (NH4VO3) were procured from Spec-
trochem. Thioacetamide (CH3CSNH2) and Tartaric acid (C4H6O6) were purchased from
Loba Chemie. The pharmaceutical pollutant, TC, was bought from Sigma Aldrich. Deion-
ized water (18 MΩcm−1) was utilized to prepare the solutions. A TC tablet from Abbott
(Tetracycline capsules, I.P. Restecline 250) with a concentration of 250 mg was purchased
from a medical store.

3.1. Synthesis Protocol of BiVO4

BiVO4 was synthesized using an environmentally safe hydrothermal procedure. Typ-
ically, 5 mmol of Bi(NO3)3·5H2O was dispersed in 10 mL HNO3 (4 M) with continuous
stirring. In another flask, NH4VO3 (5 mmol) was dissolved in 10 mL of NaOH (2 M) under
vigorous stirring. About 0.25 g of C18H29NaO3S was dissolved in both of the prepared
solutions. Afterward, both solutions were mixed together and a neutral pH was main-
tained by using NaOH (2 M). The resulting suspension was heated at 200 ◦C for 1.5 h in a
Teflon-lined autoclave. A yellowish colored powder was centrifuged with distilled water
and dried in an oven at 60 ◦C and was termed BV.
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3.2. Synthesis Method of the BiVO4/Sb2S3 Hybrid

The BiVO4/Sb2S3 (BVSBS) couple with different mole ratios was fabricated using the
hydrothermal synthesis method. Initially, BiVO4 (0.0016 mol) was dissolved in
80 mL of distilled water to obtain a uniform solution. In this mixture, SbCl3 (0.0016 mol),
C4H6O6 (0.010 mol), and CH3CSNH2 (0.0032 mol) were slowly added under vigorous
stirring, followed by sonication for 1 h. The solution was heated at 180 ◦C for 8 h in a
Teflon-lined stainless steel autoclave. After 3–4 washes with double distilled water and
ethanol, the mixture was dried at 60 ◦C in a hot air oven. The resulting purplish powdery
material was named 11BVSBS. The quantity of the chemicals needed to fabricate the var-
ious mole ratios (1:3, 3:1, and 1:5) were computed and named 13BVSBS, 31BVSBS, and
15BVSBS, respectively.

For comparison purposes, the purple-colored bare Sb2S3 was similarly synthesized
without the addition of BiVO4, and was labeled SBS.

3.3. Methods of Characterization

The characterization methods are described in Section S1.1 (Supplementary Materials).

3.4. Photocatalytic Elimination of TC

The decomposition of the recalcitrant antibiotic, TC, was performed under natural
sunlight to assess the photocatalytic activity of the fabricated photocatalysts. About 6 mg
of the photocatalyst was inoculated into 20 mL of 10 ppm of TC (0.3 g/L). Before the
illumination, the solution was stirred at 900 rpm in the dark for 60 min to achieve an
absorption–desorption equilibrium. Eventually, it was stirred under natural sunlight for
120 min to carry out degradation, by placing the test tubes vertically towards the sun.
About 3 mL of solution was taken out at regular intervals and monitored through a UV-vis
spectrophotometer after separating the catalyst using centrifugation. The experiments were
conducted in July–August, and the sunlight intensity was 800–830 W/m2 during these
months as measured with the LICOR Pyranometer. The studies were carried out three
times, and the plots are displayed with the error bars displaying a ~5% data source error.
To monitor the degradation of the TC, the absorbance intensity of a UV-visible spectropho-
tometer was scrutinized at λmax = 360 nm. The degradation efficacy is determined by using
Equation (6).

% Deg = {(Ab0 − Abt)/Ab0} × 100 = {(C0 − Ct)/C0} × 100 (6)

Here, % Deg, Ab0, Abt is the degradation efficacy, initial absorbance, and absorbance
at time t, respectively. C0 and Ct is the initial concentration and concentration at time
t, respectively.

GC–MS was performed to examine the degraded products produced after the photocat-
alytic elimination of the hazardous pharmaceutical pollutant, TC. The aqueous mixture was
collected after the partitioning of the catalyst and the photocatalytic reaction. The residue
was dissolved in the organic solvent, dichloromethane (DCM), and by drying at 38 ◦C in
an oven, the solvent was vaporized. A Shimadzu GC–MS QP-2010 plus ultra-instrument
with a split/split less injector was used. The conditions were as follows: split mode injector,
ion source temperature = 220 ◦C, helium carrier gas (flow rate = 1.21 mL/min), injector
temperature = 260 ◦C, and injection volume = 1 µL. The primary oven temperature was
100 ◦C for 2 min grip time; it was further augmented to 300 ◦C for 18 min hold time. MS
spectra was captured at a range m/z = 40–650. COD and TOC analyses were used to assess
the photocatalytic treatments for TC. Prior to the analysis, a 200 mL solution containing
60 mg of the 13BVSBS photocatalyst was illuminated with sunlight for 120 min. The COD
was estimated via titration method, whereas the mineralization was computed using a TOC
elimination. In order to compute the % COD and TOC eradication, Equations (7) and (8)
were used.

% COD = {(CODi − CODf)/CODi} × 100 (7)
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% TOC = {(TOCi − TOCf)/TOCi} × 100 (8)

Here, CODi, CODf, TOCi, and TOCf, designate the initial and final COD and TOC,
respectively.

4. Conclusions

Various mole ratios of the novel heterojunction BiVO4/Sb2S3 photocatalysts were
fabricated using the environmentally friendly hydrothermal method. The characterization
studies revealed that the binary composite possesses a high surface area and a low recombi-
nation rate, which is significant for the degradation of the detrimental pollutant. In addition,
the composite had a narrow band gap allowing it to cover the broad range of solar light.
The 13 BVSBS composite had a nano-sphere-like morphology deposited onto nano-rods. To
gauge the photocatalytic performance of the fabricated photocatalysts, the photocatalytic
remediation of the recalcitrant antibiotic, TC, was performed under natural sunlight. Dif-
ferent experiments, including the concentration of the photocatalyst, the pH effect of the
detrimental pollutant, kinetic studies, effect of the light source, a scavenger study, and a
reusability experiment were carried out. It was observed that with an increase in the concen-
tration of SBS, the decomposition efficacy increased. The 13BVSBS and 15BVSBS exhibited
the highest photocatalytic decomposition efficacies among the synthesized photocatalysts,
of 88.7% and 89.6%, respectively. However, owing to its cost-effectiveness, 13BVSBS was
considered to be the more efficacious photocatalyst. The decomposition efficacy of the syn-
thesized nanocomposites was also compared to commercial TiO2-P25 to test the superiority
of the prepared nanocomposites. The trapping studies confirmed that OH• radicals were
the major scavenging agent in the decomposition experiment. The reusability experiment
suggested that the synthesized photocatalysts are reusable and easily recoverable even
after five cycles. The BET, SEM, and XRD post degradation experiments demonstrated
that the surface area characteristics, morphology, and crystallinity of the material did not
change after photocatalysis. GC–MS was carried out to validate the intermediates and the
products formed during the breakdown of the TC. High % COD and % TOC values for
the mineralization of TC confirmed that the synthesized composite is an excellent choice
for the photocatalytic remediation of the detrimental antibiotic. Therefore, the BVSBS
photocatalyst offers huge possibilities for the decomposition of detrimental pollutants.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal13040731/s1. Supplementary information comprises the
characterization methods (Section S1.1), PL graph (Figure S1), absorbance plot (Figure S2a), Tauc plot
(Figure S2b), gas chromatogram (Figure S3a), and mass spectra (Figure S3b) of the degraded products
of TC using the 13BVSBS photocatalyst.
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