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Abstract: Ammonia (NH3) has received much attention as a hydrogen carrier because it can be easily
liquefied with a high hydrogen storage density and emits no greenhouse gas during the dihydrogen
evolution process. The ammonia oxidation reaction (AOR) in an electrochemical system has an
important merit in which a very high-purity dihydrogen gas can be obtained without an additional
separation process that is typically needed for thermochemical decomposition processes. Herein,
the electrochemical AOR was carried out in a solid acid electrolysis cell (SAEC) at an intermediate
temperature around 250 ◦C, in which a solid composite of CsH2PO4 mixed with SiP2O7 was used
as an electrolyte and Pt/C-based electrocatalysts were employed as the electrode materials of both
anode and cathode. The Pt/C electrode material was modified with the CsH2PO4/SiP2O7 electrolyte
in order to enhance the electrocatalytic activity for the AOR with an improved H2 production rate.
Over the SAEC system reported here, a high AOR performance was obtained with a current density
of 67.1 mA/cm2 and Faradaic efficiency (FE) of 98.2%. This study can suggest the significant potential
of SAEC for the carbon-free H2 production from the selective electrochemical oxidation of NH3.

Keywords: ammonia oxidation; solid acid electrolysis cell; electrocatalysis; green hydrogen;
CsH2PO4/SiP2O7

1. Introduction

The increasing environmental hazards from global warming have triggered extensive
research for alternative energy sources to the conventional fossil fuels [1,2]. Dihydrogen
(H2) gas has been suggested as the favorable, alternative energy carrier since H2 has a high
gravimetric energy density and the only product from its use is clean water. However, the
storage and transport of H2 suffers from its low volumetric energy density, necessitating
complicated equipment for extreme conditions of temperature and pressure for liquid-state
H2 [3]. Therefore, various materials, such as liquid organic hydrogen carriers (LOHC),
metal hydrides, and ammonia, have been studied for use as an H2 carrier. Among them,
ammonia (NH3) has received great attention as an H2 gas carrier material recently due to
its high volumetric density of hydrogen, easy liquefaction and storage conditions (−33 ◦C
or 8 bar at ambient temperature), no greenhouse gas emission during decomposition, and
the presence of existing infrastructure in the current society [4–6]. H2 evolution from
ammonia can be simply performed via a thermal decomposition process described by the
following reaction:

NH3 (g)→ 1/2 N2 (g) + 3/2 H2 (g)
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As ammonia decomposition is favored at high temperatures, this thermal decomposi-
tion of ammonia generally requires more than 400 ◦C to achieve high conversion. Moreover,
an additional separation process to obtain a pure dihydrogen gas is necessary because un-
converted NH3 from the thermal decomposition process can damage hydrogen application
systems [7]. Therefore, thermal decomposition of NH3 to H2 requires high energy, and thus
an alternative H2 evolution process from NH3 needs to be developed. Recently, alternative
methods of electrolysis processes have been studied to produce high-purity dihydrogen
from the electrochemical oxidation of liquid phase ammonia. The electrochemical ammonia
oxidation reaction (AOR) for dihydrogen evolution involves following half-cell reactions of
oxidation and reduction processes at the anode and cathode, respectively:

Anode: 2 NH3 → N2 + 6 H+ + 6 e−

Cathode: 6 H+ + 6 e− → 3 H2

The AOR is performed over the electrolysis cells that are fabricated by membrane elec-
trolytes sandwiched with anode and cathode electrodes. Thereby, a high-purity dihydrogen
gas can be produced at the cathode side under ambient conditions [8–10]. Despite this
advantage, however, the AOR under ambient condition is still to be improved significantly
in terms of the H2 production rate as compared to the thermal decomposition processes.
The solid acid electrolysis cell (SAEC), which can operate at intermediate temperature
ranges from 200 ◦C to 300 ◦C, has attracted its uses for electrochemical oxidation/reduction
processes by circumventing some limitations of low temperature electrolysis cells. Solid
acid compounds, which are charge-balanced with SO4

2− and PO4
3− oxyanions, can be

used as an excellent proton-conducting electrolyte for SAECs due to their phase transition
properties to superprotonic phases even at the relatively low and intermediate tempera-
tures with high proton conductivities [11]. Among them, cesium dihydrogen phosphate
(CsH2PO4) is a representative solid acid, which reveals a high proton conductivity at 250 ◦C
and has a relatively high tolerance against NH3 [12,13]. This CsH2PO4 is transformed to a
superprotonic phase at about 228 ◦C and exhibits a high proton conductivity of 10−2 S cm−1

or greater [14]. In addition, a humidified environment is typically required in order to
prevent dehydration and dissociation of CsH2PO4. The CsH2PO4 electrolyte has another
issue to be resolved: it suffers from a relatively low mechanical stability, hence several
studies about binder additives have been performed for SAEC systems [15–17].

Recently, to overcome the limitations of both thermal and electrochemical ammonia
decomposition, a hybrid type of thermal-electrochemical ammonia conversion using an
SAEC has been proposed. Lim et al. [18] demonstrated a hybrid system of thermal de-
composition of ammonia followed by electrochemical dihydrogen production at 250 ◦C
using CsH2PO4 as a proton-conducting electrolyte. This result showed a similar level of
high H2 production rates to the studies in the temperature range from 350 to 500 ◦C, but
the high loading weight of Ru catalyst (>10 mgRu cm−2) was required for the ammonia
thermal decomposition part. Moreover, an additional Pt electrocatalyst layer for hydrogen
oxidation is required for the system. In this sense, developing an efficient electrolyte and
lowering the noble metal use are effective and necessary approaches for AOR research
using SAEC systems.

In this study, we report the electrochemical AOR using the SAEC system at intermedi-
ate temperature to produce high-purity dihydrogen gas with a high production rate. For
the enhanced mechanical properties and high proton conductivity in the relatively broad
temperature range, the CsH2PO4 electrolyte was composited with a silica-based material
of SiP2O7. As CsH2PO4 and SiP2O7 can react to form CsH5(PO4)2 under a hydrothermal
condition, the electrolyte provides high proton conductivity in a temperature range from
150 ◦C to 280 ◦C [13]. Moreover, Pt/C-based electrocatalyst was blended with the elec-
trolyte composite for a high-performance SAEC to produce H2 from the electrochemical
oxidation of NH3. A high rate of 1.33 mmol cm−2 h−1 and faradaic efficiency (FE) of 98.2%
for the H2 production were achieved in the SAEC system reported here.
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2. Results and Discussion

Scheme 1 illustrates the SAEC cell configuration used in this study. The cell was
composed of a stainless steel mesh current collector, electrodes of anode and cathode
with electrocatalysts on carbon paper, and a solid-state electrolyte. The electrolyte was
prepared by mixing the synthesized CsH2PO4 (CDP) and SiP2O7 (SPO) in a 1:2 molar ratio,
which is described in detail in the experimental section. The electrolyte composite and
Pt/C catalyst were blended in a series of weight ratios to use as electrode materials and
deposited on the carbon paper (Pt/C_CDP/SPO-x, x = 3, 6, 9). The morphology and crystal
structure of the electrode materials were investigated by scanning electron microscopy
(SEM) and X-ray diffraction (XRD), respectively, to check the fabrication procedure of the
electrode paper. The formation of CsH2PO4 and SiP2O7 was examined by XRD, as shown
in Figure 1a. Compared to the XRD patterns of each material, the composite materials on
the electrode paper indicated weak peaks relating to a phase of SPO, because the CDP and
SPO likely reacted to form CsH5(PO4)2 under the hydrothermal condition by the following
reaction [13]:

2 CsH2PO4 + SiP2O7 + 3 H2O→ 2 CsH5(PO4)2 + SiO2
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However, the XRD peak at around 40◦ of Pt (111) was not detected clearly in the
electrode paper because the intensities of XRD peaks referring to the CDP and SPO were
much stronger due to the high crystalline properties of CDP and SPO. To investigate the
mixing of the Pt/C and electrolyte composite, elemental mappings were carried out in
the SEM image, indicating that Pt, Cs, and Si were uniformly dispersed over the electrode
surface (Figure 1b). The XRD and SEM results showed that the Pt/C and electrolyte
composite were nicely mixed and uniformly deposited on the carbon paper.

To interpret the proton-conducting properties of the CDP/SPO electrolyte, the current
density and faradaic efficiency (FE) of dihydrogen evolution reaction were measured. CDP
is known in that it can reveal a high proton conductivity in the range of 220 ◦C to 270 ◦C by
accompanying the phase transition from a monoclinic crystal structure to superprotonic
cubic structure over a temperature of 220 ◦C. Proton conductivity values of CDP and
CDP/SPO were estimated by fitting the electrochemical impedance spectroscopy (EIS)
data, especially those obtained at high frequency ranges. The proton conductivity values
were obtained every 10 ◦C from 160 ◦C to 250 ◦C (Figure 2a). The CDP alone exhibited
a high proton conductivity at the temperature of 220 ◦C, which is in a good agreement
with its phase transition feature, but the CDP/SPO showed no sharp decline of proton
conductivity below 220 ◦C [19]. Moreover, the proton conductivity value of CDP/SPO
was higher than that of CDP at 250 ◦C. This indicated that the addition of SPO into CDP
could enhance thermal stability as well as proton conductivity of the electrolyte. Using the
CDP/SPO as a composited electrolyte, the linear sweep voltammetry (LSV) of hydrogen
oxidation reaction (HOR) at 250 ◦C indicated that the current density increased linearly as
the applied voltage increased (Figure 2b), and the FE of H2 evolution was reached around
100%. These results revealed that the CDP/SPO electrolyte can perform with a great proton
conductivity at 250 ◦C.
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Figure 2. (a) Conductivity values of CDP and CDP/SPO from 160 ◦C to 250 ◦C. (b) LSV curves of
HOR using CDP/SPO electrolyte at different hydrogen flow rate.

A series of Pt/C_CDP/SPO electrodes was applied for the AOR over the SAEC system
to optimize the weight ratios of Pt/C and electrolyte composite. The linear sweep voltam-
metry (LSV) curves of the catalysts at 10 mV s−1 scan rate were investigated from 0 V to 0.8 V
(Figure S1). The LSV curves showed the increased slopes of current density versus voltage
after 0.4 V, indicating that the AOR should occur faster from 0.4 V. Figure 3a indicates the
measured current density for the AOR at 0.5–0.8 V using the Pt/C and Pt/C_CDP/SPO-x
catalysts. Pt/C_CDP/SPO-6, which is the mixture of Pt/C and electrolyte composite in
a 1:6 weight ratio, showed the best current density compared to the Pt/C, without com-
positing CDP/SPO or Pt/C_CDP/SPO with other ratio mixtures. EIS data were analyzed
to find further insight into the charge transfer kinetics of Pt/C_CDP/SPO-x catalysts for
the AOR in the SAEC. The EIS measurement was carried out at an open circuit voltage
under 60 mL min−1 ammonia flow rate condition. Figure 3b shows the Nyquist plots of
Pt/C_CDP/SPO-x catalysts; the electrochemical impedance parameters were evaluated
using the equivalent circuit model shown in the inset of Figure 3b. The equivalent circuit
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consists of one ohmic resistance (Rs), inductance (L1), and two parallel circuits of constant
phase element (CPE1, CPE2) and non-ohmic polarization resistance (R1, R2) [15]. The
fitted data were summarized in Table S1. L1 was invariant for the catalysts because it is
attributed to the inductance of the cables used in the impedance measurement device. As
shown in Figure 3b, the Nyquist plots show that the high-frequency x-axis intercepts of
Pt/C_CDP/SPO-x catalysts, which are mainly attributed to the ohmic resistance associated
with the interfacial resistance between electrolyte and electrode, are nearly constant. R1
and R2 are the polarization resistance at high frequency range and medium–low frequency
range, respectively. R1 is contributed by the charge transfer resistance at the electrolyte
and electrode interface, and R2 is associated with the chemisorption of reactant and gas
transport limitation at the electrode [20]. According to the fitted data, R1 decreased as
the mixed CDP/SPO ratio increased, indicating that mixing the electrolyte composite to
Pt/C could improve the charge transfer kinetics in the AOR. However, the R2 value of
Pt/C_CDP/SPO-9 (12.47 Ω) highly increased compared to the Pt/C_CDP/SPO-3 (9.59 Ω)
and Pt/C_CDP/SPO-6 (9.36 Ω). This might be attributed to the excessive electrolyte com-
posite which caused an inhibition of reactant gas transport and chemisorption over the
Pt active sites. Both results with current densities and EIS analysis suggest that there
is an optimal ratio between the Pt/C and CDP/SPO, and the Pt/C_CDP/SPO-6 could
be better for the electron transfer kinetics in the AOR than the Pt/C_CDP/SPO-3 and
Pt/C_CDP/SPO-9.
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lent circuit model. Every analysis was performed at 250 ◦C under NH3 flow rate of 60 mL min−1.

Using the Pt/C_CDP/SPO-6 catalyst, the AOR in the SAEC was carried out along
with different ammonia flow rates of 20, 40, 60 mL min−1. Figure 4 shows that the current
densities increased as the voltage and ammonia flow rate were increased. The gas chro-
matography with thermal conductivity detector (GC-TCD) was operated at every 9 min
of reaction time to quantitatively measure the dihydrogen production, and the result is
summarized in Table 1. The GC-TCD analysis data of cathode outlet gas at 0.8 V at a flow
rate of NH3 of 60 mL min−1 are illustrated in Figure S2. The GC-TCD chromatogram
showed that H2, N2, and H2O were detected at 1.05, 1.15, and 10.5 min, respectively. As
humidified N2 gas was supplied to the cathode, the GC-TCD analysis revealed that only H2
gas was produced at the cathode. Consequently, FE was 98.2% and H2 production rate was
1.33 mmol h−1 cm−2 at an applied potential of 0.8 V at a flow rate of NH3 of 60 mL min−1,
and FE appeared to be decreased as the applied potential was decreased from 0.8 V to
0.5 V. Non-faradaic processes appeared to occur at lower potentials because charge transfer
reactions over the electrode would be kinetically unfavorable when the applied potential is
not sufficiently high to overcome the overpotentials of AOR [21,22].
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6 catalyst at each potential from 0.5 V to 0.8 V. Every analysis was performed at 250 ◦C using
Pt/C_CDP/SPO-6 catalyst.

Table 1. Summary of AOR results of Pt/C_CDP/SPO-6 at 250 ◦C.

NH3 Flow
(mL min−1)

WHSV
(h−1 Pt)

Voltage
(V)

Current Density
(mA cm−2)

H2 Production Rate
(mmol h−1 cm−2)

Faradic Efficiency
(%)

20 183.6

0.5 17.4 0.168 47.9

0.6 29.6 0.313 52.4

0.7 42.1 0.480 56.5

0.8 49.9 0.565 56.1

40 367.2

0.5 24.6 0.312 62.9

0.6 40.9 0.652 79.0

0.7 54.0 0.819 75.1

0.8 61.8 0.982 75.1

60 550.8

0.5 24.3 0.378 76.1

0.6 43.4 0.745 85.0

0.7 59.2 1.16 97.0

0.8 67.1 1.33 98.2
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The electrochemical AOR in the SAEC system was carried out for 20 h at an inlet
ammonia flow rate of 60 mL min−1 at 0.8 V for the long-term durability test of the cell.
The corresponding current density profile according to the cell operating time is shown in
Figure 5. During the initial 1 h, the ammonia oxidation rate decreased almost linearly, and
after 1 h, the current density of 30 mA cm−2 was shown. After that, the activity deterioration
rate decreased, and the activity of 7.5 mA cm−2 was maintained after 8 h. Furthermore, the
deactivation rate of the Pt/C_CDP/SPO-6 catalyst during the long-term test was calculated
by differentiating chronoamperometric data and illustrated in Figure S3 to investigate the
stability of the catalyst [23]. The deactivation rate became lower than 0.015 mA cm−2 min−1

after 6 h, which signifies that the catalytic activity was maintained with a decline rate of
less than 0.1% after 6 h. After the stability test, XRD and SEM analyses of the electrode
materials were performed to examine the morphology and crystalline structure of the
catalysts. As shown in Figure S4, the XRD pattern of the used electrode material did not
change compared to the pristine electrode. If dehydration of CDP took place, the CsH2P2O7
and CsPO3 would be formed, but no peaks referring to the CsH2P2O7 and CsPO3 were
detected in the XRD pattern of Pt/C_CDP/SPO-6 measured after the stability test. This XRD
result indicated that the Pt/C_CDP/SPO-6 catalyst demonstrates great stability without
dehydration of the electrolyte composite. Furthermore, the SEM elemental mapping of Pt,
Cs, and Si also showed that the Pt/C and electrolyte composite still dispersed uniformly
on the carbon paper. These results indicated that the Pt/C_CDP/SPO-6 catalyst showed
highly efficient electrochemical performance with a great stability for the AOR in SAEC.
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The amount of ammonia crossover that can possibly take place across the electrolyte
membrane during the electrochemical AOR was calculated by detecting and quantifying
the ammonia dissolved in the water trap via UV-vis spectrophotometry [24,25] using the
indophenol blue method (Figure S5). Preventing ammonia crossover is a highly important
strategy in this SAEC system since the produced H2 cannot be used directly in the PEMFC
as H2 fuel if any significant amount of ammonia concentration in the gas is involved [26].
The measured data are summarized in Table S2. The amount of crossed over ammonia
collected for 60 min at a cell voltage of 0.8 V was 0.083 micromole, and the partial pressure
of crossed ammonia for the outlet gas flow rate of 30 mL min−1 would be less than 0.96 ppm.
This is under 1 ppm, which is the partial pressure of ammonia that could be accepted for
the H2 feed stream directly into the PEMFC [27]. The residual concentrations of ammonia
during the typical thermal decomposition processes are known to be about 1000 ppm or
greater, which is definitely subject to the additional separation or removal processes of
ammonia to use a pure H2, hence the electrochemical AOR process in the SAEC system
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proposed here should have a highly significant merit to produce a high-purity H2 gas from
a carbon-free NH3.

In this work, the Pt/C_CDP/SPO-6 showed a high performance and stability for the
electrochemical AOR at intermediate temperatures in the SAEC. Addition of SPO to CDP
induced an increase in proton conductivity and an enhancement of thermal stability of
the electrolyte, and the charge transfer resistance over the electrode material was further
decreased by compositing the Pt/C catalyst with the electrolyte materials. However,
excessive addition of CDP/SPO to the Pt/C catalyst appeared to hinder mass transfer and
chemisorption of reactant on the active sites; thus, tuning the ratio of electrolyte composite
and catalyst materials is significant and will be studied further. As summarized in Figure 6
and Figure S6, the AOR performance in our work showed a high current density as
compared to the AOR results performed in low temperatures [28–35]. Furthermore, the H2
production rate was about 1.8 times higher than the hybrid thermal–electrochemical NH3
conversion to H2 in the SAEC system without a thermal cracking layer composed of Ru
catalysts [14]. These indicated that the SAEC system has a great potential for electrochemical
oxidation of NH3 to H2 and the performance can be significantly enhanced by moderately
modifying electrolytes and catalyst materials with appropriate and effective additives.

Catalysts 2023, 13, x FOR PEER REVIEW 8 of 12 
 

ppm or greater, which is definitely subject to the additional separation or removal pro-
cesses of ammonia to use a pure H2, hence the electrochemical AOR process in the SAEC 
system proposed here should have a highly significant merit to produce a high-purity H2 
gas from a carbon-free NH3. 

In this work, the Pt/C_CDP/SPO-6 showed a high performance and stability for the 
electrochemical AOR at intermediate temperatures in the SAEC. Addition of SPO to CDP 
induced an increase in proton conductivity and an enhancement of thermal stability of the 
electrolyte, and the charge transfer resistance over the electrode material was further de-
creased by compositing the Pt/C catalyst with the electrolyte materials. However, exces-
sive addition of CDP/SPO to the Pt/C catalyst appeared to hinder mass transfer and chem-
isorption of reactant on the active sites; thus, tuning the ratio of electrolyte composite and 
catalyst materials is significant and will be studied further. As summarized in Figures 6 
and S6, the AOR performance in our work showed a high current density as compared to 
the AOR results performed in low temperatures [28–35]. Furthermore, the H2 production 
rate was about 1.8 times higher than the hybrid thermal–electrochemical NH3 conversion 
to H2 in the SAEC system without a thermal cracking layer composed of Ru catalysts [14]. 
These indicated that the SAEC system has a great potential for electrochemical oxidation 
of NH3 to H2 and the performance can be significantly enhanced by moderately modifying 
electrolytes and catalyst materials with appropriate and effective additives. 

 
Figure 6. Comparison of AOR current density against Pt loading mass with reported AOR studies 
at low temperature [28–35]. 

3. Materials and Methods 
3.1. Synthesis of CsH2PO4 and SiP2O7 

For the synthesis of cesium dihydrogen phosphate (CsH2PO4) powder, CsCO3 (99% 
metal basis, Alfa Aesar, Haverhill, MA, USA), and H3PO4 (85 wt% aqueous solution, Alfa 
Aesar, Haverhill, MA, USA) were mixed in a 1:1 molar ratio in an aqueous solution. Af-
terwards, methanol was added to the solution, followed by precipitation of CsH2PO4. The 
precipitate was filtered and dried at 80 °C for 12 h. SiP2O7 was synthesized by mixing SiO2 
(99.9% 0.5 micron, Alfa Aesar, Haverhill, MA, USA) and H3PO4 solution in a 1:2 molar 
ratio. The mixture was heated at 200 °C for 3 h and at 100 °C for 24 h subsequently. After 
the heat treatment, the mixture was ground and subsequently heated at 122 °C for 24 h 
and at 700 °C for 3 h. All heating steps were carried out under air condition, and as-pre-
pared CsH2PO4 and SiP2O7 were mixed in a 1:2 molar ratio. 

  

Figure 6. Comparison of AOR current density against Pt loading mass with reported AOR studies at
low temperature [28–35].

3. Materials and Methods
3.1. Synthesis of CsH2PO4 and SiP2O7

For the synthesis of cesium dihydrogen phosphate (CsH2PO4) powder, CsCO3 (99%
metal basis, Alfa Aesar, Haverhill, MA, USA), and H3PO4 (85 wt% aqueous solution,
Alfa Aesar, Haverhill, MA, USA) were mixed in a 1:1 molar ratio in an aqueous solution.
Afterwards, methanol was added to the solution, followed by precipitation of CsH2PO4.
The precipitate was filtered and dried at 80 ◦C for 12 h. SiP2O7 was synthesized by mixing
SiO2 (99.9% 0.5 micron, Alfa Aesar, Haverhill, MA, USA) and H3PO4 solution in a 1:2 molar
ratio. The mixture was heated at 200 ◦C for 3 h and at 100 ◦C for 24 h subsequently. After
the heat treatment, the mixture was ground and subsequently heated at 122 ◦C for 24 h and
at 700 ◦C for 3 h. All heating steps were carried out under air condition, and as-prepared
CsH2PO4 and SiP2O7 were mixed in a 1:2 molar ratio.

3.2. SAEC Cell Preparation

Anode and cathode were prepared by mixing Pt/C (20 wt% of Pt on carbon black, Alfa
Aesar, Haverhill, MA, USA), electrolyte composite in 1:3, 1:6, 1:9 weight ratio in toluene
(Pt/C_CDP/SPO-3, 6, 9). The resultant solution was loaded on a carbon paper (TGP-H-90,
Toray, Tokyo, Japan) to 0.5 mgPt cm−2 by drop casting. Then, CsH2PO4/SiP2O7 suspended
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toluene solution was deposited on anode carbon paper and dried at 100 ◦C to compose the
electrolyte layer. In addition, porous stainless steel mesh (Sus 316 150 mesh) was used as
both a current collector and mechanical support of the cell. The porous stainless steel mesh,
anode paper with electrolyte, cathode paper, and stainless steel mesh were stacked in a
steel chamber in a row and pressed at 80 MPa for 5 min to fabricate a solid acid electrolysis
cell, and the cell was sealed using PTFE tape.

The gas flow system was illustrated in Figure S7. Ag wires connected to the stainless
steel mesh were used as terminals for both electrodes to a potentiostat (VSP-300). The cell
was heated from 25 ◦C to 250 ◦C for 1 h with a humidified N2 gas flow of 30 mL min−1

on the cathode side and a humidified Ar gas flow of 30 mL min−1 on the anode side. At
250 ◦C, the flow of Ar gas was reduced to 15 mL min−1 and humidified NH3 was supplied
together to the anode side. Humidified conditions (30%) of gas flow at each side were
achieved by passing through the bubbler at 70 ◦C.

3.3. Electrochemical Measurements

To evaluate the ammonia oxidation activities of the solid acid cell, the reaction was
performed at 250 ◦C from 0.5 V to 0.8 V at different NH3 flow rates (20, 40, 60 mL min−1).
Electrochemical impedance spectroscopy (EIS) was performed at open circuit voltage
(OCV) in the frequency range from 104 Hz to 0.1 Hz. The outlet gas from the cathode was
penetrated through a water trap to check the NH3 crossover from the anode side, and then
sampled to gas chromatography (Agilent 7890A, Santa Clara, CA, USA) with a thermal
conductivity detector (TCD) to estimate the H2 gas production rate. The trapped NH3 was
detected by UV-visible spectroscopy (Agilent Technologies Cary 8454, Santa Clara, CA,
USA) using the indophenol blue method. The reagent was made by preparing 2 mL of
1 M NaOH solution containing 5 wt% salicylic acid and 5 wt% sodium citrate, followed
by addition of 1 mL of 0.05 M NaClO and 0.01 mL of 1 wt% sodium nitroferricyanide
aqueous solution.

3.4. Structural Characterization

The morphology of the electrode material was analyzed through scanning electron
microscopy (SEM) data using a JSM 7800F instrument operated at 10 kV. Furthermore,
X-ray diffraction (XRD) analysis data were obtained by Ultima IV (Rigaku) using Cu
Kα (λ = 1.5418 Å) radiation operated at 40 kV and 30 mA to obtain the crystal structure
information of synthesized materials.

4. Conclusions

In summary, we have successfully prepared the electrolyte composite and electrode
materials for the SAEC system and applied this to the electrochemical NH3 oxidation to
produce a high-purity H2 in the intermediate temperatures around 250 ◦C. The electrolyte
composite was prepared by mixing CDP and SPO to enhance the thermal stability and
proton conductivity for the broader temperature range, and it was further used to modify
the Pt/C catalysts with different ratios to boost the electrocatalytic activity further. The
AOR performance using the Pt/C_CDP/SPO-6 as the electrode material achieved a maxi-
mum Faradaic efficiency of 98.2% and dihydrogen production rate of 1.33 mmol h−1 cm−2.
Furthermore, in a long-term durability test, it was confirmed that a current density of
7.5 mA cm−2 was maintained for longer than 20 h with no significant morphological
changes. We discovered that a proper mixing ratio of the solid acid electrolyte composites
and the Pt/C-based catalyst materials is required to optimize the electrolysis performance of
NH3 over the SAEC. The modified electrolyte and catalyst indicated a higher performance
for dihydrogen evolution from electrochemical ammonia decomposition as compared to the
previously reported results in low temperatures and the hybrid thermal–electrochemical
NH3 decomposition in the SAEC system. Consequently, this study can give a new ap-
proach toward an SAEC that is operable at intermediate temperatures with developments
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of efficient electrolytes and active electrode catalysts in the research field of ammonia
electrooxidation for dihydrogen production.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/catal13040707/s1, Figure S1: Linear sweep voltammetry (LSV)
curves of Pt/C_CDP/SPO-x catalysts for AOR from 0 to 0.8 V at 10 mV s−1 scan rate; Figure S2:
GC-TCD analysis of cathode outlet gas for the AOR using the Pt/C_CDP/SPO-6 catalyst at 0.8 V
at a flow rate of NH3 of 60 mL min−1 (a) from 0.8 to 1.2 min and (b) from 1.2 to 15 min; Figure S3:
Deactivation rate of the Pt/C_CDP/SPO-6 catalyst at ammonia flow rate of 60 mL min−1 at 0.8 V for
20 h; Figure S4: (a) XRD patterns of the pristine Pt/C_CDP/SPO-6 and after the long-term stability
test. (b) SEM images and EDS elemental mapping of Pt, Cs and Si of Pt/C_CDP/SPO-6 after stability
test; Figure S5: (a) UV-vis absorption spectra and (b) calibration curve for the indophenol blue
method; Figure S6: Comparison of mass activity for AOR over Pt-based catalysts with reported AOR
literatures at low temperatures; Figure S7: Schematic illustration of the overall AOR process with
the SAEC system; Table S1: Electrochemical impedance parameters of Pt/C_CDP/SPO-x catalysts
at open circuit voltage under 60 mL min−1 ammonia flow rate condition; Table S2: Analyses of
ammonia crossover during the electrochemical AOR in the SAEC for 60 min. The references [35–42]
are cited in the Supplementary Materials.
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