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Abstract: Pure water, i.e., a sign of life, continuously circulates and is contaminated by different
discharges. This emerging environmental problem has been attracting the attention of scientists
searching for methods for the treatment of wastewater contaminated by multiple recalcitrant com-
pounds. Various physical and chemical methods are used to degrade contaminants from water bodies.
Traditional methods have certain limitations and complexities for bioenergy production, which mo-
tivates the search for new ways of sustainable bioenergy production and wastewater treatment.
Biological strategies have opened new avenues to the treatment of wastewater using oxidoreductase
enzymes for the degradation of pollutants. Fungal-based fuel cells (FFCs), with their catalysts, have
gained considerable attention among scientists worldwide. They are a new, ecofriendly, and alterna-
tive approach to nonchemical methods due to easy handling. FFCs are efficiently used in wastewater
treatment and the production of electricity for power generation. This article also highlights the
construction of fungal catalytic cells and the enzymatic performance of different fungal species in
energy production and the treatment of wastewater.
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1. Introduction

The rapid industrial and global population growth has polluted water and depleted
the resources of fossil fuels to fulfill the excessive demand for energy production. The
quality of water is deteriorating due to the continuous mixing of undesirable chemicals [1].
The need for water quality improvement and preservation is continuously growing day by
day due to agricultural, civilization, and industrial activities, leading to environmental and
global changes. Wastewater is defined as a combination of liquid, water with wastes from
residential areas, commercial sites, institutions, and industrial establishments together with
ground, surface, and storm water [2].

Nonpoint sources contaminate valuable water resources. Organic pollutants are
hazardous and toxic; hence, chemical processes are most suitable to remediate and eliminate
the inorganic matter, dyes, and recalcitrant matter. Various techniques (biological, physical,
and chemical) are used to treat organic-compounds polluted the wastewater. Traditional
methods have certain limitations for bioenergy production, e.g., large spaces, high capital
cost, and complexities linked with the production process. The demands for sustainable
bioenergy production have been increasing in the world as an alternative to nonchemical
methods for power generation. Biological degradation involves the use of microorganisms
(fungi, algae, bacteria, and enzymes), which utilize the maximum land area, exhibit very
high sensitivity toward toxic agents, and require a long consumption time [3].

The exploration of novel and efficient approaches have attracted the attention of envi-
ronmental scientists to cleanup and remediation of the contaminated water bodies. The
fungal potential to generate bioelectricity from biodegradable wastewater reduces the cost
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of conversion [4]. Biotic sources exploit different species of fungi for bioenergy generation.
However, very little data are available on the use of “fungal-mediated electrochemical
system” for energy production. Minimal resources, higher prices of fossil fuels, and increas-
ing global warming issues have motivated the scientists to design alternative “renewable”
energy sources, e.g., fungal cell factories.

The fungal fuel cell is a device that uses fungi as catalysts to generate electricity by
oxidizing the inorganic compounds of biomass [5]. A few researchers believe that this
technology is not only used for the production of electricity. It also depends on the ability
of the electrode associated with the fungi to degrade the toxics and waste materials [6].
Biomass/organic material is a sustainable alternative approach to address this issue. Fungal
fuel cells (FFCs) provide electricity directly through the “biodegradation” of raw materials
by fungal cells [7].

It is proposed that fungal species are used for energy generation, taking advantage
of their potential as “novel cell factories”. Saccharomyces or Pichia fungi are used in these
cells [8]. Fungal cells have nine times higher potential to generate energy accumulated
in sewage sludge than conventional methods [9]. Fungal species have a strong potential
to generate power using the presence of complex enzymatic systems. These species can
rapidly grow on waste materials and degrade these materials within a shorter time for
the production of “bioenergy”. The use of fungi in “bioremediation” is a promising
technique [10].

This approach is also called an “Oxidative Biocatalyst” approach. The efficiency
of this strategy can be maximized by using different fungal growth and environmental
parameters with redox mediator systems [11]. The fungal approach is the best method
for energy production and wastewater treatment in a cost-effective manner. Integrated
physical, chemical, and biological wastewater treatment are discussed in detail with current
challenges in terms of achieving good treatment efficiencies to meet the discharge standards
during wastewater treatment and bioelectricity generation.

Objectives

• To construct bioelectrochemical devices, where the fungus (catalyst) is used for the
oxidation of inorganic matter for electricity generation.

• To generate power/energy from wastewater (substrate) using fungal electrochemical
technology (FET) in an ecofriendly manner.

• Compared to conventional methods, biodegradation, using cost-effective and eco-
nomical technologies, is greatly preferred with improved outcomes. The goal of this
review provides a design for a much more cost-effective system with a principle of
wastes removal using fungal fuel cells. Studies on wastewater treatment in FFCs
with electricity generation are also presented. Thus, biodegradation using FFCs is
considered to be a highly economical, ecofriendly, and more prominent way to solve
these problems.

1.1. Oleaginous Fungi

Oleaginous microorganisms have potential for biodiesel formulation and production.
These are used as an alternative renewable energy sources. Oleaginous fungi have nu-
merous advantages, e.g., lower land requirements, short cultivation time, and maximum
production of fatty acids (oils) [12]. A few oleaginous species metabolize xylose and assist
in lipid production from “lignocellulosic hydrolysates” [13]. These fungal species become
more oleaginous, when different organic substrates (glucose and sucrose) are added to
their growth medium. Each species has particular abilities to utilize organic substrates and
enhance the lipid yield. It is noticed that in a fungal consortium, less productive species
always follow a more productive species during co-metabolism. This way of combination
is yielding more biomass than single cultures.

The genera Mucor and Aspergillus have been recognized to store up to 80% of oils
(in cells) in specific conditions [14]. Strains that have high lipid contents and metabolize
TAG (triacylglycerides) usually preferred to formulate and generate biofuels efficiently.
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Zygomycetes are a class of excellent oleaginous fungal species, providing palmitic and oleic
acids that are used for biodiesel formation. Additionally, anaerobic fungi are an arsenal
of extracellular multienzyme complexes. These fungi are involved in the breakdown of
various biomasses for biogas generation. Zygomycetes, such as Mortierella isabelline has
reported to have a 60–70% lipid content [15].

Oleaginous yeast (Rhodotorula mucilaginosa SML) has been using for the treatment
of food industry effluents. The overall yeast lipid content for the effluent treatment was
67.95 w/w% of dry cell biomass. The extracted yeast oil was used for transesterification and
showed a 98% conversion of oil to methanol. The fatty acid composition was compatible
with petroleum diesel, making it applicable for alternative biofuel production. Thus, this
strategy proved efficient in the removal of contaminants of industrial wastes suggested as
a new sustainable source for biodiesel production [16].

The biofilm of Wickerhamomyces anomalus (yeast) on the anodic electrode of a single-
chamber fuel cell fed with zinc and copper electrodes and pineapple waste (substrate) is
used for fuel production. Current (4.95667 ± 0.54 mA) and voltage peaks (0.99 ± 0.03 V)
were generated for 16 and 20 days, respectively. The maximum power density of
513.99 ± 6.54 mW/m2 at a current density of 6.123 A/m2 was generated [17].

1.2. Hydrolytic and Lignolytic Fungi

Hydrolytic and ligninolytic fungi are suitable candidates for the production of bio-
fuels or bioethanol. A few basidiomycetes have been reporting to secrete extracellular
enzymes that degrade the waste materials [18]. Fungal peroxidases (manganese-dependent
peroxidase and lignin peroxidase) degrade the lignin, hemicellulose, and polyaromatic
phenols [19].

Fungal cells are known for the generation of bioelectricity, good-quality biofuel pro-
duction, and wastewater treatment. The best-known biofuel-producing fungal species are
Rhodosporidium toruloides, Cryptococcus sp., Yarrowia lipolytica, Penicillium sp., Aspergillus sp.,
and Trichoderma reesei. Species that have the potential to produce biodiesel or electricity
generation transfer the e− via cytochrome C. These include Candida sp., Colletotrichum sp.,
Saccharomyces cerevisiae, Penicillium sp., Alternaria sp., Rhizopus sp., and Aspergillus sp. Cells
constructed from these species are called “Fungal-based FCs” [20].

Energy-generating fungal biocatalysts increase the electron transmission rate through
extensive networking of fungal hyphae and produce stable electricity, which contributes to
“external electrochemical operations”. Due to this unique property, fungi, and yeasts are
preferred over bacterial cells for wastewater treatment and electricity generation [21].

1.3. Effects of Environmental Factors on Fungal Growth and Metabolism

• pH

A few fungal species grow in a broad pH range, while some species grow in a narrower
pH range. The optimum growth of fungal species appears to correspond to a specific pH
value [22]. The fungal ability to grow at a pH >7 is required during industrial production.
The substrate with a pH below 7.00 inhibits the growth of contaminants (bacteria) without
affecting the yield. A slight increase in pH of FFCs, inhibits fungal growth and metabolism.
Fungal catalyst formation (oxidoreductase) and catalytic action are highly stable at an
acidic pH (3–6). A low pH induces mobility and unfolding of the enzyme proteins.

• Temperature

Temperature plays an important role in fungal growth, metabolism, and electricity
generation using fungal fuel cells. The temperature of system facilitates the cells metabolism
and their enzymatic reactions. In wood-rotting fungi, oxidoreductase is produced in an
optimum temperature range (25–30 ◦C), which depends on mesophilic and thermophilic
fungal species [23]. The enzyme system of mesophilic basidiomycetes is thermostable at
elevated temperatures. Optimum temperature is also favorable for the efficient maintenance
of fungal systems in fuel cells during their metabolic mechanisms. A slight decrease or
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increase in temperature leads to denaturation and inactivation of the cell components,
which consequently stops the work of fuel cells with no power generation.

• Ionic strength

Higher ionic conductivity also influences the work of fungal fuel cell. Ionic conductiv-
ity is directly proportional to power generation due to minimum internal resistance. High
ionic conductivity increases the power output of FCs. Protons and electrons can easily
move from one compartment to another for the completion of a circuit.

• Salinity

About 90% fungal species can tolerate at 3 to 6% salt stress. Halotolerant fungal species
are better adapted to the salty environment [24]. Marine fungi with a dark cell wall can
tolerate higher salinity than moniliaceous fungi [25]. The habitats of marine fungal species
have a strong influence on their adaptation to salt and metabolic functioning.

Hyperosmotic stress in fungi is linked with the inhibition of cell wall extension and
cellular expansion, resulting a reduction in their growth [26]. Excess in everything is bad.
Maximum ions can alter protein, membrane integrity, and nucleic metabolism, which may
change the enzymatic activity and catalytic performance during fungal growth and func-
tioning of fuel cells [27]. Organic osmotica (compounds) are called compatible solutes, as
these solutes can store high concentrations of salts without interfering with cell metabolism.
Polyols (mannitol, arabitol, and glycerol) and non-reducing saccharides (trehalose) are
soluble carbohydrates found in basidiomycetes and ascomycetes. These solutes help the
fungi to grow efficiently in a salt-stress environment. A maximum salt range destroys the
fungal product yield as well.

1.4. Enzymatic Treatment by Biocatalytic Fungal Species

Catalysts are needed to accelerate the maximum biodiesel production. Biofuels are
categorized into bioethanol, biohydrogen, and biodiesel (Figure 1). During the enzymatic
treatment of wastewater (substrate), low-chain carbon compounds are produced, which
utilized during microbial oxidation. The basic oxidoreductases, such as laccases, lignin
peroxidases, and manganese peroxidases, are extracellular enzymes. In contrast, glucose
oxidase and cellobiose dehydrogenase are auxiliary enzymes isolated from white-rot fungi.
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Biocatalysts are exoelectrogens that oxidize organic material and deliver electrons from
anode to cathode to generate the electricity. Exoelectrogens are now investigated for the



Catalysts 2023, 13, 687 5 of 27

development of FFCs, which potentially convert the diverse organic substances (activated
sludge of waste water) into electricity, ethanol, and H2 [28]. Sporotrichum pruinosum (white-
rot fungus) efficiently degrades pollutants, organic biomass, and chemical substances with
the use of an extracellular enzyme [29].

Biocatalyst is deposited onto the carbon anode as floating biomass in yeast-based
FFCs [30]. Yeast-based FFCs have the following advantages: (i) degradation of very
complex substrates (starch and cellulose-based substrates) into simple organic molecules;
(ii) survival in an anaerobic environment [31]; and (iii) simple and easy production, rapid
development, and sensitivity of the strains. Except for yeast, other fungal species are also
exploited as biocatalysts for both wastewater treatment and electrochemical approaches.

Scientists are motivated toward the development of such mediator systems as fungal-
based FCs [21]. Pure Saccharomyces cerevisiae (yeast) is a model organisms used as bio-
catalysts in FFCs. Christwardana et al. [30] indicated the significance of yeast cells in
MFCs due to their unique features and sustainability. S. cerevisiae has been extensively
studied and characterized as a biocatalyst in biological fuel cells [32–34]. This species is
nonpathogenic to non-target organisms (humans), has a high growth rate, easy to culture
in anaerobic environments, and grows very well at room temperature [35]; hence, it can
be used for the effective treatment of wastewater [36,37]. In addition to the low cost and
rapid multiplication, the species remains active and survives even in a dried environment
for a longer period [38]. Carbon-neutral fuel, referred to as bioethanol, is produced from
plant waste and bacterial/algal biomass [39]. It is also produced from yeast and fungi in
anaerobic conditions [40], especially S. cerevisiae, which is considered to have great potential
in the production of bioethanol.

Candida melibiosica, Kluyveromyces marxianus, Blastobotrys adeninivorans, Pichia anomala, P.
polymorpha, and Saccharomyces cerevisiae yeasts are used as biocatalysts in FFCs with/without an
external mediator. Kluyveromyces marxianus is a promising yeast species producing maximum
power at higher temperatures, when grown in natural (organic) substrates. Other fungal species,
e.g., Saccharomyces cerevisiae [33], Candida melibiosica [36], Blastobotrys adeninivorans [37], Hansenula
polymorpha [41], and Pichia anomala [42] all are a potential source for catalysts in FFCs.

Exogenous mediators, such as methylene blue (MB) and neutral red (NR), are used to
increase the transport of electrons between anodes and microbes. The yeast cell surface-
displayed dehydrogenases include cellobiose dehydrogenase (CDH) and pyranose dehy-
drogenase (PDH) [43]. Both CDH- and PDH-based biocatalysts are used in the anodic
compartment of FFCs.

1.5. Structure of Fungal-Mediated Fuel Cells

Protons and electrons are generated through the oxidation of organic matter in the
aqueous solution of anode compartment, when fungi used as catalyst. The external circuit
is used to transmit the electrons toward the cathode, while the proton exchange membrane
(PEM) facilitates proton diffusion [44–46]. At the cathode, e− and protons are used for the
reduction reaction and eventually change oxygen to water [47]. Potter [48] was the first
person, who liberated electrical energy from yeast cells in 1911. Fungi can transfer electrons
to the anode electrode in three possible ways: (1) direct contact; (2) pili/conductive wires;
and (3) redox mediators/electron shuttle [49].

The advantages of FFCs include sustainable nonchemical character, minimum sludge
generation, optimum temperature, wide range of substrates, low power consumption,
and good performance [50]. This is a promising alternative technique used to explore the
fungal potential in the conversion of organic substrates into electricity. The performance of
FFCs depends on multiple factors, e.g., configuration of the cell, choice of the substrate,
anodic material, biocatalyst, electro-catalyst (at the cathode), and environmental conditions.
Prasad et al. [42] observed that fungi are more active than bacteria in MFCs.

Fungal fuel cells (FFCs) are operated in a closed-system mode on the principle of
oxidation–reduction reaction through a series of electrochemical and microbial pathways.
The anaerobic environment is maintained in the anodic compartment [51]. The e− and
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protons in the anode chamber are produced through oxidation of the substrate by fungi,
and oxygen reduced by a terminal electron acceptor in the cathodic chamber.

Fungi used at the anode to transport e− via redox-active fungal protein and synthetic
mediators. Anodic fungal cells oxidize the substrates and produce electrons and protons.
The e− is absorbed by the electrode, and protons flow toward the cathode via a PEM. The
protons are transferred through the PEM to the cathode. Subsequently, the electron and
proton combination produce a molecule of water (at the cathode) for the completion of
the bioelectrochemical reaction. At the cathode, the fungal enzyme catalyzes the reaction
and the final electron receiver is O2 and H2O produced during this reaction. Additionally,
airtight compartments, sufficient space within the chamber, an outlet, and inlets are certain
prerequisites in the arrangement of the PEM and electrodes into a system (Figure 2).
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Figure 2. Structure of the fungal fuel cell. The left side of the cell is the fungal catalyst electrode
(anodic chamber), and protons are transferred from the proton exchange membrane to the cathodic
chamber (where catalytic oxidation takes place).

A membrane separator called a proton exchange membrane (PEM), divides the cell into
two distinct cathodic and anodic chambers. An extracellular microorganism with the ability
to transfer electrons is called an exoelectrogen (Biocatalyst) [52]. Membrane separators
(PEM, salt bridge, anion and cation exchange membrane, microfiltration membrane, glass
fiber) have such features as low permeability and high conductivity for optimum FFC
performance [53].

The membrane (Nafion), cathode (Platinum), and anode (carbon cloth and carbon
paper) materials are expensive and fragile. Fungal FCs with a low-cost electrode, high
power output, and membrane materials with good scalability should develop to treat
different effluents (de-sizing, bleaching, dyeing, and printing effluents).

Potent microbes improve the electron transfer and facilitate the degradation of biolog-
ical substrates, e.g., Shewanella oneidensis or the hyphal networks of T. versicolor facilitate
electron transfer onto the anode efficiently. Nearly 30 days are required for the formation
of homogeneous bacterial and fungal biofilms on the electrode [54].
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1.6. Electron Transfer (ET) Mechanism

There are two types of e− transfer mechanisms. Fungal consortia demonstrated a
better ET mechanism than single species.

1. Direct ET: two types via outer cytochrome and nanowire.
2. Indirect ET: (mediated/mediator electron transfer) reactive diffusible redox mediators

(RMs) enhance the reaction rate and increase the range of degraded substrates.

1.7. Types of Electrodes

The electrode material influences the performance of FFC, which has a direct impact
on the kinetics of electrodes [55].

Anode: A carbon-based anode is cost-effective and noncorrosive (modifier carbon
paper, carbon felt, carbon cloth, carbon nanotubes, graphene, stainless steel, titanium, and
gold) [56]. These materials improve the characteristics of anodic surface material and
provide an appropriate platform for fungal biofilm formation with an active catalyst. The
anode quality enhances the high surface area, chemical/electrical stability, and biocompati-
bility [57]. The anodic electrode increases the efficiency of FFCs. This serves as a driving
feature for power generation. Thus, the anodic material seems to be a suitable strategy to
enhance performance.

Reaction in the anodic chamber:

C6H12O6 + 6H2O→ 6CO2 + 24H+ + 24e− (1)

Iron and iron oxide nanoparticles, graphite, carbon cloth, and carbon felt are effective
anode catalysts improving the efficiency of a fungal fuel cell (FFC) for industrial wastewater
treatment. Wastewater is used nowadays as an energy source. This is a promising approach
to meet the increasing energy needs in place of fossil fuels [58]. Biocatalysts provide clean,
sustainable, and renewable energy sources by utilizing exoelectrogenic organisms [59].

There are several advantages of FFCs; however, their utilization is still limited due
to the high cost of their components and their low power output [60]. This limitation
can overcome by using an appropriate anode surface morphology (large surface area,
superhydrophilicity, high electrical conductivity, excellent chemical stability, high porosity,
biocompatibility, and chemistry) with improved electron transfer process [6,61]. The
hydrophobic nature of anode, negatively affects the microbial adhesion and enhances
the interfacial resistance for e− transfer due to insufficient adhesion on anode surface.
This minimize the power and current density [62], which can be overcome with the use
of a carbonaceous anode and modification methods (chemical function group treatment,
physical treatment, acid heat treatment, and transition metal coating techniques) [63].

Cathode and Cathodic compartment: Types of substrate act as a cathode in FFCs
(biodegradable waste such as brewery and sewage wastewater, rich in organics such as
glucose, sucrose, lignocellulose, acetate, biomass materials, etc). The reduction of oxygen
takes place in this compartment. This is a key interaction in energy conversion and
biological respiration [64]. Electrons from the anode are received by cathode through an
external circuit and protons are transported via the PEM. This is essential in the reduction
reaction between electrons and protons resulting in H2O formation. The cathode affects the
total cell voltage output and has a high redox potential.

Reaction in the cathodic chamber

6O2 + 24H+ + 24e− → 12H2O (2)

The biocathode is an alternative low-cost, sustainable, stable, and nonchemical option
used currently in FFCs. Due to certain biological components in the cathode, the term
’biocathode’ is used. The fungus is embedded in an oxygenated cathodic chamber and
establishes a mutual configuration of a dual compartment-based yeast fuel cell.
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1.8. Reactor Configuration

The reactor configuration influences the performance of biological fuel cells. There
are two construction designs: (1) single [65] and (2) dual-chambers [66] to evaluate the
in vitro performance. According to the mode of aeration, FFCs are classified into different
configurations (Figure 3):
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Figure 3. Reactors for the measurement of wastewater parameters; without-air reactor (R1)—the
reactor 15 L and the air is interface in wastewater sewage; with-air reactor (R2)—15 L with constantly
aerated wastewater; and membrane less FFC (R3)—reduces COD to 90%.

(1) Aqueous cathode: in this cell, water is bubbled with air for the supply of dissolved
O2 to the electrode [67]; (2) air cathode: to minimize the cost and maximize the energy
output, the air cathode is designed. Carbon electrodes generate energy in the absence
of a PEM. The power density (494 mW/m2) is much better in this type of cell than in
the aqueous cathode [68]; (3) downflow: this membrane less fuel cell is constructed with
downflow feeding to generate electricity from wastewater. Water is fed directly onto the
cathode, which is horizontally installed in the upper part of the FFC. Oxygen is utilized
readily from the air and concentration of dissolved oxygen in the wastewater has little
effect on the power generation. The maximum power density of 37.4 mW/m2 is generated
by this type of cell and mostly used in brewery wastewater treatment [69]; (4) upflow:
upflow reactors have advantages in retaining the maximum cell density and mass transfer
efficiency. In this type of cell, the recirculation rate can improve the upflow rate. At a
recirculation rate of 4.8 RV/h, a power density of 356 ± 24 mW/m2 is produced from this
cell [70]; (5) miniature: a low-cost mini tubular fuel cell is developed for the treatment of
groundwater contaminated with benzene and for the monitoring of wells. An increase in
the length and density and a decrease in size of char particles at the anode effectively reduce
the internal resistance. This type of cell removes 95% of benzene and generates a power
density of 38 mW/m2 [71]; (6) stacked: this easy-to-operate FFC in septic tanks comprises a
common base and multiple pluggable units, which are connected in series or parallel for
electricity generation during waste treatment. Three parallel-connected units produce a
power density of 142 ± 6.71 mW/m2 [72]; (7) large scale: in this cell, multiple operational
conditions can be tested (different flow rates, application of external resistors, and poised
anodic potentials). This results in the highest COD removal efficiency (94.6 ± 1.0%) at an
applied resistance of 10 Ω across each circuit. Results of eight stages of operation (325 days
total) indicate that this fuel cell can sustain treatment rates over a long-term period and
are robust enough to sustain performance even after system perturbations [73]; (8) tubular:
two ceramic stacks, mullite (m-stack) and terracotta (t-stack) are developed to produce
energy. Each stack contains 12 identical fuel cells, which are arranged in cascades and
tested under different electrical configurations. The m-stack and the t-stack are found to
produce a maximum power of 800 µW and 520 µW, respectively [74]; and (9) salt bridge:
a salt bridge is used instead of membrane system. The low power output (2.2 mW/m2)
is directly attributed to the higher internal resistance of the salt bridge (19920 ± 50 Ω)
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compared to the membrane system (1286 ± 1 Ω). Oxygen diffusion from the cathode to the
anode chamber is a factor in power generation [75].

2. Methods for Degradation
2.1. Physical Methods

Physical methods for wastewater treatment remove substances with the use of nat-
urally occurring forces like gravity, electrical attraction, and van der Waal forces. In the
mechanism of physical treatment, no change is found in chemical structure of the target
substances, while in some cases, the physical state will be changed, as in vaporization, and
isolated or scattered substances often caused to agglomerate.

The following methods are easy to use and cost-effective/inexpensive, but have
numerous disadvantages.

• Adsorption: The method is easy to use and cost-effective, and ensures the regeneration
of adsorbents and disposal of generated sludge. Activated lignin and coal are applied
as surfaces for adsorption used for degradation [76].

• Coagulation, flocculation, and sedimentation: Coagulation, flocculation, and sedi-
mentation techniques are efficient approaches to remove pollutants; however, both
tend to be selective toward specific types of contaminants [77].

• Reverse osmosis and filtration: These are effective but expensive methods for wastew-
ater treatment. They generate secondary waste during their performances (drawback).
Filtration is an integral component of drinking water and wastewater treatment ap-
plications, which include ultrafiltration, microfiltration, nanofiltration, and reverse
osmosis. These techniques remove the color from wastewater. Each membrane process
is best suited for a particular water treatment function [78].

2.2. Chemical Methods

The conversion or removal of contaminants is achieved by the addition of chemicals or
chemical reactions. Chemical treatments include precipitation, adsorption, and disinfection.
These processes are activated by adding aluminum, calcium, and ferric ions, etc.

The following techniques are promising and effective in the degradation of organic
compounds [79].

• Advanced oxidation processes (AOPs): These degrade various organic compounds.
This approach generates reactive OH− radicals for subsequent reactions with organic
pollutants resulting in the degradation of pollutants into smaller intermediates. This is
a costly process and demands a continuous input of expensive, reactive, and corrosive
chemicals with large amounts of energy.

• Electrochemical destruction: Direct electroreduction has lost its popularity as a means
of destruction of dyes in an aqueous solution because it offers very poor decontamina-
tion of wastewater compared to other electrochemical treatments.

• NaOCl: Wastewater is treated with sodium hypochlorite, allowed to stand for 1 d
in the dark, and then neutralized with sodium thiosulfate [80]. The neutralized
sample is used for the determination of hypochlorite treatment effects during the
wastewater cleanliness.

2.3. Biological Methods

A modern society without the utilization of chemicals in pulp, leather, pharmaceutical,
and paper industries is not possible. However, the consumption of chemicals contaminates
the environment and causes harmful effects [81]. Chemical and physical methods include
electrochemical methods applicable for wastewater decolorization [82]. These methods
are quite expensive, have low removal efficiencies, produce toxic intermediates, and ex-
hibit high specificity for dyes [83]. There are environmental friendlier and potentially
less expensive methods for the removal of Ops (organic pollutants) from contaminated
water. Numerous microorganisms, e.g., bacteria, yeasts, and fungi, have the potential to
decolorize different types of organic compounds [84]. The modification of living cells of
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yeast by polypyrrole (PPy) was evaluated. A microbial fuel cell using yeast modified by
a solution containing 0.05 M pyrrole generated maximal power of 47.12 mW/m2, which
is 8.32 mW/m2 higher than the system, which not based on yeast [85]. The yeast-based
FC technology showed great potential to harness energy (bioelectricity and biohydrogen)
from xylose. Herein, the yeast strain (Cystobasidium slooffiae JSUX1) facilitated the reduction
and assembly of graphene oxide (GO) nanosheets reduced to 3D rGO hydrogels on the
carbon felt (CF) anode surface. This fuel cell enhanced, by two times, the bioelectricity and
biohydrogen production from xylose [86].

The performance of a fuel cell is estimated in terms of pollutant removal and electricity
generation. Pollutant removal can measure in terms of organic removal, also called a
change in equivalent COD (chemical oxygen demand) between the effluent and the influ-
ent. Wastewater pollution from numerous sources is removed by using FFCs, in which
organisms decompose organic compounds and convert this chemical energy into electrical
energy [2]. The most important advantages of this method are the low concentrations of
reagents needed for mild conditions and the degradation of a wide range of substrates. A
disadvantage of this method is the high cost of enzymes, which ameliorated by the use of
recombinant DNA technology [87].

The biodegradable organic matter ranges from pure compounds (acetate, cysteine,
glucose, and ethanol) to mixtures comprising organic compounds (liquid municipal waste,
leachate landfills, animal waste, liquid waste of industrial and agricultural origin) [88].
Biological treatment removes these biodegradable organic contaminants. Biological pro-
cesses degrade dyes contained in wastewater through decolorization carried out by fungal
strains [89]. These processes are slow; however, their efficiency is satisfactory. Enzymatic
decolorization is now used for the decolorization of dye effluents. There are several prob-
lems, e.g., the cost, stability, and product inhibition of enzymes [89]. Anaerobic treatments
degrade a wide variety of synthetic dyes [90]. However, successfully aerobic conditions
are applied to decolorize the dyes. A few industries use biological treatment to dispose of
biodegradable materials, e.g., food processing dyes, dairy wastes, paper, plastics, brewery
wastes, and petrochemicals [91,92]. The fungal method is more economical in decoloriza-
tion via adsorption (living or dead), microbial biomass formation, and bioremediation
systems. Fungal organisms degrade and accumulate different pollutants [93].

3. Metabolism of Fungi

Fungi, which are ubiquitous organisms, play a vital role in ecosystems. They can grow
on different substrates and function for an indefinite time period. A pivotal parameter de-
termining the cell potential is a metabolic pathway of the microorganism. The performance
of FFCs is influenced by fungal metabolism and growth. Fungi have a complex cellular
organization and use two pathways for electron transfer. The substrate (glucose) oxidation
results in the production of two molecules of NADH/glucose (glycolysis), while media-
tors interact with the component of ETC (keeps ETC functioning and produces electrons
from TCA) [94]. Both metabolic pathways are essential for the removal of waste from the
substrates by providing electrons. Any disturbance in these pathways disturb the system,
resulting in lower power generation.

The consumption of non-renewable energy creates many problems such as the “avail-
ability of fossil fuel stocks for future releases of a huge quantity of toxic gases or particles”,
which have influence at the global level and stimulate changes in the climate. Fungal biofuel
cells (bioelectrochemical system) utilize the living cell for the production of bioelectricity.
This cell can drive electricity or other energy generation currents by the use of living cell
interaction. Fungal fuel cells and enzymatic biofuel cells can improve sustainable energy
production with an efficient conversion system compared to chemical fuels [95].

The diverse group of yeast, molds, and filamentous fungi can remediate various
industrial wastewaters. Mycodegradation destroys wood, paper, textile, plastic, and
leather materials. The mycelia of several species facilitate degradation. Fungi degrade
pesticides, dyes, polychlorinated biphenyls, hydrocarbons, and phenolic and chlorinated
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compounds with the use of different enzymes (laccases, manganese peroxidase, and lignin
peroxidases) [96]. Irpex lacteus and Pleurotus ostreatus degrade PAH from contaminated
industrial soil [97]. Many fungi (Fusarium oxysporum, Mucor alternans, Tricoderma viride, and
Phanerochaete chrysosporium) can degrade DDT.

Numerous white-rot fungi (Phanerochaete chrysosporium, Pleurotus ostreatus, Trametes
versicolor, Irpex lacteus, and Lentinula edodes) can degrade various toxic compounds through
their numerous reductive and oxidative mechanisms. Endosulfan is oxidized to endosulfan
sulfate through the catalyze-based mechanism of Tricoderma harzianum. Fungi are suitable
for biotreating oil-based sediments and PAH-contaminated cuttings [98]. Phanerochaete
chrysosporium fungi oxidize pyrene, benzo[a]pyrene, anthracene, and fluorine into quinines
using MnP and LiP [99].

Fungal Chitosan: Fungal chitin is an economically attractive pollutant-adsorbing material
next to cellulose [100]. Chitosan or glucosamine is a derivative of chitin found in the cell wall of
a few fungi (Mucorales). Reactive Red 2 contaminated water is decolorized by macro fungi [101].
Chitosan beads are used for the treatment of aqueous solutions containing perfluorooctane sulfonate
(PFOS) [102]. The biosorption efficiency of fungal biomass can be increased by modification processes.
Chitosan poly vermiculite hydrogel adsorbents remove methylene blue from aqueous solutions [103].

4. Role of Fungal Enzymes and Modifications in FFCs

Extracellular ligninolytic oxidative enzymes, e.g., valuable extracellular oxidoreduc-
tases (laccases, lignin peroxide, and manganese peroxide) help the fungi to degrade dyes
and xenobiotic compounds [104]. Intracellular enzymes are recovered from the cell wall
of fungal mycelia [105]. Multiple enzyme systems are successfully used for the efficient
breakdown of diverse types of organic pollutants by oxidation or degradation into smaller
intermediates.

Oxidoreductase is renowned for its ability to degrade numerous types of organic
pollutants [106]. Reactive diffusible redox mediators (RMs) based on oxidoreductase dra-
matically increase the reaction rate and a broad range of substrates are degraded by these
enzymes [107]. The advantages of enzymatic degradation include the low concentration
of reagents in mild conditions, with their ability to break down a wide range of sub-
strates. The disadvantage of high cost of enzymes can be improved by using recombinant
DNA technology.

Lactate dehydrogenase and ferricyanide reductase are redox enzymes [42]. Fungi
exhibit a similar mechanism of electron transfer to that in bacteria. Mediator-less FFCs and
fungal electrogenic efficiency are examined by Sayed and Abdelkareem [21], and studies on
fungal-mediated electron transport have received attention due to the presence of fungal
redox proteins (lactic acid dehydrogenase or ferricyanide reductase).

Wood degraders (white-rot fungi) secrete many extracellular enzymes such as laccase
a multi copper oxidative enzyme. Fungal laccase is a 4Cu-containing oxidoreductase
biocatalyst that can transfer electrons and has a higher capacity for redox reactions (for
organic and aromatic compounds) using an enzyme-mediated system. Laccase catalyzes the
oxidation reactions and increases the chances of smooth biological degradation mechanisms.
Laccase accepts e− from atm. O2 (electron acceptor) catalyzes the 1e− oxidation reaction
of phenolic compounds, which facilitates the catabolism of organic compounds [108].
Consequently, at the same time, laccase act as a cathode catalyst in a fungal fuel cell
(FFC). White-rot fungi metabolize the laccase to accumulate the nutrients in the soil by
lignin degeneration or organic components of the ecosystem. They are suitable and cost-
effective for the sustainable development of power generation from FFCs through the in
situ elimination of laccase.

Fungi play a dual role in FFCs [109], e.g., at the anode, fungi facilitate e− transfer
via their respiratory proteins or chemical mediators. At the cathode, they reduce the
terminal electron acceptors (oxygen). Recent investigations have shown the direct electron
transfer through cytochrome C [110]. The in situ laccase of white-rot fungi shown to
increase the efficiency of FFCs. This involved the oxidization of aromatic amines and
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phenolic mixtures using atmospheric oxygen (terminal electron acceptor) [111]. Laccase is
extensively manipulated to degrade the organic pollutants, phenolic compounds, triclosan,
bisphenol A [112], synthetic and natural hormones such as estrone (E1), 17b-estradiol (E2),
estriol (E3), and aromatic dyes [113]. Lignin is degraded as laccase is generated. In the
treatment of rubber-processing wastewater, sludge is used at the anode (as a substrate),
while laccase is deposited on the cathode under optimal systems to generate electricity.
Ganoderma lucidum (strain BCRC 36123), Pleurotus ostreatus, and T. versicolor are well-known
laccase-producing fungal species with high efficiency in the production of energy because
of an incapacitated layer of fungal enzymes (at the cathode) [114]. Laccase also returns the
nutrients by degradation of plant lignin in soil and produces large amount of power in
dual-chamber rather than single-chamber FFCs [115]. Laccase used on the biocathode to
minimizes the cost of FFC manufacturing.

Laccase-producing Ganoderma lucidum BCRC 36123 was planted on the cathode surface
of a single-chamber FFC to degrade a dye synergistically with a community of anaerobic
microbes in the anode chamber (Figure 4). The laccase activity (1063 ± 26 U/L) of white-rot
fungi (Ceriporiopsis subvermispora, Pycnoporus cinnabarinus, Phanerochaete chrysosporium, and
Trametes pubescens) efficiently removed 71–77% of COD and 87–92% of phenolic compounds
at a pH of 5.0 [116] (Strong 2010). Fungal laccase hydrolyzed winery wastewater and
effectively removed the phenolic compounds, COD, and colors [117].
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Figure 4. Extracellular fungal laccase catalyst in the anodic chamber, which enzymatically oxidizes
wastes during wastewater treatment in the cathodic chamber with reduction of O2 into water. The
movement of e− from the anode to cathode lit the bulb during the completion of circuit.

Peroxidases are other oxidoreductase enzymes found in fungi. They efficiently ox-
idize a wide range of substrates [118]. These are effective and extensively used in dye
degradation [113]. Only a few studies have reported the use of peroxidases for PPCP
degradation [119]. Pollutant-degrading peroxidases are heme peroxidases and non-heme
peroxidases. The heme-based peroxidases are further classified into four superfamilies: per-
oxidase cyclooxygenase, peroxidase–catalase, peroxidase–peroxygenase, and peroxidase–
chlorite dismutase. The peroxidase–catalase superfamily is the most abundant in fungi and
further subdivided into three additional families, e.g., F1 (intracellular bacterial catalase),
F2 (secretory fungal peroxidases such as lignin and manganese), and F3 (secreted plant
peroxidases) [120].
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4.1. Modification in Yeast-Based Cells

The yeast-based fuel cell (YBFC) is a novel technique used to purify different types
of wastewater and convert chemical energy into electrical energy at the cost of active
biocatalysts [121]. The performance of YBFCs is influenced by the performance of the
electrodes. The electrode performance of yeast-based cells are investigated by coating
carbon paper with a thin layer of gold or cobalt (of thickness 5 or 30 nm). The electrode
performance is assessed by measuring the electrode half-cell potential efficiency during
degradation of chemical substances, pollutants, and organic biomass on the budget of
extracellular enzymes [29].

4.2. Factors Affecting FFC Performance

Certain biological (external resistance, substrate type with concentration, and choice
of inoculum) and physical factors (reactor configuration, electrode material, and separator)
efficiently increase the cell functioning [122], e.g.:

• Using a fungal biocatalyst.
• The type of fuel for the FFC.
• The chemical energy of the substrate (converted into electrical energy).
• The use of mediators (ABTS 2,2′-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid))

that are effective in e− transfer from the electrode to laccase.
• An airtight anodic chamber in a dual-chamber.
• Cathode chamber is filled with laccase secreted by white-rot fungi and sufficient

nutrient growth medium for the optimum growth of fungal cells.

5. Mechanism of FFCs in Wastewater Treatment

Different types of FCs are operated and reported in wastewater treatment with the
generation of biohydrogen, biogas, and other biofuels/energy. Later on, biogas is converted
into electric power. Recent developments and researches on designing of fungal fuel cell
and its application emphasize the bioenergy generation for future.

Environmental scientists try to devise the methods of degradation or removal of
pollutants from the water supply. Water bodies are rich in organic pollutants. These
pollutants have diverse chemical structures, e.g., dyes present in textile waste streams
are classified into anthraquinone, basic, acidic, and azo dyes [123]. Organic aromatic
compounds are carcinogenic in nature and pose serious health risks for humans and
aquatic organisms [124]. Organic pollutants are suitable substrates for the growth of
bacteria that reduce the oxygen level in water bodies and increase their turbidity with
color to decrease the photosynthetic growth of water biota [125]. Human consumption and
improper disposal of personal care products contribute to their release into ground and
surface water [126]. Efficient degradation depends on the proper binding and orientation
of organic compounds in the active sites of peroxidase enzymes. Hence, the substrate
structure is a very important parameter in the degradation of pollutants.

Biological approaches are environmentally friendlier, less expensive, and widely used
for the handling and removal of harmful substances from wastewater [127,128]. Fungal
enzymes (peroxidases and laccases) metabolize and degrade pollutants into less-toxic
forms [129]. Diverse fungal enzymes (exocellular and endocellular) in fungus-based FCs
are used for waste biodegradation activity. Peroxidases and laccases degrade many types of
organic pollutants. Mostly, studies are focused on the treatment of “pure (neat) pollutants”
or “simulated wastewater”. This presents a major challenge and weakness in the field of
enzyme-based remediation of organic pollutants. Only a few studies use enzyme-based
systems for real wastewater samples (complex and complicated) rather than neat solutions.

In FFCs, the anaerobic anode and aerobic cathode chambers are separated by a pro-
ton exchanger membrane. The anode chamber comprises both respiring and fermenting
microbial communities, which enhances the versatility of FCs in the degradation of pol-
lutants [130]. In the fungal fuel cell, electrochemically active fungal species can oxidize
different organic compounds present in wastewater in the anode chamber and produce
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electrons and protons, which are transported toward the cathodic chamber for reduction of
O2 into water (Figure 5). A membrane separates both the anode and cathode compartments.
An external resistor set between the anode and the cathode harvests the electricity easily.
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Figure 5. Wastewater with effluents and organic pollutants is placed in anodic regions, where fungal
oxidoreductase enzymes are deposited on the electrode. Carbon, electrons, and protons are generated
from the effluents by oxidoreductase action and transferred to the cathode where the reduction of
O2 into water takes place. The external resistor between the anode and the cathode harvests the
electricity easily.

First, wastewater enters the anode chamber, where fermenting microbes convert
the large organic molecules into smaller fermented products (lactate), which are further
oxidized by anaerobic (respiring) bacteria to release CO2, protons, and e−. When e− does
not find a suitable acceptor in the anolyte, electrons pass to the anode interface and transfer
through an external wire to the cathode. Here, they bind O2 and protons and convert
them into water molecules. This is a final step of the circuit [92]. Electrons are released
during organic matter degradation and travel toward anodes, eventually being oxidized
by electron acceptors (cathode) [131]. The electron donating substrates are used in the
anode chamber. A few electron acceptors are characterized by fast kinetics, high redox
potential, low cost, and by their importance in environmental sustainability [132]. Oxygen
is one of the most convenient electron acceptor utilize commonly in FFCs. The oxygen
availability, with its high oxidation potential, produces a clean product, i.e., water [133].
These fuel cells not only generate electricity, also recover and eliminate the compounds
from wastewater [134].

The concentration of cations is higher than that of protons, and these cations accumu-
late in the cathode chamber, resulting an increase in pH of chamber and a decrease in pH
of the anodic chamber. This reduces the efficiency of fungal activity and thermodynamics
of the fuel cell [135]. Hence, modification of the pore size of membranes can ensure the
transfer of only protons and no other cations. Different approaches, e.g., cation and anion
exchange membranes (EM), have been suggested to solve the problem of the pH gradient
on both sides of the cell membrane [136]. Ionic liquid membranes can improve the fuel
cells and ensure the selective transport of only protons and no cations via the membrane.
This improvement enhances the efficiency of fungal activity in the anode chamber (not
affected) due to absence of transport of cations present in textile wastewater across the
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membrane. The energy obtained in this process (wastewater treatment) is five times greater
than energy consumed during the treatment [137].

The conventional biological process is not sufficient in wastewater treatment due to
the inhibition of “biocatalytic activity”. The deposition of catalysts on electrodes has gained
huge interest, as it accelerate the reaction kinetics (at electrodes). Cathode catalysts enhance
the rates of the reduction reaction, while anode catalysts enhance the oxidation rate.

Enzymes secreted by fungi and algae, either individually or in symbiotic association,
catalyze the toxic pollutants into a less harmful form. Valuable products are generated in
wastewater contaminated by fungal mycelia and fungal interventions such as different
enzymes and lipids during the treatment of distillery wastewater to minimize contami-
nants [138].

COD removal takes place at the cathode and anode, which is a major concern in the
treatment of wastewater. A fungal-based study on the treatment of water and sewage
wastewater for energy generation was conducted by Fernandez de Dios et al. [139]. The
biodegradation involved efficient species remediating harmful toxicants for energy pro-
duction. Agro-industries release organic pollutants dissolved in wastewater [115], as do
fermentation, pulp, and paper industries. Many countries have implemented stringent
regulations and norms for the disposal of agro-based industrial wastewater. Such norms
are quite challenging, as they insist on the steady adoption of cost-effective and innovative
technologies.

The catalytic platinum and gold increase the price of electrodes. To reduce electric-
ity production and wastewater treatment costs, catalysts should not comprise valuable
metals [140]. Therefore, fungi play a role as anode catalysts to adjust the appropriate
cathode catalysts.

5.1. Role of the Cathode in Wastewater Treatment

The cathode must be good, robust, mechanically strong, and highly conductive with
the best catalytic properties [55]. Cathode materials require high power generation with
Coulombic efficiency. Therefore, the main challenge to minimize the expenses is the target
aspect of fuel cell technology. Such electrode is successfully applied for the treatment
of wastewater [141]. Cathodes are abiotic and biocathodic. Biotic types can be aerobic
or anaerobic [142]. Mediators/or catalysts are required in abiotic cathodes for oxygen
reduction reactions. Maximum expense and poor stability causes the catalyst poisoning
(Pt-based), which vanquish by engaging the biotic cathodes (where microorganisms assist
in the cathodic reactions) [143]. Biocathodes have an advantage over abiotic cathodes, a few
interesting benefits are cost reduction and the omission of costly mediators or expensive
metal catalysts (platinum) [57].

Role of the Anode in Wastewater Treatment

The selection of an anode is also critical in the performance of FFCs. It plays an
important role in e− transfer from microbes to the electron acceptor. Conventional cells
comprise bioanodes and abiotic cathodes.

5.2. Integrated Treatment Processes

Water for dilution is required in bioelectrochemical processes to reduce the organic
matter in fungal pretreated effluents, which is a major disadvantage of FCs. Effluent
dilution is possible by using two repeated fungal cocultivation processes followed by
treatment in FFCs. Hence, ecofriendly treatment processes with lesser environmental and
economical footprints should focus on the achievement of highest treatment efficiency. Dif-
ferent enzymes and other derivatives of fermentation broth make the fungal fermentation
technology profitable for industrial implementation. Catalytic thermolysis is an effective
process for the destruction of color and organic compounds in complex wastewater [144].

Coupling processes can improve the efficiency of distillery wastewater treatment with
improved COD and color removal. Single-stage anaerobic digestion is insufficient for the
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higher removal of organic matter. Therefore, combined single- or multistage aerobic and
chemical oxidation treatment is required [145]. Sequential anaerobic–aerobic treatment of
fungal fuel cell (FFC) is a better modification [146]. The treatment of malt whiskey distillery
wastewater removed 52% of COD and BOD in a UASB reactor (first stage), 70% COD
and BOD in batch aerobic degradation (second stage), and >99% of COD and BOD, when
combined with thermophilic fungi (third stage) [147].

Trametes pubescens pretreatment followed by anaerobic digestion was helpful in the
removal of COD (53.3%) and polyphenolic compounds (72.5%) from wine distillery wastew-
ater. Similarly, winery effluent treated with fungi supplemented with C and nutrient
media followed by anaerobic digestion for 2 days; this procedure reduced the COD level
(99.5%) [148]. A study consisting of a combination of fungal pretreatment, submerged
MBR, and the secondary digestion of wine distillery wastewater showed 86% decrease in
COD concentration [149]. Fungal biodegradation carried out with exo-enzymes released
by Aspergillus sp. combined with grain-based distillery stillage removed 94% of total COD
(first time), while higher efficiency (99%) was achieved by support of fungal degradation
processes (second time) [105].

5.3. Role of Yeast Cells in Wastewater Treatment

Fungal degraders are widely used in the treatment of wastewater due to their con-
sumption of substrates. The yeast wastewater is a dual-stage (anaerobic) biological wastew-
ater [150]. Yeast cells used in FFCs represent two types: oxidizing and fermenting [151].
Fermenting yeasts utilize 6C sugar and ferment into CO2 and alcohol. Yeast cells metabolize
inorganic compounds and hazardous materials. The yeast cell wall is very thick and cell
membrane can separate from the cell wall, which is difficult to obtain. Therefore, yeasts are
processed in a transplasma membrane ET system also called “plasma membrane (PM) oxi-
doreductase”. The PM–NADH–oxidoreductase system located throughout the membrane
is also involved in transportation of e− using NADH and NADPH to the external electron
acceptor/anode. Yeast fuel cells play an active role in e− transfer during ATP synthesis
along with NAD+ into NADH reduction. The oxidation of glucose is the main source of
energy production by yeast cell factories [33].

Yeasts efficiently treat wastewater. Yeasts and fungi shown decolorization of various
organic compounds efficiently [152]. Yeasts are used to remove dyes and heavy metals from
wastewater [153]. Yeast cells are well-known producers of different lipids, enzymes, and
glycolipids suitable for wastewater treatment, as wastewater contains maximum concentra-
tions of heavy metals, ion, organic matter, and domestic sewages also. The yeast consortium
quickly degrades high concentrations of organic matter [154,155]. Biodegradable organic
wastewater, ferricyanide potassium, acid orange, and acetate are also used as anolytes or
anolyte feed.

Algae, in combination with fungi, are effective in the generation of electricity in MFCs
(microbial fuel cells) using molasses substrate. The transport of protons from yeasts to algae
proceeds with the help of microporous tubes rooted in activated bleaching earth, called
an ion exchange medium, for the production of electricity. A strain of Galactomyces reessii
reported to utilize synthetic wastewater and rubber industry sludge for the generation of
electricity [156]. The unique ability of yeast species to transfer electrons extracellularly helps
to advance the fuel cell technologies and to purify wastewater as a biocatalyst. Natural and
genetically modified yeasts with improved enzyme action are useful for the degradation of
toxic substances and exhibit the capacity for the generation of electricity. Candida melibiosica
has shown the high phytase activity to remediate phytates and a maximum potential for
electricity generation. This opens up novel avenues for nonchemical and more sustainable
ecofriendly approaches in the purification of phosphate-polluted wastewater as well as
many other xenobiotic contaminants [157].

A double-chambered fuel cell has generated electricity due to the ability of Pichia
fermentans to utilize wheat straw hydrolyzate. This hydrolyzate was prepared by de-
grading the wheat straw in the presence of Phlebia brevispora, Phanerochaete chrysospo-
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rium, and Phlebia floridensis (white-rot fungi). The maximum electrochemical response of
20.13 ± 0.052 mWm−2 and 20.42 ± 0.071 mWm−2 was recorded in hydrolysate using P.
floridensis and P. chrysosporium, respectively [158].

The electricity was produced from yeast wastewater in membraneless (ML) fuel cells
with a Cu–Ag cathode and a power of 6.38 mW and a cell voltage of 1.09 V were obtained.
This research proved a feasible way to obtain the maximum bioelectricity from fuel cells
(fed with yeast wastewater) [159].

5.4. Pharmaceutical Wastewater Treatment

Pharmaceutical industries release pharmaceutical products in water on daily ba-
sis [160], the treatment of which is a challenging task. Wastewater treatment plants are
the point sources of pharmaceutically active compounds; however, these are not designed
for the elimination of active compounds [160]. Long-term exposure to compounds in the
environment may result in chronic and acute damage, behavioral changes, reproductive
impairment, inhibition of cell proliferation, and accumulation in tissues [161]. Unchanged
antibiotics from pharmaceutical wastewater reaching the sewage system may result in the
emergence of antibiotic resistance in fungi and aquatic organisms. They may also change
the microbial community structure. Different treatment techniques for pharmaceutical
wastewater require a large area, costly chemicals, treatment methods, and high energy
input. In turn, the low biodegradability [162] and generation of toxic byproducts have stim-
ulated scientists to construct FFCs as an efficient alternative not requiring costly chemicals
and capable of generating energy without toxic byproducts.

5.5. Heavy Metal-Loaded Wastewater

Water, which faces various types of pollution and degradation, is a precious commod-
ity. It only seems inexhaustible, whereas the whole world in the short or long term will face
the problem of its scarcity. This urge makes wastewater one of the most valuable resource
for energy and water. Conventional remediation treatments are neither environmentally
friendly nor economical. A new process is required to overcome these issues, where the
conservation and recovery of energy will become possible. Fungal fuel cells are emerging
as a promising technique for the mitigation of pollution.

FFCs provide a strategy to treat wastewater and remove or recover heavy metals.
These bioelectrochemical systems utilize fungal catalytic activity in the form of biofilms to
oxidize inorganic compounds with the production of electric current. It is a sustainable
bioremediation method for energy production (Figure 6).

5.6. Agro–Industrial Wastewater Management

Agro-industries demand large volume of water during manufacturing processes
and generate wastewater. This agricultural wastewater has a high content of N, P, and
organic compounds can also be treated using FFC technology [163]. The wastewater is
loaded with organic matter, proteins, oils, grease, and sugars, which increase the COD
of ground and surface water. This causes severe environmental pollution, because such
wastewater not biodegradable easily due to the addition of bacterial end products and high
chemical stability. Industrial wastewater is especially useful in FFCs because of its constant
composition.

5.7. Biodegradation of Distillery Wastewater

The bioremediation of distillery wastewater using biological and natural pathways
leads to the degradation of organic pollutants. Via aerobic degradation, the white-rot fungus
Phanerochaete chrysosporium can remove organic matter (COD and BOD) effectively [164].
Fungal biodegradation is an inexpensive technique where wastewater dilution is not
required. A pseudo-second-order rate is used for the kinetic model of fungal biodegradation
of distillery wastewater [165]. Aspergillus awamori removed 39.3% of COD from grain-based
distillation [166]. A mixed consortium of six fungal species, i.e., Penicillium pinophilum,
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Aspergillus flavus, Alternaria gaisen, Fusarium verticillioides, Pleurotus florida, and Aspergillus
niger are used to remove 65.4% of COD in distillery wastewater treatment [167].
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Figure 6. A double-chambered fungal fuel cell for the treatment of heavy metals. Heavy metal-
contaminated water is placed in the anodic cell (aerobic compartment), where fungi enzymatically
release carbon, e− and H+ transfer via PEM and external wire to the cathodic cell (anaerobic compart-
ment), where the reduction of the metal from M+2 to M/M0 takes places.

Batch aerobic treatment with the use of yeast and fungal species is very effective in
the remediation of distillery wastewater. This treatment remove >85% of COD in a single
phase, while a minimum cultivation time of 7–10 days is required for a higher removal of
organics [164].

Distillery fermentation produces a large volume of wastewater called stillage. This
wastewater has a lower pH, unconvertible organic fractions, and a maximum % of dissolved
inorganic matter. Dark brown molasses stillage comprises higher chemical oxygen demand,
biochemical oxygen demand, and inorganic impurities. Grain stillage is characterized by
a lower chemical oxygen demand, acidic pH (3.4–4.1), and exhibits significant potential
for pollution upon discharge. Physical, chemical, and biological integrated treatments
of distillery stillage are discussed in detail with current challenges. Distillery stillage is
used as a substrate in fungal fuel cells, encouraging observations in terms of achieving
high treatment efficiency to meet the discharge standards, bioelectricity generation, and
value-added products recovery.

Xylanase (17.3 U/mL) production from the phyllosphere yeast (Pseudozyma antarc-
tica) removed 63% of DOC (dissolved organic compound) from wastewater by utilizing
bioethanol distillery wastewater (substrate) [168]. This is an expensive source for the
production of biomaterials. Oleaginous yeasts (Rhodosporidium toruloides and Chlorella
pyrenoidosa) successfully degraded distillery wastewater effluent with a 43.65 ± 1.74%
lipid content and a 3.54 ± 0.04 g/L lipid yield associated with an 86.11 ± 0.41% COD
reduction [169]. Maximum mycelial biomass of Calvatia gigantea (2.75 g/100 mL/4.5 days)
was obtained in optimized conditions when the fungus was cultivated on raw distillery
wastewater [170]. Candida utilis biomass utilized shochu wastewater and removed 62.9% of
DOC [171].
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5.8. Degradation of Ethanol Distillery Wastewater

Pollutants from ethanol production vary significantly in wastewater. Winery wastewa-
ter comprises low concentration of organic matters and high amount of polyphenolics and
nutrients [172]. The fermentation of beet molasses and sugarcane releases aldehydes and
ketones, which impart flavor. The wastewater from this process was characterized by a
high level of biodegradable organic matter [173], maximum nutrient contents (sulfate, chlo-
ride, calcium, magnesium, and potassium), and a low pH [174]. This type of wastewater
constitutes severe water and land pollution.

COD and phenol is removed from winery wastewater using yeast-mediated fuel
cells. In this study, electrochemical properties are monitored. The results indicated
the laccase activity of yeast strain ET-KK. A maximal current and power density of
139.17 ± 1.44 mA/m2 and 38.74 ± 0.80 mW/m2 is generated. The COD and phenol
removal from winery wastewater was 79.14 ± 0.92% and 85.04 ± 0.07%, respectively [175].

5.9. Degradation of Dye Wastewater

Trametes versicolor is a well-known white-rot fungus used for the treatment of dye
wastewater [83]. Fungal culture adjusts its metabolism through its modification in envi-
ronmental conditions. Intra- and extracellular enzymes are helpful in fungal metabolic
activities and the degradation of different dyes from textile wastewater. The best examples
are lignin, laccase, peroxidase, and manganese [176] from white-rot fungi (Coriolopsis sp.,
Pleurotus eryngii, and Penicillium simplicissimum) [177].

In bioanode–biocathode FFCs, the dye wastewater acts as anolyte and catholyte. The
maximum COD removal and decolorization are observed in the first 12 h, because a
higher substrate consumption at cathode and anode occurs during the initial hours. The
maximal cell potential are recorded to be 706 mV in a fungal FC, with power densities
of 276.9 mWm−2. The reactor was also tested for the biodegradation of RR 195 dye from
wastewater along with bioelectricity production. The overall COD and color removal
efficiency was 72%, and 95% [178].

Fungal fuel cells are an emerging technique that effectively treats wastewater with
simultaneous electricity production. In a study on the decolorization and degradation of
azo dyes (remazol brilliant blue, mordant blue 9, acid red1, and orange G), wheat straw
hydrolyzate substrate are used in FFC. The hydrolysate was prepared by the degradation
of wheat straw by P. floridensis, P. chrysosporium, and P. brevispora, while Pichia fermentans
(yeast) used as a biocatalyst. Dye decolorization was carried out in a fungus yeast-mediated
single-chambered FC. The maximum power density was recorded (34.99 mW m−2) on
the 21st day. The best response to dye decolorization was observed in MB9 (96%) with P.
floridensis followed by RBB (90–95%), AR1 (38%), and OG (76%) [179].

Mechanism: FCs transform azo dyes into less colorful compounds but fail to degrade
and mineralize them completely. The decolorization of wastewater containing azo dyes
and other types of dye takes place through the movement of anode and cathode electrons
via external circuit. Azo dyes in the catholyte act as e− acceptors and decolorize dyes
via reductive cathode reactions. The dye-reducing reactions progress better in anaerobic
conditions, as O2 competes for e− from the cathode, and reaction rate heavily depends on
the pH of the catholyte [90].

Two-in-one systems: First stage (reductive transformation): Azo dye wastewater
is placed as an anolyte (anode chamber), where dye molecules are reduced by bacteria
(anaerobic) to form aromatic amines. Second Stage: This water is then shifted to an aerobic
bioreactor, where it is further degraded into smaller compounds [180]. This two-in-one
system is very effective; however, it is structurally complex and expensive to operate and
construct. The proton exchanger membrane prevents the movement of pollutants and
keeps transformed products in their respective chambers.

White-rot fungi are the only group of organisms that completely degrade azo dyes.
Laccase produce, when fungi degrade lignin (a highly heterogeneous aromatic polymer)
that is abundant in the natural habitats of white-rot fungi [181]. The laccase catalyst has
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replaced the noble metals in catalyzing the reduction of O2 [182]. Single-chamber FCs have
no cathode chamber and their cathodes are directly exposed to air for maximum oxygen
availability [183]. A feasible test in growing a laccase-producing white-rot fungus on the
cathode surface of a single-chamber FC is the possibility of proton exchanger membrane,
which, when replaced by a layer of polyvinyl alcohol-hydrogel, allows the pollutant to
diffuse from the anode to cathode chamber [184].

5.10. Applications of FFCs

• The management of the environment
• The generation of bioelectricity

6. Future Prospective

In future, fungal fuel cell technique may become the part of energy system at the
expense of waste products for electricity generation from wastewater, where organic
contents are usually in a much smaller range of 260–450 mWm−2 [185]. The absolute goal
in near future is to design a cell that capable of producing the highest amount of energy on
the expenditure of lowest possible energy input.

7. Conclusions

Conventional methods can treat loaded wastewater, while biological methods such
as FFCs represent a sustainable technique in lowering the wastewater impact on the
environment. This remediation system is profitable, ecofriendly, and cheaper than other
conventional methods. FFCs offer an enduring solution for the degradation of wastewater
contaminants into non/less-toxic forms with simultaneous generation of electricity by
using fungal oxidoreductase. The fungal enzymes clean up the contaminated wastewater
with maintaining of their regular metabolism. The “Industrial Revolution” forces the
valorization of chemical wastes. Fungal cells are suitable candidates for the valorization of
wastes in water and the simultaneous production of electrical energy.
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