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Abstract: The development of new heterogeneous Pt-containing catalysts has retained its relevance
over the past decades. The present paper describes the method to produce metal–carbon composites,
Pt1−xNix/CNF, with an adjustable Pt/Ni ratio. The composites represent Pt1−xNix (x = 0.0–1.0)
nanoparticles embedded within a structure of carbon nanofibers (CNF). The synthesis of the compos-
ites is based on a spontaneous disintegration of Pt1−xNix alloys in an ethylene-containing atmosphere
with the formation of CNF. The initial Pt1−xNix alloys were prepared by thermolysis of multicompo-
nent precursors. They possess a porous structure formed by fragments of 100–200 nm. As was shown
by X-ray diffraction analysis, the crystal structure of the alloys containing 0–30 and 60–100 at.% Ni
corresponds to a fcc lattice based on platinum (Fm-3m), while the Pt0.50Ni0.50 sample is an intermetallic
compound with the tetragonal structure (P4/mmm). The impact of the Ni content in the Pt1−xNix sam-
ples on their activity in ethylene decomposition was studied as well. As was revealed, the efficiency
of Pt1−xNix alloys in this process increases with the rise of Ni concentration. The composite samples
were examined in an electrochemical hydrogen evolution reaction. The synthesized Pt1-xNix/CNF
composites demonstrated superior activity if compared with the Pt/Vulcan commercial catalyst.

Keywords: nickel; platinum; nanoalloys; X-ray diffraction analysis; carbon nanofibers; electrochemical
hydrogen evolution reaction

1. Introduction

Nowadays, fuel cells are considered a real alternative to energy sources working on
fossil fuels [1,2]. Due to their attractive performance characteristics, such as high efficiency,
low emissions, quiet operation, and portability, fuel cells differ from other alternative
energy sources, which opens up opportunities for their application in cars and portable
electronics. Low-temperature fuel cells based on a proton-exchange membrane fuel cell
(PEMFC) are of greatest interest [3,4]. The key component of such fuel cells is a membrane-
electrode block, on the anode and cathode of which the catalytic reactions of fuel oxidation
(hydrogen, methanol, or formic acid) [5–8] and oxidant reduction (air oxygen) [9] proceed,
respectively. The most widely used catalyst in fuel cells is platinum, the use of which is
disadvantaged by its high cost [10–12]. The use of bimetallic (alloy) catalytic systems based
on platinum with the inclusion of other cheaper metals, which give the catalysts the desired
properties, can solve these problems. The introduction of the second metal can result in a
certain improvement in the stability of the catalyst and an increase in the duration of its
operation. For example, bimetallic Pt-M catalysts possess a significantly higher tolerance
towards CO impurities contained in the fuel if compared to pure platinum [13]. As second
metals, Co, Ni, Fe, Ru, and Cr are widely studied [14–16]. Unlike clusters of pure Pt,
particles of Pt-M alloys have a lower tendency to agglomerate. The presence of an alloying
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component decreases the mobility of Pt on the support [17,18]. In addition, the use of
alloys has a positive effect on the resistance of platinum catalysts to corrosion in acidic and
alkaline media [19]. The alloys are more tolerant to methanol as well since alloying metals
suppress Pt dissolution and prevent methanol adsorption on the catalyst’s surface [20,21].
Thus, an important scientific problem is the creation of catalytic systems characterized
by high stability under the conditions of the long-term operation of fuel cells. The use of
alloy particles is one of the approaches allowing for improvement of the stability of the
catalysts used in the fuel cells. In the future, such materials may replace the currently used
monometallic platinum catalysts.

Most commonly, electrochemical catalysts containing alloy particles of platinum with
other metals are prepared via impregnation of the carbon support with a solution of
metal salts, followed by heat treatment or chemical reduction (for example, sodium boro-
hydride) [22–26]. Many catalysts containing bi- or trimetallic nanosized alloy particles
distributed over the surface of the carbon support have been thus obtained. Among them,
systems such as Pt1−xCox/CVulcan [27], Pt1−xNix/CVulcan [28,29], Pt1−xFex/CVulcan [14,30],
Pt1−xFex/N-C [31], Pt1−xCux/C [32,33], PtNi3Cr/C [32], Pt1−xSnx/Cgraphene [34],
Pt1−xRux/N-C [35], and Pt1−xPbx/CVulcan [36] should be mentioned. These catalysts
exhibit sufficiently high activity in the reactions of oxygen reduction and methanol or hy-
drogen oxidation. The mentioned approach is relatively easy to use but does not guarantee
a narrow particle size distribution. The main disadvantage of the impregnated catalysts is
the remaining tendency of deposited alloy particles to deactivate due to their washing out
or surface migration and agglomeration.

Another approach, the synthesis of carbon nanofibers (CNF) by catalytic chemical
vapor deposition (CCVD) on alloys of a given composition, seems to be more promising
for the preparation of electrochemical catalysts [37–40]. By using this method, it is possible
to obtain a composite catalyst, in which the active alloy particles are embedded within the
structure of carbon nanofibers. Such composites are expected to be resistant to leaching and
agglomeration processes. Note that, in this case, the synthesis of carbon material, which
acts as a support of alloy particles, occurs directly during the catalytic decomposition of
hydrocarbons over these particles. At the initial stage of this process, carbon erosion (CE)
of the initial bulk alloy occurs. During CE, the initial alloy rapidly disintegrates with the
formation of dispersed particles, which then play the role of active centers for the growth
of carbon filaments [41]. The activity of platinum-containing alloys in the decomposition
of hydrocarbons and their chlorine derivatives is well reported in the literature [40,42,43].
It has been shown that, under the conditions of the controlled decomposition of ethylene
over Pt1−xCox nanoalloys, it is possible to obtain Pt-Co/CNF composite systems with
a given phase composition and a variable concentration of active alloy particles [40].
Further development of approaches to produce Pt-containing composites Pt1-xMx/CNF
(M = Co, Fe, Ni) of controllable composition, as well as their characterization, seems to be
an actual challenge.

Thereby, the present work aimed at the synthesis and characterization of Pt1−xNix/CNF
composites, which are nanoalloy particles embedded within the CNF structure. The most
commonly used preparation methods to obtain the carbon-based Pt-Ni electrocatalysts
are summarized in Table S1. The novelty of the used approach is in its controllable and
target application of the carbon erosion process for the synthesis of such structures from
microdispersed alloys of the desired composition. Thus, the composites were prepared
via catalytic decomposition of ethylene over porous Pt1−xNix (x = 0.0–1.0) nanoalloys.
The phase composition and microstructure of porous alloys were studied using powder
X-ray diffraction analysis and electron microscopy. Based on the data obtained, optimal
conditions for the synthesis of Pt1−xNix/CNF composites were determined. The synthe-
sized Pt1−xNix/CNF composites were compared with the commercial (20 wt.%)Pt/Vulcan
catalyst in activity in the hydrogen evolution reaction (HER).
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2. Results and Discussion
2.1. Synthesis and Characterization of Pt1−xNix Alloys

In the first stage of the work, the samples of Pt1−xNix porous alloys were synthe-
sized by thermolysis of multicomponent precursors. These precursors represent micro-
heterogeneous mixtures of the complex salts [Pt(NH3)4]Cl2·H2O and [Ni(NH3)6]Cl2 ob-
tained by fast co-precipitation of an aqueous solution of the salts in cooled acetone. Ac-
cording to the element analysis data (Table 1), the compositions of the obtained alloys
correspond to the ratio of metals specified during the synthesis of the precursors. Figure 1
shows the X-ray diffraction (XRD) patterns of the resulting Pt1−xNix alloys. The XRD pat-
tern of the reference sample Pt1.00 is in full accord with information in the database for the
Pt standard (space group Fm-3m, ICDD PDF-2 #4-802 [44]). The diffraction patterns of the
samples with Ni content of 0–30 and 60–100 at.% show a set of reflections corresponding to
the phase of the face-centered cubic (fcc) solid solution only. The reflections of the fcc phase
present in the Pt1−xNix samples are shifted towards far 2θ angles concerning pure Pt. This
indicates the incorporation of nickel atoms into the platinum lattice with the formation of
the fcc alloy. The Pt0.50Ni0.50 sample contains a tetragonal phase with the PtNi intermetallic
structure (space group P4/mmm, ICDD PDF-2 #65-2797 [44]) and a small amount of the
fcc alloy phase. Thereby, the phase compositions of the synthesized Pt1−xNix samples
are in good agreement with the phase diagram of the Pt-Ni system [45,46]. It should be
noted that the composition of alloy phases determined from diffraction data using the
calibration dependence of the specific atomic volume of the alloy on the Pt content [45]
is consistent with the nominal metal content in the samples determined by the ICP-AES
method (Table 1).
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Figure 1. XRD patterns of pure Ni and Pt samples and Pt1−xNix (x = 0.30–0.90) alloys. Asterisks (*)
show the superstructural reflections of the PtNi intermetallic phase.
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Table 1. Chemical composition and crystallographic characteristics of synthesized Pt1−xNix
(x = 0.0–1.0) alloys.

#
Preset

Composition,
at.% Ni

Nominal
Composition,

at.% Ni
Phase Phase

Structure
Lattice

Parameter, Å

1 0 0 Pt fcc 3.9232(5)
2 30 29 ± 2 Pt0.70Ni0.30 fcc 3.8245(5)

3 50 51 ± 4
PtNi tetragonal a = 2.690(2)

c = 3.617(2)
Pt0.47Ni0.53 fcc 3.739(2)

4 60 61 ± 5 Pt0.40Ni0.60 fcc 3.708(2)
5 70 70 ± 5 Pt0.30Ni0.70 fcc 3.667(2)
6 80 80 ± 6 Pt0.19Ni0.81 fcc 3.619(2)
7 90 90 ± 7 Pt0.10Ni0.90 fcc 3.575(2)
8 100 100 Ni fcc 3.5242(5)

The morphology and secondary structure of the resulting alloys studied by SEM are
demonstrated in Figure 2. According to the presented microscopic data, the Pt1−xNix
samples have a characteristic porous structure, which is represented by irregularly shaped
primary grains 100–150 nm in size. Primary particles are accreted with each other and
connected by bridges of 75–100 nm in size (Figure 2a,c,e), thus forming a single spongy
structure of the alloy. At the same time, certain differences can be noted for samples with
a high content of Ni (more than 50 at.%). During reductive thermolysis, sintering of the
particles with increased nickel content proceeds faster due to the higher diffusion rate of
Ni atoms and is less refractory if compared to platinum. As a result, a porous structure
built of primary particles of a larger size (up to 200 nm) is formed (Figure 2a–d). It should
be emphasized that the observed morphology is typical for porous alloys obtained by the
thermolysis of precursors [47,48]. Note that the specific surface area (SSA) of the initial
microdispersed alloys is averaged to be ~10 m2/g.
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Figure 2. SEM images of the as-prepared Pt1−xNix alloys: (a,b) Pt0.70Ni0.30; (c,d) Pt0.50Ni0.50;
(e,f) Pt0.10Ni0.90.

2.2. Preparation of Pt1−xNix/CNF Composites via Ethylene Decomposition over Pt1−xNix Alloys

In order to synthesize metal/CNF composite materials, catalytic decomposition
of various hydrocarbons can be utilized [49,50]. In the present study, the synthesis of
Pt1−xNix/CNF composites was carried out via ethylene decomposition over the prepared
porous Pt1−xNix alloys. The choice of ethylene was due to its high tendency to form carbon
under such reaction conditions. The overall reaction can be described by Equation (1):

C2H4 = 2C (CNF) + 2H2. (1)

The process of catalytic decomposition of hydrocarbons with the CNF formation
proceeds over the dispersed particles of metallic nickel and its alloys in accordance with the
carbide cycle mechanism [51]. In turn, dispersed Ni-containing particles of submicron size
emerge under the action of the reaction mixture as a result of the spontaneous disintegration
of the initial alloy [52,53]. Such self-dispersion of the bulk metal or alloy is due to the process
of carbon erosion (CE) (also known as metal dusting [41]). Figure 3 shows schematically
the CE stage.
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Figure 3. Schematic illustration of the CE process: (I)—catalytic decomposition of C2H4, transfer, and
diffusion of carbon into the volume of the alloy; (II)—nucleation of the carbon phase at the grain
boundaries; (III)—the disintegration of the alloy with the formation of active particles catalyzing the
growth of CNF.

At the first stage of CE (Figure 3, stage I), ethylene molecules adsorb over the metal
surface and decompose. This stage is accompanied by the transfer of carbon atoms into
the alloy volume. An intensive dissolution of carbon in the metal grains results in the
formation of a supersaturated carbon solution. At the next stage of the process (Figure 3,
stage II), the nuclei of the graphite-like phase appear near the grain boundaries. Further
accumulation of the graphite-like material leads to the disintegration of the alloy with the
formation of dispersed particles catalyzing the growth of nanostructured carbon filaments
(Figure 3, stage III). Depending on the reaction conditions, the alloy composition, and
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its dispersity (grain size), the duration of the CE process ranges from one minute [54] to
several hours [53,55] or even months [56]. At the same time, the rate of the CE process
is mostly determined by the nature of the catalyst precursor and its dispersity. Thus,
for the items made of bulk metals and alloys (wire, foil, etc.), which possess a small
specific surface, the CE process proceeds with the lowest rate [53,55,56]. Contrarily, the
use of microdispersed alloys makes it possible to accelerate the disintegration process
significantly [54], which is due to an increased contact area of the metal surface with a
carbon-containing reaction medium.

At the end of the CE process (Figure 3, stage III), the complete disintegration of the
initial alloy leads to the formation of a large number of active particles responsible for the
subsequent growth of carbon filaments via the carbide cycle mechanism. The dispersed
alloy particles obtained in such a way are embedded within the structure of CNF, which
prevents their sintering or mechanical entrainment. The efficiency and success of the
described approach in the targeted synthesis of carbon nanomaterials and metal–carbon
composites have been well reported [40,57,58]. According to our previous evaluations [54],
about 1013 active particles of submicron size (100–300 nm) are formed from 1 g of nickel-
based alloy.

As shown above, the synthesized Pt1−xNix alloys are characterized by a well-developed
porous structure, which makes it possible to provide an appropriate contact area of the
alloy with the reaction mixture. Therefore, the process of controlled CE was chosen for the
synthesis of Pt1−xNix/CNF composites.

In the next step of the research, the catalytic activity of Pt1−xNix alloys in the reaction
of ethylene decomposition with the production of CNF was compared. In order to rank the
samples by activity, the catalytic experiments were carried out with the same duration of
15 min. Each sample of the alloys was examined twice to check the reproducibility of the
results. The obtained dependence of the carbon yield (YCNF) in the ethylene decomposition
reaction on the Ni content is presented in Figure 4.
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Figure 4. Dependence of the carbon yield (YCNF) in the ethylene decomposition reaction on the Ni
content (at.%) in Pt1−xNix alloy. Data for the Ni1.00 and Pt1.00 samples are given for comparison. The
reaction conditions are as follows: C2H4/H2/Ar, T = 600 ◦C, 15 min.
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As it follows from experimental data, pure Pt is not active in the ethylene decompo-
sition reaction (~0 g/gcat), which is quite expected [40]. As a result of the interaction of
the Pt1.00 sample with ethylene, only a small layer of non-catalytic carbon is formed on its
surface [40]. The inertness of platinum can be attributed to the fact that, at the reaction
temperature of 600 ◦C, Pt does not form solid solutions with carbon [59]. Thereby, the
bulk Pt does not undergo disintegration via the CE route. The addition of 30 at.% Ni
to platinum does not change the situation, and the carbon yield value remains close to
0 g/gcat. Comparing the obtained data with those for Pt1−xCox bimetallic system [40], it
can be noted that the Pt0.75Co0.25 sample with the same content of base metal also exhibited
low activity (the carbon yield did not exceed 1–2 g/gcat).

As can be seen from Figure 4, a further increase in the Ni concentration in the Pt1−xNix
alloy (up to 50 at.% and above) improves the catalytic activity significantly (the carbon
yield exceeds 10 g/gcat). The highest carbon yield of 31 g/gcat was achieved over the
pure Ni sample (Ni1.00). This result is also not surprising. As is known, Ni belongs to the
iron subgroup (Fe, Co, Ni). All these metals possess high activity in the process under
study. They are traditionally used as components of the catalysts for the synthesis of carbon
nanostructures by the CCVD method [60].

According to the low-temperature N2 adsorption–desorption data, the obtained
Pt1−xNix/CNF composites are characterized by high SSA values. Moreover, an increase in
the Ni content in the alloy composition from 30 to 70 at.% leads to a rise in the SSA values
from 100 to 147 m2/g.

Then, a set of Pt1−xNix/CNF composite samples for electrocatalytic testing in the
hydrogen evolution reaction (HER) was prepared. The duration of the CCVD procedures
was varied in a range from 3 to 15 min in order to provide the carbon yield of ~4 g/gcat. At
this value, the content of metals in the Pt1−xNix/CNF composites corresponds to 20 wt.%.
In practice, according to the element analysis data (AES), the total content of metals in
the composition of the synthesized composite samples is in the range of 18–22 wt.%.
Table 2 summarizes the synthesis parameters and the main characteristics of the prepared
Pt1-xNix/CNF composite samples.

Table 2. Synthesis parameters for Pt1−xNix/CNF composites and their characteristics.

Initial Alloy
Ethylene

Decomposition
Reaction Time, min

Carbon
Yield,
g/gcat

Total Metal Content
in Pt1-xNix/CNF

Composite, wt.%

Lattice Parameter
of the Initial

Alloy, Å

Lattice Parameter
of the Alloy after
the Reaction, Å

Pt0.10Ni0.90 3 4.3 19 3.575 (2) 3.58 (1)
Pt0.20Ni0.80 4 4.3 19 3.619 (2) 3.62 (1)
Pt0.40Ni0.60 5 4.5 18 3.708 (2) 3.70 (1)

Pt0.50Ni0.50 15 3.6 22 a = 2.690 (2)
c = 3.617 (2)

a = 2.69 (1)
c = 3.62 (1)

The phase composition of the prepared samples of Pt1−xNix/CNF (x = 0.50–0.90) com-
posites was studied by XRD (Figure 5). In most cases, the XRD patterns show reflections
corresponding to Pt1−xNix alloys with the fcc structure. For the Pt0.50Ni0.50/CNF sample,
the PtNi intermetallic compound structure was identified. As follows from Table 2, the
lattice parameters of solid solutions before and after the reaction with ethylene are the
same within the error of determination. Thus, the composition of the alloy particles in the
composite samples corresponds to that of the initial alloys. The width of the reflections of
solid solutions in the Pt1−xNix/CNF samples slightly increased compared to the width of
the reflections of the original porous alloys. This could be caused by the incorporation of
carbon into the structure of the alloy particles and the occurrence of defects, which was pre-
viously observed on Pt-Ni alloys for the reaction of 1,2-dichloroethane decomposition [42].
Additionally, for all samples, the presence of a characteristic broadened peak at 2θ = 26◦,
corresponding to the (002) reflection of a graphite-like material, is noted.
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Figure 5. XRD patterns of Pt1−xNix/CNF composites synthesized via ethylene decomposition over
the respective alloys. Asterisks (*) show the superstructural reflections of the PtNi intermetallic phase.

Electron microscopy techniques, SEM and TEM, were used to study the morphol-
ogy and structural features of the prepared Pt1−xNix/CNF composite samples in detail.
According to the data obtained (Figures 6 and 7), the carbon product is represented by a
set of filaments of submicron diameter. Based on the array of recorded images, it can be
concluded that the dispersed submicron particles were formed as a result of the disinte-
gration of the initial alloy. These particles are clearly seen in the back-scattered electron
mode (Figure 6). At a higher magnification (Figure 6b,c), it becomes evident that these
metal particles behave as catalytic centers for the growth of carbon filaments. The length
of the formed fibers ranges from 1 to 10 µm. Additionally, it is worth mentioning that, in
certain areas of the catalyst, the disintegration of the alloy was not complete. Thus, an
active particle being in the process of fragmentation (separation into several independent
centers of CNF growth) is observable in Figure 6b. It can be seen that individual sections
on the surface of this particle work independently, which leads to the separation of the
growing carbon filament into several filaments of smaller diameters. With an increase in
the exposure time, it can be expected that the complete disintegration of this particle will
lead to the formation of several independent centers of CNF growth [61].
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Figure 6. SEM images (back-scattered electron beam mode) of Pt0.50Ni0.50/CNF composite obtained
via ethylene decomposition at 600 ◦C for 15 min (YCNF = 3.6 g/gcat): (a) 10,000×; (b) 30,000×;
(c) 60,000×.
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It should be noted that the catalytic particles formed via the disintegration of alloys
have a predominantly symmetric polyhedron shape with a very distinct faceting (Figure 6c).
The observed particle shape is one of the preferred options described earlier in [51,62].
The size of dispersed metal particles averages 150 nm (Figure 6b,c) and coincides with
the diameter of the growing carbon fibers (Figure 6c). According to the estimations made,
on average, about 4 × 1013 catalytic particles of the indicated size are formed from 1 g of
the alloy.

An analysis of the morphology of CNF samples obtained on alloys with a high Ni
content (60 at.% and above) shows that, in addition to fibers with a diameter of 0.1 to
0.25 µm, the composition of the carbon product also contains thinner fibers, the diameter of
which does not exceed several tens of nanometers (Figure 7b,c,f). The appearance of such
nanofibers in the composition of the CNF sample is associated with the occurrence of the
process of secondary disintegration of submicron catalytic particles [53]. It should be noted
that the probability of secondary fragmentation of alloy particles rises with an increase in
the Ni concentration in the composition of the initial alloy, as evidenced by a noticeable
increase in the proportion of thin carbon filaments in the carbon nanomaterial.
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Figure 8 shows the TEM results for the Pt0.50Ni0.50/CNF and Pt0.80Ni0.20/CNF sam-
ples. The data obtained are consistent with the SEM data. The length of carbon filaments
in the composition of the Pt0.50Ni0.50/CNF sample does not exceed 10 µm, and the di-
ameter is in a range from 0.1 to 0.25 µm (Figure 8a). As is also seen, the formed alloy
particles are predominantly polyhedron-shaped and clear-cut (Figure 8b,c). At the same
time, in the composition of the composite obtained on the Pt0.20Ni0.80 alloy, the carbon
filaments are of a noticeably shorter length (no more than 5 µm) and possess a disordered
structure (Figure 8d). The presence of large metal particles within the composition of the
Pt0.80Ni0.20/CNF sample indicates that the disintegration process is incomplete in this case
(Figure 8d).

Catalysts 2023, 13, x FOR PEER REVIEW 11 of 19 
 

 

Figure 8 shows the TEM results for the Pt0.50Ni0.50/CNF and Pt0.80Ni0.20/CNF samples. 
The data obtained are consistent with the SEM data. The length of carbon filaments in the 
composition of the Pt0.50Ni0.50/CNF sample does not exceed 10 μm, and the diameter is in 
a range from 0.1 to 0.25 μm (Figure 8a). As is also seen, the formed alloy particles are 
predominantly polyhedron-shaped and clear-cut (Figure 8b,c). At the same time, in the 
composition of the composite obtained on the Pt0.20Ni0.80 alloy, the carbon filaments are of 
a noticeably shorter length (no more than 5 μm) and possess a disordered structure (Fig-
ure 8d). The presence of large metal particles within the composition of the Pt0.80Ni0.20/CNF 
sample indicates that the disintegration process is incomplete in this case (Figure 8d). 

   

   
Figure 8. TEM images of Pt1−xNix/CNF composites obtained via ethylene decomposition at 600 °C: 
(a–c) x = 0.50, t = 15 min, YCNF = 3.6 g/gcat; (d–f) x = 0.80, t = 4 min, YCNF = 4.3 g/gcat. 

Comparing the structural features of carbon filaments observed for Pt0.50Ni0.50/CNF 
and Pt0.20Ni0.80/CNF alloys, it should be noted that in the first case (Figure 8b,c), the grown 
filaments are of a typical coaxial-conical structure (fishbone) [63]. An increase in the Ni 
concentration in the alloy from 50 to 80 at.% leads to a transformation of the geometry of 
catalytic particles with the appearance of faces, on which the growth of fibers of a stacked 
structure occurs. The structure of these CNFs is known as a “pile of books” or “pile of 
plates” (Figure 8e,f) [64,65]. For the carbon nanofibers obtained on the Pt0.50Ni0.50 alloy, the 
distance between graphene layers is 0.355–0.360 nm, while this value is 0.348–0.355 nm 
for the CNF samples synthesized using the Pt0.20Ni0.80 alloy. Thus, with an increase in the 
Ni content in the composition of the alloy, a decrease in the distance between graphene 
layers in the structure of carbon nanofibers is observed. Nevertheless, in both cases, the 
measured interplanar spacing is somewhat larger than that of crystalline graphite (0.337 
nm).  

Based on TEM data for all the studied samples, the sizes of the alloy particles corre-
late with the diameter of the filaments (Figure 8a,d), which is in good agreement with the 
data obtained by the SEM method. According to EDX data, the composition of bimetallic 
particles in the Pt1−xNix/CNF composites coincides with the ratio of Pt and Ni in the origi-
nal alloy (Table 3). 

  

Figure 8. TEM images of Pt1−xNix/CNF composites obtained via ethylene decomposition at 600 ◦C:
(a–c) x = 0.50, t = 15 min, YCNF = 3.6 g/gcat; (d–f) x = 0.80, t = 4 min, YCNF = 4.3 g/gcat.

Comparing the structural features of carbon filaments observed for Pt0.50Ni0.50/CNF
and Pt0.20Ni0.80/CNF alloys, it should be noted that in the first case (Figure 8b,c), the grown
filaments are of a typical coaxial-conical structure (fishbone) [63]. An increase in the Ni
concentration in the alloy from 50 to 80 at.% leads to a transformation of the geometry of
catalytic particles with the appearance of faces, on which the growth of fibers of a stacked
structure occurs. The structure of these CNFs is known as a “pile of books” or “pile of
plates” (Figure 8e,f) [64,65]. For the carbon nanofibers obtained on the Pt0.50Ni0.50 alloy, the
distance between graphene layers is 0.355–0.360 nm, while this value is 0.348–0.355 nm for
the CNF samples synthesized using the Pt0.20Ni0.80 alloy. Thus, with an increase in the Ni
content in the composition of the alloy, a decrease in the distance between graphene layers
in the structure of carbon nanofibers is observed. Nevertheless, in both cases, the measured
interplanar spacing is somewhat larger than that of crystalline graphite (0.337 nm).

Based on TEM data for all the studied samples, the sizes of the alloy particles correlate
with the diameter of the filaments (Figure 8a,d), which is in good agreement with the
data obtained by the SEM method. According to EDX data, the composition of bimetallic
particles in the Pt1−xNix/CNF composites coincides with the ratio of Pt and Ni in the
original alloy (Table 3).
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Table 3. EDX data for the Pt1−xNix/CNF samples.

Sample
Composition, at.% Ni

Preset EDX *

Pt0.50Ni0.50/CNF 50 49 ± 5
Pt0.20Ni0.80/CNF 80 80 ± 3

* Each value is averaged from 10 measurements.

Thus, the decomposition of ethylene is accompanied by the disintegration of the alloy
with the formation of dispersed alloy particles that catalyze the growth of carbon nanofibers.
When carbon yield corresponds to ~4 g/gcat, the content of the alloy in the composition of
the composite varies near the value of 20 wt.%. In such a mode of controlled carbon erosion
of Pt1−xNix alloys, a series of Pt1−xNix/CNF composites was successfully synthesized. The
Pt-Ni particles of a desired ratio are strongly anchored within the resulting Pt1−xNix/CNF
composites. Such materials can be considered catalysts with improved resistance toward
deactivation caused by the sintering of the particles.

It is worth noting that the surface of the alloy particles embedded with the CNF
structure is accessible for the reagents, which makes it possible to use these composites as
catalysts for various electrochemical reactions.

2.3. Electrocatalytic Testing of Pt1−xNix/CNF Composites

The electrocatalytic properties of the samples of Pt1−xNix/CNF composites were
studied in the hydrogen evolution reaction (HER) in 0.100 M H2SO4. The results of the
experiments performed make it possible to evaluate the electrochemical activity of alloyed
samples in comparison with a commercial sample (Pt/Vulcan) containing 20 wt.% Pt
on a Vulcan XC-72R carbon support. Figure 9a shows current–voltage curves obtained
with a linear potential sweep. The experimentally measured current is normalized to the
Pt content in the samples. It can be seen that, for all samples, a significant increase in
the cathode current is observed at potentials below –220 mV. The Pt0.10Ni0.90/CNF and
Pt0.20Ni0.80/CNF samples exhibit the highest activity, which is twice that of the commercial
Pt/Vulcan sample. Pt0.60Ni0.40/CNF showed lower activity comparable with that of the
Pt/Vulcan sample. The Pt0.50Ni0.50/CNF sample was the least active.

Catalysts 2023, 13, x FOR PEER REVIEW 12 of 19 
 

 

Table 3. EDX data for the Pt1−xNix/CNF samples. 

Sample 
Composition, at.% Ni 

Preset EDX * 
Pt0.50Ni0.50/CNF 50 49 ± 5 
Pt0.20Ni0.80/CNF 80 80 ± 3 

* Each value is averaged from 10 measurements. 

Thus, the decomposition of ethylene is accompanied by the disintegration of the alloy 
with the formation of dispersed alloy particles that catalyze the growth of carbon nano-
fibers. When carbon yield corresponds to ~4 g/gcat, the content of the alloy in the compo-
sition of the composite varies near the value of 20 wt.%. In such a mode of controlled 
carbon erosion of Pt1−xNix alloys, a series of Pt1−xNix/CNF composites was successfully syn-
thesized. The Pt-Ni particles of a desired ratio are strongly anchored within the resulting 
Pt1−xNix/CNF composites. Such materials can be considered catalysts with improved re-
sistance toward deactivation caused by the sintering of the particles. 

It is worth noting that the surface of the alloy particles embedded with the CNF struc-
ture is accessible for the reagents, which makes it possible to use these composites as cat-
alysts for various electrochemical reactions. 

2.3. Electrocatalytic Testing of Pt1−xNix/CNF Composites 
The electrocatalytic properties of the samples of Pt1−xNix/CNF composites were stud-

ied in the hydrogen evolution reaction (HER) in 0.100 M H2SO4. The results of the experi-
ments performed make it possible to evaluate the electrochemical activity of alloyed sam-
ples in comparison with a commercial sample (Pt/Vulcan) containing 20 wt.% Pt on a Vul-
can XC-72R carbon support. Figure 9a shows current–voltage curves obtained with a lin-
ear potential sweep. The experimentally measured current is normalized to the Pt content 
in the samples. It can be seen that, for all samples, a significant increase in the cathode 
current is observed at potentials below –220 mV. The Pt0.10Ni0.90/CNF and Pt0.20Ni0.80/CNF 
samples exhibit the highest activity, which is twice that of the commercial Pt/Vulcan sam-
ple. Pt0.60Ni0.40/CNF showed lower activity comparable with that of the Pt/Vulcan sample. 
The Pt0.50Ni0.50/CNF sample was the least active. 

  
(a) (b) 

Figure 9. The catalytic activity of Pt1−xNix/CNF composites in electrochemical hydrogen evolution 
reaction (HER): (a) linear potential sweep in 0.1 M H2SO4 at a sweep rate of 10 mV/s; (b) Tafel de-
pendences of hydrogen evolution processes. 

The Tafel dependences (Equation (2)) of hydrogen reduction processes on various 
samples are shown in Figure 9b. 

400 300 200 100 0
2.5

2.0

1.5

1.0

0.5

0.0

___

_

_

_

_

_

I (
μA

/μ
g Pt

)

E, mV

 Pt0.10Ni0.90/CNF
 Pt0.20Ni0.80/CNF
 Pt0.40Ni0.60/CNF
 Pt0.50Ni0.50/CNF
 Pt/Vulcan

_ 4.4 4.0 3.6 3.2 2.8

80

60

40

20

0

_

_

_

_

____ _

 Pt0.10Ni0.90/CNF
 Pt0.20Ni0.80/CNF
 Pt0.40Ni0.60/CNF
 Pt0.50Ni0.50/CNF
 Pt/Vulcan

η,
 m

V

lg I

Figure 9. The catalytic activity of Pt1−xNix/CNF composites in electrochemical hydrogen evolution
reaction (HER): (a) linear potential sweep in 0.1 M H2SO4 at a sweep rate of 10 mV/s; (b) Tafel
dependences of hydrogen evolution processes.

The Tafel dependences (Equation (2)) of hydrogen reduction processes on various
samples are shown in Figure 9b.

η = a + b · lg I, (2)
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where η is the overvoltage, mV; I is the current, mA; a and b are the coefficients.
The coefficients a and b, determined by linear approximation of the graphs in the

high overvoltage region, are presented in Table 4. The exchange current densities i0 in
this region for different samples have comparable values. The values of the Tafel slopes
b close to 120 mV in the overvoltage region above 60 mV allow us to conclude that the
rate-determining stage of the hydrogen reduction process is the same for all samples and is
determined by the slow desorption of hydrogen atoms from the electrode surface [66].

Table 4. The values of the empirical constants of the Tafel equation for the Pt1−xNix/CNF samples in
comparison with the reference sample Pt/Vulcan.

Sample
η = a + b·lg I

a (mV) b (mV)

Pt0.10Ni0.90/CNF −373 ± 11 −104 ± 4
Pt0.20Ni0.80/CNF −400 ± 10 −121 ± 4
Pt0.40Ni0.60/CNF −387 ± 8 −109 ± 3
Pt0.50Ni0.50/CNF −403 ± 13 −112 ± 5

Pt/Vulcan −390 ± 8 −117 ± 3

The results of the electrochemical impedance spectroscopy analysis are presented in
the Supplementary Information (Figure S1). This method was used to obtain the informa-
tion concerning the kinetics of electrochemical processes over Pt1−xNix/CNF composites.
Comparison of the presented Nyquist plots testifies that the charge transfer resistance (RCT)
for the Pt1−xNix/CNF samples is somewhat lower than that for the commercial sample
(Pt/Vulcan). The estimation of the radii values from the Nyquist plots gives R = 22.88 Ohm
for Pt0.20Ni0.80/CNF, R = 19.9 Ohm for Pt0.10Ni0.90/CNF, and R = 25.5 Ohm for Pt/Vulcan.
As is known, the electrocatalytic activity is connected with the RCT value. Thereby, the re-
sulting Pt1−xNix/CNF catalysts are more active in the electrochemical hydrogen evolution
reaction than the Pt/Vulcan reference sample. The data obtained expand the possibilities
of using the solid-state reaction products of the hydrocarbon decomposition over porous
alloys for electrocatalytic applications. Reducing the platinum loading in the catalyst
composition allows for reducing the cost while maintaining its efficiency.

3. Materials and Methods
3.1. Materials and Chemicals

[Pt(NH3)4]Cl2·H2O (Aurat, Moscow, Russia), [Ni(NH3)6]Cl2 (synthesized according
to a well-known method [67]), ammonia (puriss. spec.), acetone (puriss. spec.), and helium
(puriss. spec.) were used to prepare Pt1−xNix alloys. Hydrogen was obtained using
a Tsvetkhrom-6 generator (Tsvetkhrom, Dzerzhinsk, Russia). Hydrochloric acid (puriss.
spec.) and nitric acid (puriss. spec.) were used to prepare the samples for elemental analysis.

High-purity ethylene purchased from Nizhnekamskneftekhim (Nizhnekamsk, Russia),
high-purity argon, and hydrogen were used for the synthesis of Pt1−xNix/CNF composites.

Bidistilled water, isopropanol (puriss. spec.), Nafion (Sigma-Aldrich, Burlington, MA,
USA), high-purity argon, and sulfuric acid (puriss. spec.) were used in the electrochemical
experiments. The reference sample, 20% Pt/Vulcan XC-72R, was purchased from Sigma-
Aldrich (Burlington, MA, USA).

3.2. Synthesis of Pt1−xNix Alloys

The samples of initial alloys were obtained by thermolysis of specially prepared
precursors, which were micro-heterogeneous mixtures of platinum and nickel amino
complexes. The complex salts [Pt(NH3)4]Cl2·H2O and [Ni(NH3)6]Cl2 were used as initial
metal compounds. Weighed portions of complex compounds taken in the required ratios
(500 mg in total) were dissolved in 4–6 mL of ~10% aqueous ammonia solution. The
resulting solution was quickly added to 100–120 mL of chilled acetone with vigorous
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stirring. The precipitate was filtered out, washed with acetone, and dried in air. The
thermolysis procedure of the resulting precursor was carried out in a quartz reactor in
an H2 atmosphere at 600 ◦C for 1 h. Then, the sample was cooled to room temperature
in a helium flow. Thermolysis of the precursor containing 50 at.% Ni was carried out for
3 h to obtain alloy particles with the crystal structure of the PtNi intermetallic compound.
Monometallic reference samples, Pt1.00 and Ni1.00, were also synthesized using the same
procedures.

3.3. Synthesis of Pt1−xNix/CNF Composites

Synthesis of Pt1−xNix/CNF composites was performed in a horizontal quartz flow
reactor, shown in Figure 10. A specimen of the alloy (catalyst precursor) was placed on a
quartz plate in an amount of 25.00 ± 0.02 mg. Then, the plate was loaded into a reactor
(Zhengzhou Brother Furnace Co., Ltd., Zhengzhou, Henan, China) in a horizontal position.
Note that the furnace of the reactor is characterized by a uniform temperature profile along
its length (±5 ◦C). Next, the sample was heated in an inert gas (Ar) flow to the reaction
temperature (600 ◦C), after which the sample was preliminarily reduced in an H2 flow
(for 15 min) in order to remove the surface oxide film. Then, at the same temperature,
the reactor was fed with a reaction mixture containing 40 vol.% C2H4, 20 vol.% H2, and
40 vol.% Ar. The feed rate of the reaction mixture was 54 L/h. Upon completion of the
reaction, the obtained Pt1−xNix/CNF composites were cooled in an argon flow and then
unloaded from the reactor. After weighing the sample, the carbon yield (YCNF, g/gcat)
was calculated. Each experiment was repeated at least two times to refine the data on the
catalytic activity of the alloys. The measurement error for the calculated carbon yield did
not exceed 10%.

Catalysts 2023, 13, x FOR PEER REVIEW 14 of 19 
 

 

3.2. Synthesis of Pt1−xNix Alloys 
The samples of initial alloys were obtained by thermolysis of specially prepared pre-

cursors, which were micro-heterogeneous mixtures of platinum and nickel amino com-
plexes. The complex salts [Pt(NH3)4]Cl2·H2O and [Ni(NH3)6]Cl2 were used as initial metal 
compounds. Weighed portions of complex compounds taken in the required ratios (500 
mg in total) were dissolved in 4–6 mL of ~10% aqueous ammonia solution. The resulting 
solution was quickly added to 100–120 mL of chilled acetone with vigorous stirring. The 
precipitate was filtered out, washed with acetone, and dried in air. The thermolysis pro-
cedure of the resulting precursor was carried out in a quartz reactor in an H2 atmosphere 
at 600 °C for 1 h. Then, the sample was cooled to room temperature in a helium flow. 
Thermolysis of the precursor containing 50 at.% Ni was carried out for 3 h to obtain alloy 
particles with the crystal structure of the PtNi intermetallic compound. Monometallic ref-
erence samples, Pt1.00 and Ni1.00, were also synthesized using the same procedures. 

3.3. Synthesis of Pt1−xNix/CNF Composites 
Synthesis of Pt1−xNix/CNF composites was performed in a horizontal quartz flow re-

actor, shown in Figure 10. A specimen of the alloy (catalyst precursor) was placed on a 
quartz plate in an amount of 25.00 ± 0.02 mg. Then, the plate was loaded into a reactor 
(Zhengzhou Brother Furnace Co., Ltd., Zhengzhou, Henan, China) in a horizontal posi-
tion. Note that the furnace of the reactor is characterized by a uniform temperature profile 
along its length (±5 °C). Next, the sample was heated in an inert gas (Ar) flow to the reac-
tion temperature (600 °C), after which the sample was preliminarily reduced in an H2 flow 
(for 15 min) in order to remove the surface oxide film. Then, at the same temperature, the 
reactor was fed with a reaction mixture containing 40 vol.% C2H4, 20 vol.% H2, and 40 
vol.% Ar. The feed rate of the reaction mixture was 54 L/h. Upon completion of the reac-
tion, the obtained Pt1−xNix/CNF composites were cooled in an argon flow and then un-
loaded from the reactor. After weighing the sample, the carbon yield (YCNF, g/gcat) was 
calculated. Each experiment was repeated at least two times to refine the data on the cat-
alytic activity of the alloys. The measurement error for the calculated carbon yield did not 
exceed 10%. 

 
Figure 10. Scheme of the experimental setup used for the synthesis of Pt1−xNix/CNF composites: 1—
quartz plate; 2—sample of Pt1−xNix alloy; 3—gas vessels; 4—tubular quartz reactor; 5—heating 

Figure 10. Scheme of the experimental setup used for the synthesis of Pt1−xNix/CNF composites:
1—quartz plate; 2—sample of Pt1−xNix alloy; 3—gas vessels; 4—tubular quartz reactor; 5—heating
elements; 6—input of the reaction mixture (C2H4/H2/Ar); 7—output of reaction gases; 8—resulting
Pt1-xNix/CNF composite.

3.4. Characterization of Materials

The elemental composition of the Pt1−xNix alloys was determined by inductively
coupled plasma atomic emission spectrometry (ICP-AES) on a Thermo Scientific iCAP-
6500 spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). Before analysis, the
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samples were dissolved in aqua regia at heating. The relative standard deviation of the
determination of metals was 0.03.

Powder X-ray diffraction (XRD) analysis of the samples was carried out on a Shimadzu
XRD-7000 diffractometer (Shimadzu Corporation, Tokyo, Japan) at CuKα radiation, using
a graphite monochromator. The patterns were recorded within a 2θ angle range of 20–100◦

with a step of 0.05◦.
The specific surface area values were measured by nitrogen adsorption at 77 K. The

isotherms were recorded using an automatic adsorption analyzer 3P sync 220A (3P INSTRU-
MENTS, Odelzhausen, Germany). Before the measurements, all samples were degassed in
a vacuum of less than 1 Pa at 300 ◦C for 3 h.

The identification of the crystalline phases was based on the ICDD powder diffraction
file cards [44]. The unit cell parameters were determined by the full profile method using
the specified software [68]. The composition of the phases in the alloys was determined
from diffraction data using the calibration dependence of the specific atomic volume of the
alloy on the composition in accordance with Equation (3) [45].

v = Vcells/Zat, (3)

where v is the specific atomic volume of the alloy (the average volume occupied by one
metal atom), Vcell is the volume of the crystalline cell of the alloy, and Zat is the number of
metal atoms per cell.

The study of the secondary structure and morphology of the samples of alloys and
carbon material was carried out by scanning electron microscopy (SEM) on a JSM-5100LV
microscope (JEOL Ltd., Tokyo, Japan) equipped with an EX-23000BU EMF spectrometer
(SPECTRO Analytical Instruments, Kleve, German). The working voltage of the microscope
was 15 kV, and the magnification was in a range of 1000–100,000×.

The study of the primary structure and composition of carbon product samples was
performed by transmission electron microscopy (TEM) on a JEOL JEM 2100 instrument
(JEOL Ltd., Tokyo, Japan) equipped with an INCA-250 energy dispersive x-ray spectrometer
(Oxford Instruments, Abingdon, Oxfordshire, UK). The accelerating voltage was 200 kV,
and the resolution was 0.14 nm. The samples were applied to perforated carbon films
fixed on a copper grid. Computer processing of the obtained EM images and measuring
the distances between the layers of graphene in the structure of carbon nanofibers were
performed using the Digital Micrograph “Gatan” (Pleasanton, CA, USA).

3.5. Electrochemical Testing of Pt1−xNix/CNF Composites

The synthesized samples of Pt1−xNix/CNF composites were tested in the hydrogen
evolution reaction (HER). A glassy carbon electrode (Sigradur G brand, HTW Hochtemperatur-
Werkstoff GmbH, Thierhaupten, Germany) was used as a working electrode (working
surface diameter 5.00 mm, geometric working area 0.196 cm2). To modify the electrode
with Pt1−xNix/CNF composite samples, a suspension of the following composition was
prepared: 5.00 mg of the sample, 1000 µL of isopropyl alcohol, 900 µL of bidistilled water,
and 100 µL of 10% Nafion. This mixture was processed in an ultrasonic bath (Vilitek VBS-
2DS, Vilitek, Moscow, Russia) at a frequency of 40 kHz (15 min), and then at a frequency of
28 kHz (15 min). After that, using a Lenpipet Digital Micro 0.5–10 µL automatic pipette
(Lenpipet, Moscow, Russia), 5.00 µL of the suspension was applied to the prepared glassy
carbon electrode and dried for 15 min in an argon flow.

The electrochemical measurements were carried out on a P-20X8 potentiostat (Elins,
Novosibirsk, Russia) in a homemade three-electrode cell at room temperature. A platinum
grid was used as a counter electrode. The working solution and space for the counter
electrode were separated by a filter with a pore size of 0.4 µm (Sartorius AG, Göttingen,
Germany). The reference electrode was a silver chloride electrode Ag | AgCl | 3.5 M
KCl (Izmeritelnaya Tehnika, Moscow, Russia) with a potential of 208 mV regarding the
normal hydrogen electrode. The reference electrode was connected to the working solution
using a Luggin capillary filled with a working electrolyte. To study the hydrogen evolution
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reaction (HER), the cell was filled with a solution of 0.1 M H2SO4 (approximately 50 mL),
and the solution was purged with argon for 20 min. After that, a cyclic potential sweep was
performed: 50 cycles at 50 mV/s in a range of −350–1000 mV to standardize the surface
of the working electrode. Then, the solution was purged with hydrogen for 20 min, and
voltammetric measurements were performed with a linear potential sweep in the range
from 500 to –350 mV at a potential sweep rate of 10 mV/s. During the experiments, the
working solution was stirred on an IKA Topolino (IKA-Werke GmbH & Co. KG, Staufen,
Germany) magnetic stirrer.

The electrochemical impedance spectroscopy measurements were carried out on a
SP-300 Potentiostat (Bio-Logic SAS, Seyssinet-Pariset, France). The EIS measurements were
performed over a frequency range of 1 Hz to ~1 MHz at a perturbation amplitude of 5 mV.
Nyquist plots of the catalysts in 0.1 M H2SO4 solution were obtained at a potential of
−0.200 V vs. silver chloride electrode Ag|AgCl|3.5 M KCl.

4. Conclusions

A series of porous Pt1−xNix alloys were synthesized by thermolysis of multicomponent
precursors in a wide range of concentrations (x = 0.00–1.00). The catalytic activity of the
obtained alloys in the reaction of ethylene decomposition with the formation of CNF was
studied. It has been established that the addition of Ni to Pt increases the activity of the
alloy in terms of carbon yield by 10–30 times. Thus, the highest carbon yield of about
30 g/gcat in the course of ethylene decomposition for 15 min was observed for the samples
Pt0.10Ni0.90 and Ni1.00. It was demonstrated that Pt1−xNix alloys could be successfully used
as precursors for obtaining metal–carbon composites.

Using the prepared Pt1−xNix alloys of desired compositions, the Pt1−xNix/CNF com-
posites containing 20 wt.% of the alloy were synthesized via ethylene decomposition
performed in a mode of controlled carbon erosion. The resulting Pt1−xNix/CNF samples
represent submicron alloy particles embedded within the structure of carbon nanofibers. It
was shown that the ratio of metals in these alloy particles corresponds to that in the initial
alloys. The prepared composites were tested in the electrochemical hydrogen evolution
reaction. The Pt0.10Ni0.90/CNF and Pt0.20Ni0.80/CNF samples demonstrate the highest ac-
tivity in this process, which exceeds the performance of the commercial 20 wt.% Pt/Vulcan
XC-72R sample by two times. Thus, the proposed approach to the preparation of metal–
carbon composite catalysts, in which platinum is replaced by cheaper nickel by up to
80%, provides the possibility of significantly reducing the cost of implementing practically
important electrochemical processes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal13030599/s1, Table S1: Carbon-based Pt-Ni composites used
for electrochemical applications; Figure S1: Electrochemical impedance spectroscopy analysis data
(Nyquist plots) for the samples of Pt1−xNix/CNF composites.
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