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Abstract: The development of Li-CO2/O2 battery with high energy density and long-term stability
is urgently needed to fulfill the carbon neutralization and pollution-free environment targets. The
biomass-derived heteroatom-doped carbon catalyst with the combination of high-efficiency catalytic
activity and sustainable supply is a promising cathode catalyst in Li-CO2/O2 battery. Specifically, the
unique morphology and mesopore structure can promote the transfer of CO2, O2, and Li+. Abundant
channel pores can provide discharge products accommodation to the largest extent. Nitrogen
dopant, the commonly recognized active sites in carbon, can improve the electron conductivity and
accelerate the sluggish kinetic reaction. Therefore, utilizing the louts leaves as the precursor, we
successfully prepare the cellular-like nitrogen-doped activated carbon nanosheets (N-CNs) through
the appropriate pyrolysis carbonization method. The as-synthesized carbon nanosheets display a
three-dimensional interconnecting pore structure and abundant N-dopant actives, which dramatically
improve the electrochemical catalytic activity of N-CNs. The Li-CO2/O2 battery with the N-CNs
cathode delivers a high discharge capacity of 9825 mAh g−1, low overpotential of 1.21 V, and stable
cycling performance of 95 cycles. Thus, we carry out a facile method for N-doped carbon nanosheets
preparation derived from the cheap natural biomass, which can be the effective cathode catalyst for
environmental-friendly Li-CO2/O2 battery.

Keywords: biomass-derived carbon; carbon nanosheets; nitrogen defects; cathode catalyst;
Li-CO2/O2 battery

1. Introduction

The rapidly increasing carbon dioxide (CO2) emissions caused by the overuse of fossil
fuel make us urgently search for the renewable energy storage and conversion devices to
realize the environmentally sustainable development [1]. Li-CO2/O2 battery, a promis-
ing and innovative energy storage strategy, largely attracts researchers’ attention for its
combination of CO2 capture and electrical energy storage and generation [2,3]. Similar
with the traditional Li-O2 battery, a typical Li-CO2/O2 battery consists of lithium anodes,
electrolyte, and porous cathodes conducive to CO2/O2 adsorption and diffusion, which
can deliver higher theoretical energy density than that of traditional Li-O2 battery based
on the reaction mechanisms (4Li+ + 2CO2 + O2 + 4e → 2Li2CO3) [4]. However, the de-
velopment of Li-CO2/O2 battery is still only in its infancy, hindered by inevitable issues,
such as low practical discharge capacity, poor rate capability, high overpotential, and
poor cyclability, which are caused by the sluggish Li2CO3 aggregation and decomposition
kinetics [5–8]. In this regard, effective cathode with desirable catalytic activity promot-
ing Li2CO3 deposition/decomposition and cathode structure improving gas diffusion,
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Li2CO3 aggregation, and electronic conductivity, should be effectively designed for high-
performance Li-CO2/O2 battery.

Up to now, extensive cathode catalyst has been developed to facilitate the reversible
formation and decomposition of Li2CO3, for the purpose of fulfilling the Li-CO2/O2 battery
with high efficiency and cycle stability [9]. Similar to the Li-O2 battery, the noble metal and
transition metal oxides have been extensively utilized as efficient catalysts in Li-CO2/O2
battery [10]. However, critical disadvantages, such as high-cost, scarcity, and limited cat-
alytic efficiency hinder the commercialization of Li-CO2/O2 battery. More importantly,
the large numbers of essential heavy metals and ions will cause detrimental effects on the
environmental safety. Therefore, considerable research on the carbon-based electrocatalysts
has been reported in Li-CO2/O2 battery. Carbon nanotubes (CNTs) and graphene, typical
carbon catalysts, have been applied as cathode materials in Li-CO2/O2 batteries, which
are demonstrated to promote the formation and decomposition of Li2CO3 [10–12]. How-
ever, the catalytic efficiency and stability of the carbon catalyst need further improvement.
Appropriate heteroatom-doped carbon or synergistic effect are considered to improve
the catalytic activity. Li et al. [13] prepared a highly efficient Pt/FeNC catalyst for high-
performance rechargeable Li-CO2/O2 batteries. Utilizing the synergetic effect of Pt NPs
(2.4 nm) and 2D Fe-N-C matrix derived from MOFs, the Li-CO2/O2 battery displayed a low
overpotential of 0.54 V and stable cycling performance of 142 cycles. Zhang et al. [14]
realized a uniform dispersion of Pt NPs (2.5 nm) on carbon nanotubes (Pt/CNT) in
Li-CO2/O2 battery. Benefiting from the Pt/CNT structure, a valuable Li2CO3 deposition in-
side Pt/CNT layer was accelerated. Consequently, the related Li-CO2/O2 battery (20% O2)
exhibited a low overpotential of 0.51 V and cycling stability of 90 cycles. Sun et al. [15]
synthesized a core-shell Ru/NiO@Ni/CNT catalyst with Ru NPs (~2.5 nm) anchoring on
core-shell-like NiO@Ni, utilizing CNT as catalyst support. For the strong interfacial interac-
tions between Ru NPs and NiO, the corresponding Li-CO2/O2 batteries could enable low
voltage hysteresis (1.01 V) and long cycle life (105 cycles). Furthermore, the Ru/N-doped
carbon nanotube (Ru/NC) catalyst was also employed in Li-CO2/O2 battery. Due to the
superior catalytic activity of Ru NPs and N-doped carbon, the decomposition kinetics of
Li2CO3 were successfully accelerated and the fabricated Li-CO2/O2 battery performed ac-
ceptable electrochemical performance with low overpotential of 1.06 V and cycling stability
of 90 cycles [16]. Apparently, the heteroatom-doped carbon especially the N-doped carbon
catalyst can be considered as the potential cathode for high efficiency Li-CO2/O2 battery.

Meanwhile, the biomass-derived heteroatom-doped carbon material has been con-
sidered as the environmentally friendly and inexpensive cathode catalyst for Li-CO2/O2
battery [17–24]. Specifically, the unique morphology property, abundant microchannel
structure, sufficient conductivity, and considerable specific surface area can largely facilitate
the CO2, O2, Li+, and electron transfer, electrolyte immersion, and discharge product accu-
mulations. Therefore, extensive efforts have been devoted to utilizing these waste resources
as the efficient energy carriers. Yang et al. [17] prepared a novel three-dimensional binder-
free N-doped carbon nanonet adopting silkworm cocoon as the precursor. The assembled
Li-O2 battery delivered a high specific capacity of 1480 mAh g−1 and acceptable cycling
performance of 60 cycles at 0.25 mA cm−2. Huang et al. [24] successfully synthesized the
N-doped activated carbons (N-PIACs) derived from poplar inflorescence, which presented
a three-dimensional interconnecting pore structure and owned defects and functional
groups by N-doping. Correspondingly, the enhanced electrochemical activity of Li-O2
battery was achieved with a high specific capacity of 12,060 mAh g−1 and stable cycling
stability of 86 cycles. Zhang et al. [19] adopted the citrus maxima peel as a precursor for the
cellular-like carbon catalyst (CMPACs). The Li-O2 battery with CMPAC cathode possessed
high specific capacity of 7800 mAh g−1, excellent cycling performance of 466 cycles, as
well as good coulombic efficiency of 92.5%. Zhu et al. [22] developed a wood-derived,
free-standing porous carbon electrode in Li-O2 battery. Benefiting from the spontaneously
formed hierarchical porous structure and N dopant, the catalytic activity of the carbon
cathode was improved with lower overpotential and higher capacity.
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Lotus leaves, the most available green and sustainable biomass in China, have pro-
vided a high ecological and economic value in the biotechnology, medicine, and function
fiber, as well as energy storage and conversion areas [25–29]. Deng et al. [28] prepared
hydrophilic porous carbon nanosheet using lotus leaf as the carbon source. When adopted
as the electrode in supercapacitor, the lotus leaf derived carbon exhibited specific capac-
itances of 225 F g−1 and 289 F g−1 at 0.5 A g−1 in 1 M NaCl and 6 M KOH electrolytes.
Wu et al. [30] carefully investigated the CO2 adsorption property and supercapacitor perfor-
mance of N-doped porous carbons from lotus leaf, which possessed good CO2 adsorption
capacity of 3.50 mmol/g (25 ◦C) and 5.18 mmol/g (0 ◦C) under atmospheric pressure,
and a high capacitance (266 F g−1) was also achieved in supercapacitor. Ma et al. [31]
successfully explored the lotus leaf as the low-cost carbon source in supercapacitor. In 6 M
KOH electrolyte, the carbon catalyst exhibited a high specific capacitance of 379 F g−1 and
good rate performance at 1 A g−1. Li et al. [32] prepared the biocarbon coated Li3V2(PO4)3
cathode material using lotus leaf as carbon source by sol gel method, which successfully
improved the lithium-ion diffusion coefficient of Li3V2(PO4)3 through carbon layer. The
corresponding Li-ion battery delivered a high initial discharge capacity of 130.4 mAh g−1

and coulombic efficiency of 99% under 0.1 C. Zhou et al. [33] employed the lotus leaf with
intrinsically hierarchical structure as the single precursor for oxygen reduction reaction
(ORR) catalyst, which achieved an onset potential of −0.015 V vs. Ag/AgCl (commercial
Pt/C catalyst: −0.010 V vs. Ag/AgCl). Inspired by the above research, the heteroatom-
doped carbon synthesized by the lotus leaf can be considered as the high-efficiency catalyst
in Li-CO2/O2 battery.

Herein, the lotus leaf is chosen as the precursor to prepare biomass-derived N-doped
activated carbon nanosheets. With the assistant of pyrolysis and activation technology, the
cellular-like carbon catalyst has been prepared with porous morphology, high surface area,
and abundant active sites, which can largely improve the catalytic activity. The Li-CO2/O2
battery using N-doped carbon delivers a high discharge capacity of 9825 mAh g−1, accept-
able discharge-charge overpotential of 1.21 V, and long-term cycling stability of 95 cycles.
The results strongly prove that the biomass-derived carbon catalyst can be the alternative
candidate for high-performance cathode catalyst in Li-CO2/O2 battery. More importantly,
multiple advantages of this approach, including, but not limited to, high efficiency and facile
preparation, resource-unlimited raw material, and spontaneous unique morphology, will
contribute to the development of economic and environmentally friendly Li-CO2/O2 battery.

2. Results and Discussion

Figure 1 shows the morphology and microstructure evolutions of lotus leaf under
different pyrolysis conditions. When the chlorophyll precursor was calcinated at 400 ◦C
for 1 h under the 50 mL min−1 N2 atmosphere, the as-synthesized carbon presents a three-
dimensional framework covered by the dense film. When the temperature increases to
600 ◦C (Figure 1b), the three-dimensional pore structure with the average size of 1 µm can
be directly observed, which may be derived from the organic compound decomposition.
Furthermore, the walls existed between the inter-channel pores become much thinner
at higher temperature of 800 ◦C, as shown in Figure 1c. It was found that the three-
dimensional carbon framework is blocked by the mesoporous inter-channel pores with
an average pore size of 20 nm, indicating the hierarchical pore structure. When the N2
flow increases to 100 mL min−1, numerous regular honeycomb holes consisting of carbon
nanosheets were observed at 800 ◦C, which display a highly arranged mesopores structure
in Figure 1d. As the N2 flow continue to 150 mL min−1, the honeycomb holes were found
to be collapsed (Figure 1e) and eventually turned into the one consisting of disorganized
carbon fibers and particles under the N2 flow of 200 mL min−1 (Figure 1f).
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Figure 1. SEM images of the activated lotus leaf at different calcination conditions (a) 400 ◦C,
(b) 600 ◦C, (c) 800 ◦C under 50 mL min−1 of N2; 100 mL min−1 (d), 150 mL min−1 (e), and
200 mL min−1 (f) of N2 at 800 ◦C.

Figure 2 shows the detailed morphology characteristic of carbon nanosheets under
the optimized pyrolysis conditions (800 ◦C, 100 mL min−1). Apparently, the highly in-
terconnected three-dimensional architecture stabilized by the networking of cellular-like
carbon forms a mechanically robust framework with open pore structures, as well as abun-
dant meso- and macro-pores (Figure 2a), which are caused by the emission of pressured
gas demonstrated in Figure 2b. Moreover, the meso- and macro-pores play a key role in
enabling electrolyte penetration into the hierarchical structure. As seen in Figure 2c,d,
the ultrathin wall with an average thickness of 8 nm can be clearly observed along the
carbon nanosheets edges. The distinct interlayer distance ascribing to carbon can further
prove the formation of carbon nanosheets. Consequently, the ultrathin walls (8 nm) and
abundant mesopores are directly confirmed, which can shorten the transport paths for
CO2, O2, and Li+, enlarge the accommodation for insoluble discharge product, provide
numerous accessible catalytic sites toward Li2CO3 deposition and decomposition reactions,
and eventually ensure the effective and stable catalytic activity.

Figure 3 shows the XRD patterns and Raman spectra of carbon nanosheets and Super P
for confirming the formation of carbon phases. As shown in Figure 3a, the broad diffraction
peaks observed at ~26.6◦ and 44.6◦ can be attributed to the (002) plane and (100) plane of
amorphous carbon, respectively. Additionally, Raman spectra of the corresponding cata-
lysts are obtained to analyze the detailed structural disorder of the as-synthesized carbon
nanosheets, as shown in Figure 3b. Two remarkable Raman shift peaks, characteristics of G
band (1580 cm−1) and D band (1300 cm−1) for the graphitic carbon, are observed for both
carbon nanosheets and Super P. Among these, the D-band corresponds to sp3 hybridized
carbon with the disordered state, whereas the G-band reveals the planar vibration of the
sp2 carbon. Importantly, the disorder degree of the carbon materials can be quantified
by the intensity ratio of D band to G band (ID/IG ratio). With the fitting areas of the two
typical curves, the ID/IG ratio of carbon nanosheets is remarkably higher than that of Super
P. The results demonstrate that the carbon nanosheets are preferably decorated with the
defect sites compared with that of Super P. It could be speculated that the conductivity and
catalytic activity of carbon nanosheets can be improved.
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Figure 3. XRD (a) and Raman patterns (b) of carbon nanosheets and Super P.

Figure 4 provides quantitative evidence of the mesopores observation of synthesized
carbon nanosheets through nitrogen adsorption–desorption isotherms. Commercial Super
P is used as the benchmark, which has been extensively used as the conductive agent in
Li-CO2/O2 battery. Clearly, carbon nanosheets exhibit type IV isotherms with obvious
hysteresis loop, indicating a characteristic of mesopore structure, which is much different
from the microporous Super P in the inset curves. A typical H1 hysteresis loop appear-
ing at high P/P0 range of 0.8–1.0 could be observed for Super P. Moreover, the carbon
nanosheets with interconnected three-dimensional architecture presented a BET surface
area of 116.3844 m2 g−1 and a narrow pore size distribution centered at 5 nm. In contrast,
the commercial Super P has a BET surface area of 58 m2 g−1 and broader pore size distribu-
tion, an indicator of the micropore characteristics. For the synthesized carbon nanosheets,
such mesoporosity is expected to provide abundant active sites, faster CO2/O2 transfer,
and enlarged Li2CO3 accumulation.
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Figure 5 shows the elemental composition and oxidation states of carbon nanosheets
by XPS survey. The XPS spectrum displays signals of C 1s peak (76.28 at%), O 1s (21.15 at%),
and N 1s (2.57 at%), revealing the high O content and presence of structural N in the carbon
nanosheets. Besides, the high-resolution C 1s spectrum can be divided into three peaks at
284.5 eV, 285.6 eV, and 288.3 eV, respectively, corresponding to the C–C, C=O, and –COO
components. It is apparently observed that the high-resolution O 1s spectrum presents
the coexistence of different function groups, including C=O (531.5 eV), C–O (532.0 eV),
and –OH (533.4 eV) groups, respectively. Additionally, the fitted O 1s spectrum distinctly
indicates the surface-bound oxygen is mainly C–O group. In addition, the N 1s spectrum
can be divided into three peaks ascribing to pyridinic nitrogen, pyrrolic nitrogen, and
graphitic nitrogen. Among these, pyridinic and pyrrolic nitrogen are confirmed to be the
active sites for CO2 adsorption, graphitic and pyridinic nitrogen are beneficial to the O2
reduction process, and the pyrrolic nitrogen can enhance the adsorption between lithium
ions and catalyst [22,23,34]. Thus, the coexistence of pyridinic, pyrrolic, and graphitic
nitrogen in the carbon nanosheets could improve the electrochemical performance of the
Li-CO2/O2 battery.
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Figure 6 shows the electrocatalytic activity and electron conductivity of the carbon
nanosheets and Super P catalysts, which are examined by CV and EIS measurements. As
the benchmark catalyst, the Super P catalyst exhibits no catalytic activity in CO2/O2, as
shown in Figure 6a. Surprisingly, the cathodic peak of carbon nanosheets is observed
at 2.5 V, indicating the O2 reduction process. In addition, the current density of the
carbon nanosheets along anodic and cathodic direction are much higher than that of
commercial Super P, revealing the considerable catalytic activity in Li-CO2/O2 battery.
Besides, the electron conductivity of the battery with carbon nanosheets and Super P are
further investigated in Figure 6b. Clearly, the Ohmic resistance (Ro) and charge transfer
resistance (Rct) of carbon nanosheets are both lower than that of Super P cathode, revealing
the remarkable enhanced electrical conductivity of carbon nanosheets.
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Figure 7 shows the capacity performance and long-term cycling stability of the
Li-CO2/O2 battery with carbon nanosheets and Super P catalysts. Firstly, the capacity per-
formance of Li-CO2/O2 battery catalyzed by carbon nanosheets and Super P are shown in
Figure 7a–c. The battery with carbon nanosheets cathode delivers the discharge capacity of
9825 mAh g−1, 9078 mAh g−1, 8295 mAh g−1, 7264 mAh g−1, 5841 mAh g−1 at the current
density of 200 mA g−1, 500 mA g−1, 800 mA g−1, 1200 mA g−1, and 1500 mA g−1, revealing
the outstanding capacity performance, excellent coulombic efficiency, and catalytic stabil-
ity at high current density. Moreover, the comprehensive capacity performance of carbon
nanosheets based Li-CO2/O2 battery is much better than that of the Super P cathode (the
highest capacity of 8908 mAh g−1 at 200 mA g−1). The first discharge–charge cycle under
different restricted conditions is collected in Figure 7d. The discharge platform of carbon
nanosheets based Li-CO2/O2 battery (2.81 V) is remarkably higher than that of Super P
cathode (2.70 V) at 500 mAh g−1. More importantly, the charge process of Li-CO2/O2 battery
can be effectively promoted by the carbon nanosheets catalyst, derived from the much lower
charge platform when compared with the Super P based battery. The evident overpotential ad-
vantage demonstrates the enhanced catalytic activity promoted by the mesoporous structures,
abundant channels, cellular morphology, and sufficient N dopants.

The cycling performance of Li-CO2/O2 battery with carbon nanosheets and Super P
cathode are further investigated for its long-term stability, as shown in Figure 7e. Obviously,
the battery with carbon nanosheets cathode delivers noticeable cycling performance of
95 cycles with the lowest voltage gap of 1.21 V. In addition, the discharge and charge
platforms are highly stable during the long-term cycling process, which start from the
first cycle (Edis: 2.82 V, Echar: 4.03 V) and then slowly increase to the 95 cycles (Edis:
2.48 V, Echar: 4.5 V). In contrast, the battery with Super P cathode under same restricted
capacity (500 mAh g−1) just sustains 24 cycles with remarkably increased overpotential of
1.75 V. Even under the higher restricted capacity of 1000 mAh g−1, the battery with carbon
nanosheets cathode can maintain continuous discharge–charge cycling up to 73 cycles
with almost flat voltage platform. However, the battery with Super P cathode just cycles
17 times with accelerated battery attenuation. The overpotential and long-term stability
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advantages can be attributed to the ordered mesoporous structure, high surface area, and
large numbers of defective sites in carbon nanosheets.
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In the Li-CO2/O2 battery, the carbon nanosheets successfully make the neighboring
C atoms positively charged and strengthen the O2 adsorption. Especially, the oxygen
molecules can directly bond to the lone pair electrons provided by pyridinic-N atoms and
tremendously promote the O2 reduction reaction, which is subsequently combined with
CO2 and the final discharge products Li2CO3 forms. Meanwhile, the faster CO2 adsorp-
tion kinetics have been accelerated by the N-dopant, which constructs an enriched CO2
atmosphere on the catalyst surface. With the assistance of special cellular morphology and
abundant channels effectively improving the Li2CO3 accommodation, and mesoporous
structures largely facilitating the CO2/O2 and ions transfer, the carbon nanosheets success-
fully fulfill the excellent discharge capacity performance and lower discharge overpotential.
During the charge process, the better electronic conductivity and higher surface area can
contribute to the faster Li+ and electron diffusion, lower interface current density, and
sufficient active sites, which can facilitate the Li2CO3 decomposition process and thus
deliver high cycling stability.

3. Materials and Methods
3.1. Synthesis of Carbon Nanosheets

The fresh lotus leaves were obtained from a local florist. Before being used, the leaves
were washed and ultrasonicated with deionized water several times to remove impurities.
The carbon nanosheets were prepared from lotus leaf as follows. Firstly, clean lotus leaf
was soaked in ethanol with ultrasonic treatment for 2 h for extracting chlorophyll. After
that, the chlorophyll extract was collected and dried in an oven at 80 ◦C Subsequently, the
obtained precursor was pyrolyzed at different temperature (400–800 ◦C) in N2 atmosphere
with different heating rate and calcination time.
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3.2. Characterization

The X-ray diffraction (XRD) patterns were collected on a X’Pert PRO X-ray Diffrac-
tometer with Cu-Kα radiation over a 2θ range of 10–80◦ (XRD, PANalytical B.V., Almelo,
Netherlands). Raman spectroscopy was performed on Lab RAM HR800 (Horiba JobinYvon
Co., Ltd., Paris, France) with 532 nm laser. X-ray photoelectron spectroscopy (XPS) was
carried on an X-ray photoelectron spectrometer (XPS, ESCA-LAB 250, Kratos, Japan). The
morphology characterizations of samples were conducted on a Field emission scanning
electron microscope (FE-SEM, FEI, Sirion 200, Eindhoven, The Netherlands). Nitrogen
adsorption-desorption isotherms were measured on a Micromeritics ASAP 2020 adsorption
analyzer (Micromeritics Co., Ltd., Atlanta, GA, USA). Additionally, the specific surface
areas and porosity of the samples were determined with the Brunauer-Emmett-Teller (BET)
equation using the Barrett-Joyner-Halenda (BJH) model.

3.3. Cathode Preparation and Battery Assembly

During the battery assembly, all the chemical agents were purchased from Aladdin
Co., Ltd. (New York, NY, USA). The Li-CO2/O2 batteries were assembled in an argon-filled
glovebox with both water and oxygen concentrations less than 0.1 ppm. All those batteries
were assembled into CR2025-type coin cells, which consisted of the air cathode, separator
(glass fiber, Whatman Co., Ltd., Metstone, UK), electrolyte (1 mol L−1 LiTFSI in DMSO),
lithium disk, stainless steel spacer, and coin cell cover. Before assembly, LiTFSI was dried
in a vacuum oven, and the electrolyte was dried with activated 4 Å molecular sieves,
ensuring water concentration less than 20 ppm (measured by Karl Fischer titration). The
carbon nanosheets and Super P cathodes were prepared as follows. The mixture composed
of carbon nanosheets (Super P) and PVdF (polyvinylidene fluoride, MW 534,000, 99.9%,
Sigma Aldrich Co., Ltd., St Louis, MO, USA) at a mass ratio of 9:1, was uniformly dispersed
in Nmethyl-2-pyrrolidone (NMP) to form a slurry, which was coated on carbon paper
(15.6 × 0.27 mm, Toray Co., Ltd., Tokyo, Japan) and dried at 80 ◦C overnight in a vacuum
oven. The average loading of the active material was adjusted as about 0.4 mg·cm−2.
In addition, the ratio of CO2/O2 was confirmed as 2:1, as referred to in our previous
works [35].

3.4. Electrochemical Measurements

The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) mea-
surements were performed on Zennium IM6 station (Zahner Co., Ltd., Kronach, Germany).
For CV experiments, the voltage window was set as 2.0–4.5 V using rotating disk electrode
(RDE) with a sweep rate of 1 mV s−1. Li metal discs were used as the reference electrode
and the counter electrode, glass carbon disc with the diameter of 3 mm as the working elec-
trode, and 1 M LiTFSI in CO2/O2-saturated DMSO as electrolyte. The working electrode
consisted of 0.5 mg carbon nanosheets or Super P dispersing in 700 µL of ethanol/DI water
(ν:ν = 1:2) solution followed by 10 µL of Nafion solution (5 wt%), which was sonicated for
30 min to prepare a homogeneous ink and then coated on the glass carbon and dried at
80 ◦C overnight before used. For the EIS measurement, an amplitude of 5 mV within the
frequency range of 100 kHz to 10 mHz was applied.

The galvanostatic discharge/charge tests were conducted on a Hantest cycler (Wuhan
Hantest Technology Co., Ltd., Wuhan, China) with a voltage range of 2.2–4.5 V (vs. Li/Li+).
Before the test, all those batteries were rested for 8 h to reach equilibrium of the oxygen
concentrations in the electrolyte. The capacities and current densities of the batteries were
calculated based on the mass of the active material (catalyst/Super P).

4. Conclusions

In summary, N-doped carbon nanosheets with numerous mesopores and abundant
active sites have been successfully synthesized with lout leaf precursor. The combination
of ordered channel and pyridinic/pyrrolic nitrogen can improve CO2 adsorption, and
the uniform dispersion of abundant graphitic and pyridinic nitrogen is beneficial to the
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O2 reduction process, and the pyrrolic nitrogen and enhanced electron conductivity can
strengthen the adsorption and transfer of lithium ions and electron, and the porous morphol-
ogy and high surface area can enlarge the discharge products deposition. Comprehensively,
the electrochemical performance of Li-CO2/O2 battery with carbon nanosheets cathode
can be dramatically improved based on the underlying mechanism (4Li+ + 2CO2 + O2 + 4e
→ 2Li2CO3). Accordingly, the battery delivers a high discharge capacity of 9825 mAh g−1,
acceptable overpotential of 1.21 V, and long-term cycling stability of 95 cycles. The work
strongly proves that the biomass-derived carbon materials can be the alternative candidate
for high-performance cathode catalyst in Li-CO2/O2 battery. More importantly, multiple
advantages of this approach, including, but not limited to, high efficiency and facile prepa-
ration, resource-unlimited material, and spontaneous unique morphology, contribute to
the development of economic and environmental-friendly Li-CO2/O2 battery.
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