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Abstract: A series of copper doping LaFeO3 perovskite (LaCuxFe1−xO3, LCFO, x = 0.1, 0.4, 0.5, 0.6,
0.9) are successfully synthesized by the sol-gel method under mild conditions. In this study, it is
applied for the activation of peroxymonosulfate (PMS) for bisphenol A (BPA) removal. More than
92.6% of BPA was degraded within 30 min at 0.7 g/L of LCFO and 10.0 mM of PMS over a wide pH
range with limited leaching of copper and iron ions. The physical–chemical properties of the catalysts
were demonstrated by using X-ray diffraction (XRD), N2 adsorption–desorption isotherms, scanning
electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Furthermore, the effects
of catalyst dosage, PMS concentration, initial pH value, and inorganic anions on the LCFO/PMS
system were fully investigated. Quenching experiments were performed to verify the formation of
reactive oxidant species, which showed that the radical reaction and mechanisms play a great role in
the catalytic degradation of BPA. The perovskite LCFO is considered a stable, easy to synthesize, and
efficient catalyst for the activation of PMS for wastewater treatment.

Keywords: bisphenol A; LaCuxFe1−xO3 perovskite; peroxymonosulfate

1. Introduction

In recent years, pharmaceuticals and personal care products (PPCPs) have been widely
used and could be easily found and detected in various environmental compartments
at trace concentrations [1–6]. Bisphenol A (BPA), which is used as a common chemical
reagent in the production of plastics and epoxy resins, can induce endocrine dyscrasia and
cancer [7–9]. It poses great threat to human health even at low concentrations, due to which
it has attracted increasing attention in the environmental protection areas. However, the
BPA removal efficiency by conventional treatment technologies is unsatisfactory due to its
trace concentration and negligible removal by only a single removal technology [10]. It
is important to obtain environmental-friendly treatment technology for the degradation
of BPA.

On the other hand, sulfate radical-based advanced oxidation processes (SR-AOPs)
have gone through a long developing process for the removal of recalcitrant organic con-
taminants in water [11–14]. In SR-AOPs systems, many researchers have proven that
organic contaminants are mineralized by reactive oxygen species (ROS), such as sulfate
radical (SO4

•−), hydroxyl radical (•OH), and superoxide radical (O2
•−) [15–17]. The sulfate

radical possessed a higher standard oxidative potential (2.6–3.1 V vs. NHE) than hydroxyl
radical (1.8–2.7 V vs. NHE), a longer half-life, and a wider pH range in the wastewater
treatment. Moreover, sulfate radicals could be more efficient in the removal of many refrac-
tory contaminants, which also result in higher selectivity in these processes than hydroxyl
radicals [18]. In general, both peroxydisulfate (PS) and peroxymonosulfate (PMS) can be
activated by multiple catalysts to form sulfate radicals. However, due to its asymmetric
structure, PMS has shown better decomposing efficiency than PS. Various transition metals,
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such as Fe [19–21], Cu [22–24], Mn [25–27], and Co [28–31], have been employed for the
activation of PMS to generate ROS. Among the various catalysts, perovskites have been
explored for use in dissociating PMS to remove organic contaminants from water to obtain
high catalytic activity.

Perovskites have high thermal stability due to their ABO3 formula, which gives them
a unique oxidation state of the lattice oxygen in the perovskite materials. The A site
cations consist of alkaline or rare earth metals ions where the B site can be consisted of
transition metal ions [32–36]. Compared with the metal oxides catalysts, the structure and
physicochemical properties endowed perovskites with flexible tuned structure to perform
ideal catalyst functions for PMS activation with good catalytic activity. Perovskites can be
easily separated from water to avoid secondary pollution to the environment, which can
also prevent the aggregation problem in the metal oxides, showing good process stability
in the process. Many studies have shown that partial substitution of B sites by transition
metals can generate a defective perovskite structure, which is beneficial for catalytic activity
related to the improvement of oxygen mobility [37].

It is known that cobalt ions are the most effective activator for PMS [38]. However, the
Fe-based perovskites have been paid more attention due to low cost and low toxicity in con-
trast to Co-based perovskites. On the other hand, Cu-based perovskites can also efficiently
decompose PMS in order to generate reactive oxidant species. It is really interesting to
introduce copper ions in the LaFeO3 perovskites for the degradation of pollutants [39]. The
excellent catalytic properties of Cu-based and Fe-based perovskites, such as La2CuO4 [40],
LaFeO3 [41], and LaFe1−xCoxO3 [42], can be attributed to the presence of foreign element
maintained in the structure and modified physicochemical properties. The presence of
foreign elements in the perovskites and transition metal species create excellent catalytic
activity. The change in perovskites structure facilitate the electron transfers from the tran-
sition metals to PMS, producing more ROS in the process. The formed metal-O bonds
can boost the electron transfer between the redox pairs of Fe(III)/Fe(II) and Cu(II)/Cu(I),
leading to the improvement of catalytic activity. The perovskite LaAxB1−xO3 (A or B = Co,
Fe, Cu) is expected to be an efficient catalytic material in SR-AOPs [43]. In perovskite,
the cation at both A and B sites can be substituted by a foreign one, making it feasible to
control the valance state of cations without detriment of original crystal structure [44]. The
capability of electron transfer is influenced by the La site and Fe/Cu sites in the redox
reactions, which would be enhanced by the presence of the A–O–M bond, further leading
to better catalytic activity. In this case, the Cu-doped LaFeO3 perovskite catalyst would
give an interesting insight into the synergistic strategy between bimetallic active ions in
perovskite structure and the heterogeneous catalyst activating PMS to remove the refractory
chemicals in water. To the best of our knowledge, studies focused on Cu-doped LaFeO3
perovskites for PMS activation for BPA removal are still rare.

In this study, Cu doping LaFeO3 perovskite oxide, LaCuxFe1−xO3 (LCFO), was fab-
ricated via the sol-gel methods and used as a catalytic activator for PMS to remove BPA
from water. The physicochemical properties and morphology of LCFO have been systemat-
ically characterized by many techniques. In addition, the effects of different experimental
conditions on the BPA degradation efficiency and different water matrices, including pure
water, lake water, and sea water, have been tested in order to find the utility in actual water
treatment. Further experiments, such as reusability, kinetics, and reaction mechanism,
have been carried out to evaluate the actual application potential of LCFO. This research
offers creative ideas about the high catalytic activity of LCFO in the decomposition of
PMS, which provides a new way to illustrate the mechanism of the LCFO/PMS process in
actual wastewater.

2. Results
2.1. Physicochemical Characteristics of LCFO

For the LCFO catalysts, the actual content of metals followed the named content.
The X-ray powder diffraction patterns of the LaCuxFe1−xO3 perovskites are shown in
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Figure 1a,c,d. It was observed that with Cu doping into the structure of LaFeO3, the
perovskite phase is maintained without the diffraction peaks of copper oxides as the
x = 0.1–0.5. While for x = 0.6 and 0.9 in the diffractograms, i.e., the copper content increased
in the LaFeO3 perovskite, some impurity peaks assigned to La2CuO4 (PDF card: 80–0063)
and CuOx could be formed, as has been previously reported [45]. Accordingly, the impurity
peak intensity in the composites increased as the amount of copper content increased.
However, the characteristic diffraction peak of LaFeO3 at 32.3◦ weakened as the copper
content increased in LCFO-5. As shown in Figure 1c, the results show that the diffraction
peaks corresponding to 121 planes shifted slightly toward the higher 2θ angle with the
increase in x ratio. The results could be ascribed to the replacement of Fe by Cu element
which aroused the increment of unit cell parameters due to the different ionic radii of
copper and iron (Cu: 0.73 Å, Fe: 0.63 Å) [46–48]. The results confirmed the existence
of copper and iron in the perovskite lattice. To estimate its catalytic stability, the XRD
pattern of used LCFO-4 catalyst was also explored. No remarkable changes appeared in
the XRD patterns of the used catalyst. However, it is observed that the intensity of peaks
around ~29.2◦ and ~35.4◦ declined. The difference between fresh and used catalyst might
be attributed to leaching metal ions which caused the loss of reactive sites in the original
perovskite. The results demonstrate that the main perovskite structure remained during
the reaction.
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Figure 1. XRD patterns (a); and FTIR spectra (b) of LCFO catalyst, enlarged XRD patterns (c) and
XRD patterns of refinement and used catalyst (d).

The FTIR spectra illustrate the surface functional groups in the LCFO catalyst and
verified the doping Cu strategy in perovskite LaFeO3. As shown in Figure 1b, the low
intensity band at 563 cm−1 and 439 cm−1 is considered to represent the stretching vibrations
of Fe–O and O–Fe–O deformation vibrations. In addition, the peak was observed slightly
shifted toward higher wavenumbers with increasing Cu doping in the LaFeO3 structure
since the Fe was partially substituted by Cu [49–52]. For the used catalyst, the bands
remained during the reaction with similar intensity.

The N2 adsorption/desorption isotherms of LCO-4 catalysts are also summarized and
shown in Figure 2a. The BET surface area of LCFO-4 was found to be 10.8 m2/g, and the
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particle size was determined to be 40.4 nm. The type IV isotherm indicates the presence of
mesopores in the catalyst, which could indicate good catalytic activity in the degradation
of BPA.
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Figure 2. BET isotherm image (a) and SEM images and EDX spectra (b); Cu mapping (c); Fe
mapping (d); La mapping (e); and O mapping (f) of LCFO-4.

The morphologies of the LCFO-4 catalyst were determined by SEM-EDS. As seen in
Figure 2b–d, it was observed that the catalyst consists of a honeycomb-like structure with
spheroidal particles in the size of 40–50 nm. An examination of the EDS spectra was also
carried out to estimate the elemental composition of the nanoparticles. The La/Cu and
La/Fe atomic ratios were calculated to be 0.6 and 0.4, respectively, which are very close to
the stoichiometry atomic ratio of LCFO-4 (x = 0.6). Meanwhile, the atomic ratio O/Cu-Fe
was determined to be 3.65, which is in good agreement with the stoichiometric ratio. The
atomic mapping images also show that the four elements were highly dispersed over the
as-prepared LCFO-4 sample [53].

The surface chemistry characteristics of the fresh LCFO-4 and used LCFO-4 were
determined by examining the XPS spectra in Figure 3. In the XPS survey spectra, the
characteristic peaks of four elements (La, Cu, Fe, O) were observed, which illustrate the
chemical composition of the LCFO-4 sample. The XPS spectra of as-synthesized catalysts
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showed the reaction roles of the Cu and Fe species that act as an electron acceptor [50–52].
It was observed that the peaks centered at 834.6 eV and 851.5 eV with corresponding
satellite peaks located at 838.1 and 854.9 eV could be attributed to La 3d. For C 1s XPS
spectra (Figure 3c), the peak centered at 284.6 eV could be assigned to the variable carbon
adsorbed on the surface or the C–C coordination in the sample. And the peak at 288.7 eV
was attributed to the bonded C=N or C–N of CN. The high-resolution Cu 2p and Fe 3p
XPS spectra are shown in Figure 3d,e. The peaks and corresponding satellite peaks at
approximately 709.8 eV and 723.3 eV were assigned to Fe species. Meanwhile, the peaks
located at 932.4 eV indicate the presence of Cu(I) with the molar content of 58.7%, and
the other peaks centered at 934.2 eV with the molar content of 41.3% belonged to Cu(II).
The quantified atomic ratios of Cu(I) and Fe(II) are quantified as 41.8% and 32.1% in the
used catalyst after use, respectively, indicating that the redox reaction between Cu and
Fe occurred in the reaction. Four deconvoluted peaks at 528.5 eV, 529.4 eV, 531.6 eV, and
532.8 eV are found in the high-resolution of O spectra, which could be attributed to lattice
oxygen, surface oxygen species, hydroxyl groups, and absorbed water, respectively.
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2.2. Catalytic Activity of Catalyst

To analyze the influence of the LCFO-4 activation for PMS on the degradation of BPA,
the experiments were performed with the same experimental parameters previously used.
As shown in Figure 4a, only a little removal of BPA (approximately 1.4%) was observed in
the presence of LCFO-4 alone, which could be attributed to the low adsorption efficiency of
BPA on the surface of LCFO-4. Moreover, the degradation efficiency was less than 8.3%
in the 30 min reaction without the addition of the LCFO-4 catalyst by using PMS alone.
The results indicated that BPA was hardly removed from the water by only PMS or only
catalyst, indicating that the formation of reactive radicals played a great role in the SR-AOP
processes [54–56]. With the increasing addition of copper element, the removal efficiency
of BPA degradation performance of the samples increased first, but decreased with further
addition of copper content. Compared to the other samples, LCFO-4 displayed the best
performance. With the presence of pure La2CuO4 and pure LaFeO3, the removal efficiency
of BPA was 89.1% and 67.3% in 30 min reaction. The presence of PMS and LCFO-4 showed
a great decline in BPA concentration (92.7%). The synergy between the impurity phases in
the original LCFO-4 catalyst might affect the catalytic activity. Meanwhile, the activation
of PMS by homogeneous copper and iron ions was responsible for 31.2% degradation of
BPA. Therefore, it is reasonably speculated that due to the presence of LCFO-4, LCFO-4
was responsible for the activation of the PMS to generate reactive species for the high
degradation efficiency of BPA.
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2.3. Effect of Catalyst Dosage

It is studied that the heterogeneous catalyst played a key role in the formation of
reactive species for PMS activation [57]. In order to investigate the effect of catalyst dosage
on the activation of PMS, a series of catalyst dosage were employed in the heterogeneous
catalyst/PMS process. Figure 5 show the effect of catalyst dosage on BPA removal efficiency
and kinetic rate. When the dosage of LCFO-4 was varied from 0.1 g/L to 0.7 g/L, the BPA
removal efficiency increased from 29.2% to 92.7% and corresponding k values increased
from 0.0104 min−1 to 0.0828 min−1 within 30 min. While the catalyst dosage increased
from 0.7 g/L to 1.0 g/L, although the remove efficiency reached to 94.3%, the increase in
reaction rate constant increasement slowed down, as the corresponding k value increased
from 0.0828 min−1 to 0.0972 min−1. This might be attributed to the fact that more active
sites were provided in the reaction due to the increase in catalyst dosage, enhanced PMS
activation, and the increased free radicals formed by activation of PMS. Therefore, the
BPA removal efficiency and rate were both accelerated with the increase in catalyst dosage;
when the amount of catalyst was greater than 0.7 g/L, more active sites were exposed
in the reaction with more free radicals, where the quenching experiments would appear,
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resulting in a reduced reaction rate. For the economic consideration, 0.7 g/L was chosen as
the catalyst dosage for the sequenced experiments.

•OH + •OH→ H2O2 (1)

SO4
•− + SO4

•− → S2O8
2− (2)

SO4
•− + •OH→ HSO5

− (3)
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2.4. Effect of PMS Concentration

On the other hand, a variation in PMS concentration would also affect the removal
efficiency as the reaction oxidant [58]. As shown in Figure 6, with the PMS concentration
ranging from 1.0 mM to 10 mM, the removal of BPA was significantly improved from
34.7% to 92.7%, and the reaction rate constant changed from 0.0138 min−1 to 0.0828 min−1.
These results illustrated the fact that the LCFO-4 catalyst is an effective activator for PMS
decomposition, leading to more reactive oxygen species during the reaction.
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Figure 6. Effect of PMS concentration on BPA removal. Conditions: C0 = 0.05 mM, [LCFO-4] = 0.7 g/L,
pH0 6.8.
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2.5. Effect of pH Value

The effect of the initial pH was investigated and shown in Figure 7. As the solution
pH changed from 3.0 to 6.8, the BPA elimination process was enhanced, while the removal
efficiency increased from 87.1% to 92.7%, and the reaction rate constant ranged from
0.0624 min−1 to 0.0828 min−1. It was studied that the solution pH values were quickly
changed to around 4.5 during the whole reaction time under these pH values. This could be
responsible for the similar BPA removal efficiency. The zeta potential was investigated and
shown in Figure 7b. The isoelectric point of LCFO-4 is around 9.4, indicating the catalyst
surface was charged when the pH is lower than 9.4. In this case, contact between HSO5

−

and LCFO surfaces would be more feasible, which is the major PMS species under 9.4,
favoring the following PMS activation. With the solution pH raised to 11.0, the degradation
efficiency was further enhanced to the point where 100% removal efficiency was achieved in
30 min. These results show that the base activation conditions facilitated the decomposition
of PMS, leading to the higher degradation efficiency, which is in good agreement with
the previous studies [59–62]. On the other hand, the structure of the catalyst would be
destroyed by the acidic conditions, leading to lower catalytic activity. The metal leaching
was also tested under different pH values, as seen in Figure 7c. The results indicated
that the LCFO-4 catalyst was stable in a wide range of pH, presenting good stability in
the reaction.
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Figure 7. (a) Effect of pH value on BPA removal in LCFO-4/PMS systems; (b) zeta potential of
LCFO-4; (c) metal leaching under different pH value. Conditions: C0 = 0.05 mM, [LCFO-4] = 0.7 g/L,
[PMS] = 10.0 mM.

2.6. Effect of Co-Existing Ions

Inorganic anions are considered as a reactant that can also compete with the reactive
species or react with them to form new reactive species. In this study, the effects of Cl−

and HCO3
− on BPA degradation were analyzed. As can be seen in Figure 8a, with the

addition of chloride ions, the removal efficiency of BPA was approximately approached
to 100% when the presence of 1.0 mM chloride ions was added in the systems. The reason
could be ascribed to the reaction between Cl– and free radicals which caused the formation
of •Cl and •ClOH, as shown in Equations (5)–(7) [63–66]. Despite the redox potential
of these species is lower than that of hydroxyl radicals and sulfate radicals, the reaction
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rate constants were high which showed good attack ability against BPA. In conclusion,
lower concentration of Cl− showed good BPA removal efficiency in this system which is in
agreement with the other reports [67–69]. On the other hand, with the presence of 5.0 mM
and 10.0 mM Cl−, it was observed that the BPA removal efficiency went through inhibition
as the concentration of Cl− increased. The results could be ascribed to the side reaction
between the Cl− and reactive species (HSO5

−/•OH/SO4
•−) to generate chlorine species,

which have lower redox potential values than hydroxyl radical and sulfate radical and lead
to the consumption of the oxidant reactant.

Cl− + HSO5
− → SO4

2− + HClO (4)

Cl− + SO4
•− → •Cl + SO4

2− (5)

Cl− + •OH→ •ClOH (6)
•ClOH + H+ → •Cl + H2O (7)

•Cl + Cl− → •Cl2− (8)
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Figure 8. (a) Effect of Cl− on BPA removal; (b) effect of HCO3
− on BPA removal. Conditions:

C0 = 0.05 mM, [LCFO-4] = 0.7 g/L, [PMS] = 10.0 mM, pH0 6.8.

It has been reported that the presence of HCO3
− can capture the hydroxyl radicals

and sulfate radicals, leading to the formation of less reactive carbonate radicals [64]. The
degradation efficiency of BPA decreased from 91.0% to 42.0% within 30 min with increasing
HCO3

− concentration from 0 to 5 mmol/L. The kobs values declined from 0.030 min−1 to
0.0170 min−1. The results could be ascribed to the fact that the solution pH value would
change with the addition of HCO3

−. When the addition of HCO3
− was 1.0 mM, 3.0 mM,

5.0 mM, and 10.0 mM, the solution pH was 3.25, 3.65, 4.31 and 5.97, respectively. Unlike the
effect of choline ions, in the presence of HCO3

− anions, there is an obvious decrease in the
catalytic activity of the system with the addition of HCO3

− compared to Cl−. These results
may be attributed to the rapid speed of bicarbonate anions with sulfate and hydroxyl
radicals with the formation of lower redox potential (HCO3

•−/CO3
•−), leading to negative

impact on BPA degradation. Based on the above reasons, HCO3
− presented stronger

influence on the catalytic degradation than that of Cl−.

•OH + HCO3
− → CO3

•− + H2O (9)

SO4
•− + HCO3

− → CO3
•− + SO4

2− + H+ (10)

2.7. Identification of Reactive Oxidant Species

A series of quenching experiments were carried out to identify the dominant reactive
radicals by using tert-butyl alcohol (TBA), p-benzoquinone (BQ), and methanol (MeOH)
as scavenger of free radicals. It has been reported that TBA is an effective quenching
chemical for •OH (k = 4–9 × 105 M−1s−1), whereas BQ is a scavenger for superoxide
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(k = 2.9 × 109 M−1s−1), and MeOH is used for both •OH (k = 1.2–1.8 × 109 M−1s−1) and
SO4

•−(k = 1.6–7.8× 107 M−1s−1) [65–67]. As can be seen in Figure 9, the results showed that
the addition of TBA decreased the removal efficiency of BPA to 84.9%, and the addition of
MeOH decreased the removal efficiency of BPA to 60.7%, implying both the sulfate radical
and hydroxyl radical played a great role in the degradation of BPA in the PMS/LCFO
system. Thus, the degradation efficiency decreased from 92.7% to 45.8% with the addition
of BQ within 10 min, indicating that the superoxide was generated in the PMS/LCFO-4
system. These results can be ascribed to the scavenging effect of hydroxyl radicals to BQ
and the superoxide suffered shorter half-life than that of sulfate radicals and hydroxyl
radicals. In addition, the above results proved that both hydroxyl radicals and sulfate
radicals are the important reactive oxidants in the heterogenous catalysis system.
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Figure 9. Effect of scavengers on BPA removal in the LCFO/PMS process. Conditions: C0 = 0.05 mM,
[LCFO-4] = 0.7 g/L, [PMS] = 10.0 mM, [Scavenger] = 50 mM.

3. Mechanism of the PMS Activation on LCFO

Reusability experiments were carried out to verify the stability of the LCFO catalyst.
The degradation efficiencies were 92.5%, 87.6%, and 79.8% for three times, respectively,
as shown in Figure 10a. Moreover, the kobs values are 0.0814 min−1, 0.0723 min−1, and
0.0605 min−1, respectively, which are lower than that of fresh catalyst. Although the
degradation efficiency was maintained in the recycle experiments, the rate constant was
declined during the experiments. This could be ascribed to the leaching metal ions after
each reaction since the loss of reactive sites. On the other hand, the reactive sites could be
occupied by the produced intermediates which could also affect the degradation efficiency
and the rate of speed of reaction.
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Figure 10. (a) Catalytic performance for three runs; (b) catalytic performance in different water matrix.
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However, the typical degradation experiments were performed in pure water. In
addition, the feasibility of using LCFO catalysts for practical applications was also carried
out by investigating different water matrices, including Lake LiZe water (LL) and sea water
(SW). As can be seen in Figure 10b, nearly 39.5% and 14.6% of BPA was removed from the
LL and SW matrices, respectively. The removal efficiency was lower than that found in pure
water, which is attributed to the coexisting ions, leading to the consumption of reactive
species and oxidants. The LCFO-4/PMS system had showed high catalytic activity in
different water matrices, demonstrating its feasibility and stability for use in various water
matrices [68–70]. During the catalytic cycles, metal leaching was also explored to investigate
the stability of LCFO catalyst. The leaching iron and copper ions were 0.048 and 0.859 mg/L
after the catalytic reaction, which might be responsible for the reduced catalytic efficiency in
the sequence usage. For investigating the contribution of homogeneous metal leaching, the
experiment of leaching concentration of iron and copper ions was performed. An observed
31.2% degradation of BPA was obtained which is much lower than that in heterogeneous
catalytic system. As a result, the contribution of homogeneous catalytic process was limited
as the catalytic activation of PMS played a great role in the BPA removal.

TOC experiments were also used to investigate the mineralization of BPA under
optimal reaction conditions. The TOC degradation was 56.8% in the LCFO-4/PMS system,
showing good efficiency for the mineralization of BPA, which was in good agreement
with the degradation efficiency of BPA. Moreover, the LCFO-4/PMS systems were also
employed for the degradation of other organic contaminants, such as Orange II, Rhodamine
B (RhB), and levofloxacin (LFX). The degradation efficiency values of Orange II and RhB
were 100% in a 15 min reaction time, whereas the degradation efficiencies values of LFX
were approximately 70.8%. The results showed that LCFO was an effective catalyst for
many common organic pollutants, especially for the removal of dyes.

It has been reported that copper and iron elements are able to activate PMS to generate
the sulfate radicals and hydroxyl radicals [69]. The La peak can be observed that there are
two double peaks in the spectra. One peak was located at 834.6 eV with satellite peaks
located at 838.1 eV, and the other peak was located at 851.5 eV with satellite peaks located
at 854.9 eV. There is nearly no change in La valence of LCFO-4 before and after the catalytic
reactions. The Cu 2p peaks can be divided into two peaks with binding energies of 932.4 eV
and 934.2 eV, which indicate the presence of Cu(I) with the content of 58.7%. The peak
observed at 709.8 eV with a satellite peak at 709.3 eV in the XPS spectra of Fe 2p was
assigned to Fe 2p 1/2. The peak of Fe 2p 3/2 centered at 721.3 eV was considered to be
Fe(III) species. In the used LCFO-4 catalysts, the relative Cu(I) and Fe(II) contents decreased
after catalytic process, indicating the presence of electron transfer between the surface of the
catalyst and the PMS. The O 1s XPS spectra of fresh and used LCFO-4 can be deconvoluted
into four peaks located at 528.5, 529.4, 531.6, and 532.8 eV, which are responsible for the
O2−, absorbed oxygen species, and the hydroxyl groups of the adsorbed H2O. The O2−

peak content slightly decreased while the absorbed oxygen increased in the used catalyst,
indicating that the O2− participated in the catalytic performance.

Based on these results and previous study, the mechanism of the LCFO-4 activation
of PMS for BPA removal was inferred [70]. At first, PMS can be directly activated by
Cu(II)/Cu(I) and Fe(III)/Fe(II) on the surface of LCFO catalyst, leading to the generation of
sulfate radicals and hydroxyl radicals. In the meantime, the HSO5

− could be converted
to hydroxyl sites through the hydrogen bonds which formed by the reaction between
copper/iron states and H2O molecules. The HSO5

− was further reduced to sulfate radicals
and combined to generate sulfate radicals. Moreover, the vacancies in the structure also
played a great role in PMS activation, which led to the presence of redox reactions and
facilitated the electron transfer with PMS on the surface of the LCFO catalyst. Moreover,
non-radical mechanism was also detected in this process. Through the reaction between
HSO5

− absorbed on LCFO and vacancies, the Oo
× was formed and participated in the

reaction which represents the oxygen ions in a normal oxygen site. During the generation
of Oo

×, the singlet oxygen was formed. On the other hand, singlet oxygen (1O2) was also
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generated by the self-decomposition of PMS, which is very slow and not detect in this
study due to its low concentration. These reactive species noted above, can participate in
the conversion removal of BPA to intermediates or end with full mineralization.

Catalyst-Cu(I) + HSO5
− → Catalyst-Cu(II)+ SO4

•− + •OH (11)

Catalyst-Cu(II) + HSO5
− → Catalyst-Cu(I) + SO5

− + H+ (12)

Catalyst-Fe(II) + HSO5
− → Catalyst-Fe(III) + SO4

•− + •OH (13)

Catalyst-Fe(III) + HSO5
− + H+ + O*→ Catalyst-Fe(II) + SO5

− + H2O (14)

Catalyst-Fe(II)-OH− + HSO5
− → Catalyst-Fe(III)-OH− + SO4

•− (15)

Catalyst-Cu(I)-OH− + HSO5
− → Catalyst-Cu(II)-OH− + SO4

•− (16)

HSO5
− + •OH→ SO5

•− + H2O (17)

SO5
•− + SO5

•− → SO4
•− + SO4

•− + O2 (18)

HSO5
− + O*→ HSO4

− + 1O2 (19)

HSO5
− + SO5

2− → HSO4
− + SO4

2− + 1O2 (20)

SO4
•− + H2O→ •OH + SO4

2− + H+ (21)

4. Materials and Methods
4.1. Chemicals

The chemical reagents were all analytical grade and used without further purification.
The solutions were prepared with deionized water. Different water matrices, such as
lake water (LiZe Lake in Zhuhai) and sea water (Zhuhai), were also introduced in the
experiments for which only filtration of the floating impurities was done.

4.2. Preparation of LCFO

The sol-gel method was employed to synthesize LCFO particles. First, 10 mmol
citric acid was dissolved in 5 mL deionized water. Then, 5 mmol La(NO3)3·6H2O was
added into the solution with a certain amount of Cu(NO3)2·3H2O and Fe(NO3)3·9H2O. The
homogenous solution was slowly heated to 80 ◦C to evaporate the water and continuously
stirred for 2 h until the gel was found. The gel was dried at 110 ◦C in an oven, and calcined
at 250 ◦C for 4 h to obtain a brown powder. The powder was secondarily calcined at 700 ◦C
for 4 h. The serious LCFO catalyst was denoted as LCFO-1 (x = 0.1), LCFO-2 (x = 0.4),
LCFO-3 (x = 0.5), LCFO-4 (x = 0.6), LCFO-5 (x = 0.9).

4.3. Experimental Procedures

In this study, a certain amount of PMS was added to a 250 mL glass beaker contain-
ing 100 mL of a 0.05 mM BPA solution at a neutral pH value. The pH of the solution
was adjusted by 0.1 M H2SO4 and 0.1 M NaOH. The reaction was performed at room
temperature (25 ± 2 ◦C) with magnetic stirring at 600 rpm. First, 0.5 g/L LCFO catalyst
was added to the BPA solution under stirring. At time intervals of 5 min, 1 mL samples
were collected by syringe and filtered through 0.22 µm membranes to remove the catalyst,
and then the sample was mixed with 10 µL methanol (MeOH) to terminate the reactive
radical reaction before analysis by high-performance liquid chromatography (HPLC, LC16,
Shimadzu, Kyoto, Japan). The experiments were performed three times, and the average
value was used.

4.4. Catalyst Characterization and Analytical Methods

The concentration of BPA was measured via a high-pressure liquid chromatography
(HPLC) system (LC16, Shimadzu, Kyoto, Japan) equipped with a C18 (4.6 mm × 150 mm,
5 mm) column and a UV detector set at 280 nm. The mobile phase was 70% methanol and



Catalysts 2023, 13, 575 13 of 16

30% ultrapure water, and the flow was set to 1.0 mL/min. To verify the reaction kinetics
of BPA degradation in the LCFO/PMS process, a pseudo first-order kinetic model was
employed. The degradation reaction rate constant of BPA was determined according to
Equation (1):

ln(C0/Ct) = kobs × t (22)

where C0 is the initial BPA concentration of 0.05 M, Ct is the BPA concentration during the
degradation process, kobs represents the pseudo first-order reaction rate constant (min−1),
and t is the reaction time.

X-ray diffraction (XRD) patterns were obtained using a Bruker D8 ADVANCE X-ray
diffractometer (Bruker AXS, Karlsruhe, Germany) with graphite monochromatic Cu Kα

radiation (λ = 1.54 Å) at an accelerating voltage of 40 kV and a current of 30 mA over a
2θ scanning range of 10–80◦. Scanning electron microscopy (SEM) was performed on a
Hitachi SU8220 (Hitachi Corporation, Tokyo, Japan) field emission X-ray energy dispersive
spectra (EDS) instrument to determine the element distribution. X-ray photoelectron spec-
troscopy (XPS) was conducted to obtain surface chemical information with a Thermo Fisher
ESCALAB250Xi (Thermo Fisher Scientific, Waltham, MA, USA). The diffuse reflectance spec-
tra (DRS) were obtained using an ultraviolet-visible-near infrared spectrophotometer with
Shimadzu UV-3600 Plus (Shimadzu, Kyoto, Japan). The textural properties of the samples
were analyzed by N2 adsorption–desorption technology using an automatic Micromeritics
Instrument Corporation TriStar II 3020 (Micromeritics Instrument Corporation, Norcross,
GA, USA). The TOC analyzer (XPERT-TOC/TNb, Trace Elemental Instruments, Delft, The
Netherlands) was introduced to determine the mineralization level of BPA. In the typical
quenching experiments, methanol (MeOH) is employed to capture hydroxyl radicals (•OH)
and sulfate radicals (SO4

•−). Tert-butyl alcohol (TBA) is used for scavenging hydroxyl radicals
(•OH), and benzoquinone (BQ) is used to scavenge superoxide radical (O2

•−).

5. Conclusions

In this study, the perovskite LaCuxFe1−xO3 was successfully synthesized through the
sol-gel method and showed excellent catalytic activity for the removal of BPA. The BPA
removal efficiency was approximately 92.6% in 30 min with the addition of 10.0 mM PMS
and 0.7 g/L CFO-4. The hydroxyl radical (•OH) and sulfate radicals (SO4

•−) are considered
as the main reactive species in this system. The stability and reusability of the catalytic
performance were verified through three reaction cycles with limited amounts of copper
and iron ions leaching into the solution. In summary, this study provides an efficient
strategy to determine the catalytic potential of partial substitution of B site in perovskite for
PMS activation toward the removal of refractory organic chemicals in wastewater treatment.
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