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Abstract: We found an effective catalytic consortium capable of converting glucose to 5-hydroxy
methylfurfural (HMF) in high yields (50%). The reaction consists of a consortium of a Lewis acid
(NbCl5) and a Brønsted acid (p-sulfonic acid calix[4]arene (CX4SO3H)), in a microwave-assisted
reactor and in a biphasic system. The best result for the conversion of glucose to HMF (yield of 50%)
was obtained with CX4SO3H/NbCl5 (5 wt%/7.5 wt%), using water/NaCl and MIBK (1:3), at 150 ◦C,
for 17.5 min. The consortium catalyst recycling was tested, allowing its reuse for up to seven times,
while maintaining the HMF yield constant. Additionally, it proposed a catalytic cycle by converting
glucose to HMF, highlighting the following two key points: the isomerization of glucose into fructose,
in the presence of Lewis acid (NbCl5), and the conversion of fructose into HMF, in the presence of
CX4SO3H/NbCl5. A mechanism for the conversion of glucose to HMF was proposed and validated.

Keywords: biorefinery; niobium; calix[n]arenes

1. Introduction

Biomass is a renewable source of carbohydrates from which important chemicals can
be obtained, such as 5-hydroxymethylfurfural (HMF) [1]. HMF is a versatile substance
with a high market value, used in several industries as a fine chemical, medicine, energy,
degradable plastic, and others [2]. Its price ranges from 500 to 1500 USD/kg and it has an
expected growth of roughly 1.4% over the next years, possibly reaching USD 61 million by
2024 [3].

Glucose is present in large amounts in vegetable biomass, which can also be obtained
from agricultural and/or forest residues, and is a promising substrate for HMF produc-
tion [1,4]. The conversion of glucose to HMF occurs in a two-step process that involves the
glucose to fructose isomerization and the subsequent dehydration of fructose to HMF. The
direct conversion of glucose to HMF with high yields depends on combining the Lewis
acid catalyst, for glucose isomerization in fructose, and the Brønsted acid catalyst, for
fructose dehydration to HMF [1,5–7]. The development of a consortium catalyst with both
properties (Lewis–Brønsted) is one of the major challenges in the conversion of biomass
to HMF.

Several efforts have been made to develop a catalytic system with those features that
is simple, efficient, not aggressive to equipment and environment, reproducible on a large
scale, and that allows for its recovery and reuse [8–11]. The niobium catalyst and p-sulfonic
acid calix[4]arene (CX4SO3H) organocatalyst are promising catalysts with the potential to
convert carbohydrates, or biomass, into HMF.
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Calix[n]arenes are used in several chemical transformations and have many advan-
tages, such as high selectivity, easy manipulation, non-corrosiveness, low toxicity, and good
thermal and chemical stability [4,12–20].

Recently, the great potential of calix[n]arenes has been adopted, and in some cases,
for thin biorefinery processes, for the synthesis of Julolidines, HMF, levulinate esters, and
biomass pretreatment, followed by fast pyrolysis to obtain levoglucosan [4,12,21].

Niobium catalysts are versatile, easy to handle, inexpensive, chemically stable, and
commercially available [22,23]. To obtain HMF, the niobium catalyst has been used either
on its own or in association with other catalytic systems. The use of niobium phosphate
(NbP) as the only catalyst has shown a 15% yield of HMF from glucose at 145 ◦C and a
reaction time of 180 min [24]. Carniti et al. used NbP for the direct conversion of cellobiose
to HMF and reached yields between 5% and 10% in the temperature interval 110–130 ◦C
after 3000 min of reaction [25]. The use of niobium acid (NbO) has also been reported. In
the work of Catrinck et al., for example, 26% of the HMF yield was obtained from glucose
at 152 ◦C and 120 min [26].

Moreover, when used in association with other systems, niobium has been reported
as a promoter or active phase, support, solid acid catalyst, or redox material [5,6,27–32].
Some studies show a higher concentration of acid sites in niobium species, which is a
key factor for obtaining HMF, along with high reaction temperatures and long reaction
times [6,7,33,34].

In the work of Kreissl et al., a yield of 36% was reported when using mesoporous
Nb2O5 as catalyst, and the reaction was performed in an autoclave at 500 rpm stirring
speed, at 180 ◦C, for 180 min [35], whereas Liu et al. obtained a 26.8% yield in the con-
version of glucose into HMF using Nb2O5, at 180 ◦C, for 180 min [36]. Using niobic acid,
Huang et al. (2020) immobilized on regenerated cellulose, reaching 27.8% of the HMF and
yield using glucose as substrate in a glass reactor at 150 ◦C for 250 min [37]. Meanwhile,
Torres-Olea et al. evaluated the glucose dehydration to HMF, and found a yield of 44%
using Nb3Zr7 as an acid catalyst after 90 min at 175 ◦C [6].

Herein, we report an efficient method for the conversion of glucose into HMF using
the consortium catalyst, CX4SO3H/NbCl5, in a biphasic system (water/NaCl and methyl
isobutyl ketone (MIBK)) in a MW reactor. To achieve the best results, different conditions
such as temperature, reaction time, catalytic load, and different Lewis acids were evaluated.

2. Results and Discussion
2.1. Evaluation of Different Niobium Catalysts in HMF Synthesis

Different types of niobium catalysts (NbCl5, Nb2O5, NbOPO4, and HNb3O8) were
evaluated under the initial reaction conditions: 0.25 mmol glucose (45 mg), CX4SO3H
5 wt%, niobium-based catalyst 7.5 wt%, MW, 150 ◦C, and 10 min of time reaction using
water/NaCl and MIBK as the biphasic system.

In our results, when using CX4SO3H/Nb2O5 or HNb3O8, a yield of 19% of HMF was
obtained for the two consortium catalysts (Figure 1). When using CX4SO3H/NbOPO4 or
NbCl5 consortium catalysts for the conversion of glucose to HMF, yields of 23% and 42%
were obtained, respectively (Figure 1).

Once it was determined that the CX4SO3H/NbCl5 consortium catalyst was the best
system for the conversion of glucose into HMF, we further investigated the proportion
between Brønsted and Lewis acids in the catalytic system.
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Figure 1. Comparison of different Lewis acids (niobium) fixed holding of CX4SO3H Brønsted
acid catalysts.

2.2. Evaluation of CX4SO3H/NbCl5 Consortium Catalyst Ratio

To investigate the need for a consortium catalyst (CX4SO3H/NbCl5) for the conversion
of glucose into HMF, different ratios between Brønsted and Lewis acids were evaluated
(Table 1). Initially, we evaluated CX4SO3H (5 wt%) and different proportions of NbCl5
(0–10 wt%) (Table 1, Entries 1–5). In the absence of NbCl5, a marginal yield of only trace
was obtained (Table 1, Entry 1). For amounts of 2.5, 5.0, and 7.5 wt% NbCl5, the yield of
HMF increased to 42%, and for 10 wt%, the yield decreased to 29% (Table 1, Entries 2–5).
After establishing that 7.5 wt% NbCl5 is the best ratio for the conversion of glucose into
HMF, we evaluated different proportions of CX4SO3H (Table 1, Entries 6–9). In the absence
of CX4SO3H, a 20% yield of HMF was obtained (Table 1, Entry 6). With the addition of
increasing amounts of CX4SO3H, the conversion of glucose into HMF reached a maximum
value of 42% with the CX4SO3H/NbCl5 consortium (Table 1, Entry 4). For CX4SO3H
amounts greater than 5 wt%, the HMF yield decreased to 39% and 32% (Table 1, Entries 8
and 9) and the formation of humins was observed.

Table 1. Evaluation of ratio CX4SO3H/NbCl5 consortium catalyst.
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Entry CX4SO3H (% wt) NbCl5
(% wt)

Temperature
(◦C)

Yield
(%)

1 5.0 0.0 150 trace
2 5.0 2.5 150 27
3 5.0 5.0 150 31
4 5.0 7.5 150 42
5 5.0 10.0 150 29
6 0.0 7.5 150 20
7 2.5 7.5 150 30
8 7.5 7.5 150 39
9 10.0 7.5 150 32

Reagents and conditions: 0.25 mmol of glucose (45 mg), water/NaCl and MIBK/(1/3 v/v).
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Several works [38–41] have been published seeking to understand the association
between Brønsted and Lewis acid and its good performance in the conversion of glucose
into HMF. The first step toward glucose to HMF conversion involves the isomerization
of glucose to fructose, followed by the dehydration of fructose, resulting in HMF. The
isomerization of glucose has been described as the most difficult step of the process and a
Lewis acid is usually used to effectively promote the isomerization; a Brønsted or Lewis
acid is then used to promote the dehydration of fructose [38,39,42–45]. Consequently, we
can infer that the NbCl5 acts as Lewis acid, effectively promoting the isomerization of
glucose, and partially helping in the dehydration of fructose; it is the CX4SO3H, however,
that improves the production of HMF due to its Brønsted acidic nature.

2.3. Evaluation of Temperature and Time

Following the evaluation of the catalyst charge, we tested different reaction temper-
atures keeping the other reaction parameters unchanged (0.25 mmol of glucose, 10 min,
water/NaCl, and MIBK (1/3 v/v)). For temperatures below 150 ◦C, the HMF yield de-
creased to 21% and 30%, respectively (Table 2, Entries 1 and 2). However, when the
temperature was greater than 150 ◦C, the HMF yield decreased from 42% to 33% (Table 2,
Entries 3 and 4).

Table 2. Evaluation of reaction temperature.
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Entry CX4SO3H (% wt) NbCl5
(% wt)

Temperature
(◦C)

Yield
(%)

1 5.0 7.5 130 21
2 5.0 7.5 140 30
3 5.0 7.5 150 42

4 a 5.0 7.5 160 33
Reagents and conditions: 0.25 mmol of glucose (45 mg), water/NaCl and MIBK (1/3 v/v). a Formation of humin
was observed.

This behavior has been reported in other studies on the dehydration of sugars to HMF.
One study [46], for example, obtained an HMF yield of 51.5% in a MW glucose to HMF
conversion, performed at 180 ◦C; however, when the temperature was increased to 190 ◦C,
the HMF yield decreased to 40%. It is known that, although increasing the temperature
promotes the dehydration of fructose to HMF, a very high temperature can lead to the
formation of secondary compounds [47]. In our work, we noticed the same behavior in the
formation of humin when the reaction was conducted at 160 ◦C.

The effect of the reaction time on the formation of HMF from glucose was evaluated
by performing experiments between 5.0 and 22.5 min (Figure 2). We observed that the
yield of HMF improved with the increase in the reaction time, until obtaining a maximum
yield of 50% at 17.5 min of reaction (Figure 2). Further increases in the reaction time,
however, resulted in a yield decrease, from 50% to 42% (Figure 2). It has been reported in
the literature that long periods of reactions decrease the selectivity, leading to secondary
reactions, such as humin formation and other undesirable products [48,49].
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2.4. Evaluation of the Addition of Different Salt in Biphasic System

In order to determine how the composition of the biphasic system could affect the
conversion of glucose to HMF, experiments were carried out with different salts using an
organic phase MIBK (Table 3).

Table 3. Evaluation of the addition of different salt in biphasic system.

Catalysts 2023, 13, x FOR PEER REVIEW 6 of 14 
 

 

Table 3. Evaluation of the addition of different salt in biphasic system. 

 

Entry 
Phase 

Yield (%)a 
Aqueous Organic 

1 NaCl MIBK 50 

2 KCl MIBK 29 

3 CaCl2  MIBK 24 

4 MgCl2  MIBK 11 

5 NaCl - 3 

6 - MIBK - 
Reagents and conditions: 0.25 mmol glucose (45 mg), CX4SO3H/NbCl5 (5/7.5 wt%), MW, 17.5 min, 

150 °C, water/NaCl, and MIBK (1/3 v/v). 

2.5. Evaluation of Catalytic Effect of Other Lewis Acids 

To demonstrate the efficiency of Lewis (NbCl5) and Brønsted (CX4SO3H) acids acting 

as a consortium, other metallic chlorides were also evaluated: CrCl3, CoCl2, MnCl2, AlCl3, 

NiCl2, FeCl3, FeCl2, ZnCl2, SnCl2, and CuCl2 (Figure 3). The highest HMF yield continued 

to occur when using NbCl5 as the Lewis acid. However, the AlCl3 and CrCl3 salts pre-

sented moderate yields of 41% and 39%, respectively (Figure 3). The other Lewis acids 

that were evaluated showed yields between 31 and 14% (Figure 3).  

 

Figure 3. Evaluation of different Lewis acids. Reagents and conditions: 0.25 mmol glucose (45 mg), 

CX4SO3H/NbCl5 (5/7.5 wt%), MW, 150 °C, 17.5 min, water/NaCl, and MIBK (1/3 v/v). 

2.6. Literature Comparison of Methods for the Conversion Glucose to HMF  

In Table 4, some parameters of the methodology developed in this study, for the con-

version of glucose into HMF, are compared with other studies found in the literature. 

References shown in Table 4 used, as a catalyst, a mixture of a Lewis and Brønsted acid 

(Table 4, Entries 2–4) or a bifunctional catalyst with Lewis–Brønsted acids. Viera et al. 

(Table 4, Entry 2) reported that the niobium catalyst acts in the formation of mannose and 

fructose, allowing the formation of HMF when combined with the Brønsted catalyst (HCl) 

in a biphasic THF/water system, using a rate of the catalyst of 1:2 wt% [7]. The biphasic 

THF/water system was also reported by Choudhary et al., (Table 4, Entry 3) who used 

chromium chloride (CrCl3) as the Lewis acid and HCl as the Brønsted catalyst [57].  

Entry
Phase

Yield (%)
Aqueous Organic

1 NaCl MIBK 50
2 KCl MIBK 29
3 CaCl2 MIBK 24
4 MgCl2 MIBK 11
5 NaCl - 3
6 - MIBK -

Reagents and conditions: 0.25 mmol glucose (45 mg), CX4SO3H/NbCl5 (5/7.5 wt%), MW, 17.5 min, 150 ◦C,
water/NaCl, and MIBK (1/3 v/v).

The effect of adding different salts to an aqueous phase was verified, and the best
performance was obtained with NaCl (Table 3, Entry 1). When using KCl, CaCl2, and
MgCl2, the yield was 29, 24, and 11%, respectively (Table 3, Entries 2–4). To verify the
effect of the extracting solvent and the aqueous phase, experiments were carried out in
the absence of MIBK, obtaining only 3% of HMF; whereas, without an aqueous phase, no
product was detected.

The use of a biphasic system allows the reaction to be carried out in an aqueous phase
and the organic solvent to act as an extractor for the product [50]. HMF is easily extracted
in organic solvents that are immiscible with water. The biphasic reaction mixture is used
for the continuous removal of HMF from the aqueous phase by an organic phase to prevent
its side reactions (humin) [46–49,51,52].

It is known from the literature that the addition of salt, such as NaCl, KCl, CaCl2, and
MgCl2, helps to modify the aqueous phase by modifying the partition coefficient of the
system, allowing a larger fraction of a product to migrate toward the organic phase. This
is called the salting-out effect, which is generated when the ions of the salts modify the
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intermolecular forces between the liquids in equilibrium, allowing greater immiscibility
between them [53].

The lower yield observed in the presence of bivalent cations (Table 3, Entries 3 and 4)
can be explained by the hydration radius size of these species. The smaller the ion’s
hydration radius, the greater the salting-out effect [54]. Additionally, since Ca2+ and Mg2+

have the largest hydration radium among the studied cations, their salting-out effect is
smaller, and the extraction efficiency is lower [55,56].

2.5. Evaluation of Catalytic Effect of Other Lewis Acids

To demonstrate the efficiency of Lewis (NbCl5) and Brønsted (CX4SO3H) acids acting
as a consortium, other metallic chlorides were also evaluated: CrCl3, CoCl2, MnCl2, AlCl3,
NiCl2, FeCl3, FeCl2, ZnCl2, SnCl2, and CuCl2 (Figure 3). The highest HMF yield continued
to occur when using NbCl5 as the Lewis acid. However, the AlCl3 and CrCl3 salts presented
moderate yields of 41% and 39%, respectively (Figure 3). The other Lewis acids that were
evaluated showed yields between 31 and 14% (Figure 3).
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2.6. Literature Comparison of Methods for the Conversion Glucose to HMF

In Table 4, some parameters of the methodology developed in this study, for the
conversion of glucose into HMF, are compared with other studies found in the literature.
References shown in Table 4 used, as a catalyst, a mixture of a Lewis and Brønsted acid
(Table 4, Entries 2–4) or a bifunctional catalyst with Lewis–Brønsted acids. Viera et al.
(Table 4, Entry 2) reported that the niobium catalyst acts in the formation of mannose and
fructose, allowing the formation of HMF when combined with the Brønsted catalyst (HCl)
in a biphasic THF/water system, using a rate of the catalyst of 1:2 wt% [7]. The biphasic
THF/water system was also reported by Choudhary et al., (Table 4, Entry 3) who used
chromium chloride (CrCl3) as the Lewis acid and HCl as the Brønsted catalyst [57].
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Table 4. Comparison of methodology developed for the conversion of glucose to HMF with data
from the literature.

Entry
Organic

Phase/Reaction
Phase (Ratio)

Catalyst Experimental
Conditions Yield (%) Ref

1 MIBK/Water a (3:1) CX4SO3H/
NbCl5

T = 150 ◦C
cat = 1/1.5 wt%
time = 17.5 min

50 This
work

2 THF b/Water
(4:1)

Nb2O5/HCl
T = 130 ◦C

cat = 1
2 wt%

time = 120 min
47 [58]

3 THF b/Water a

(2:1)
CrCl3/HCl

T = 140 ◦C
cat = 3/10 wt%
time = 180 min

59 [59]

4 SCB c/Water a

(2:1) AlCl3/HCl

T = 170 ◦C
cat = not

reported *
time = 40 min

62 [60]

5 MIBK/water a

(6:1)
PTSA-

Ca/AC

T = 180 ◦C
cat = 1/1

time = 1440 min
57 [61]

a NaCl saturated solution; b THF: Tetrahydrofuran; and c SCB: 2-sec-butylphenol. * 5 mM AlCl3 was added in the
reaction and HCl was added until the pH of the solution was 2.5.

On the other hand, Pagán-Torres also used HCl as a Brønsted catalyst, but with AlCl3
as a Lewis catalyst (3:10 catalyst ratio) and a 2-sec-butylphenol/water biphasic system.
Bounoukta et al. reported a yield of 57% of HMF (Table 4, Entry 5), using the bifunctional
catalyst of p-toluenesulfonic acid on an activated carbon surface and functionalized with
activated charcoal (1:1) [60]. The catalyst ratio that they used is close to the one used in
our study, 1:1.5 of CX4SO3H/NbCl5; this parameter varies greatly between published
studies (Table 4). Although the reported yields are generally good, the use of THF (Table 4,
Entries 2–3) as the organic phase is not recommended, since it is a problematic solvent
according to the principles of green chemistry [62]. Moreover, the use of HCl as the Brønsted
acid (Table 4, Entries 2–4) presents difficulties for an industrial scale production due to
its corrosive qualities as a highly toxic reagent. Finally, while it is possible to use a green
solvent, such as MIBK, as the organic phase for the bifunctional catalyst, its reaction time is
too long (1440 min or 24 h) to be viable.

2.7. Evaluation of Other Carbohydrates to Produce HMF

Other carbohydrates, in addition to glucose, were also evaluated: sucrose, mannose,
maltose, raffinose melibiose, galactose, and cellulose, the yields of which were, respectively,
50, 42, 32, 31, 19, 19, 17, and 15% (Figure 4). In general, to obtain 5-HMF directly from sugars,
it is necessary that a sequence of the reaction involves catalysts for hydrolysis, isomerization
of glucose to fructose, and finally, the acid-catalyzed dehydration of fructose. For example,
the direct conversion of cellulose to 5-HMF using heterogeneous catalysts is difficult due to
the low reactivity of cellulose and the high instability of 5-HMF [48,57,60,63,64].

Sucrose showed to have the best HMF performance; since it is a dimer formed by the
union of α-D-glucose and β-D-fructose through a glycosidic bond, sucrose can undergo a
hydrolysis in which the carbohydrate units that make it up are separated. Additionally, it is
more prone to undergo dehydration directly to HMF, since the glucose that must undergo
an initial isomerization to fructose is converted into HMF [47]. On the other hand, the
evaluation of cellulose is also interesting; its result was comparable with that of a more
complex biomass system [65]. The 15% yield obtained from cellulose is not far from the
20% HMF obtained by one study [66] that achieved this performance using formic acid and
betaine as catalysts, with 60 min of reaction at 190 ◦C. Another study [67] obtained a 35%
yield of HMF from microcrystalline cellulose using CrCl3, in addition to using ionic liquid
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([EMIM]Cl) as the reaction medium. Despite being efficient in converting cellulose into
HMF, ionic liquids are expensive and toxic reagents.
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2.8. Catalyst Recycling

The evaluation of catalyst recycling is a key-factor from a commercial and environ-
mental point of view. Thus, if the catalyst can be used more times without decreasing its
effectiveness while maintaining a constant yield of the product, less investment is needed
in the purchase of reagents, and, from an environmental perspective, less chemical waste
occurs [68,69].

At the end of the reaction, the system was cooled, and the organic phase was separated.
The aqueous phase containing the CX4SO3H/NbCl5 consortium catalyst remained in the
tube, and a new load of glucose and MIBK were added and used in a new reaction. In our
work, it was possible to reuse the CX4SO3H/NbCl5 catalyst consortium up to six times
while keeping the HMF yield constant. The yield decreased from 49% in the sixth cycle to
39% and 38% in the respective seventh and eighth cycles of the reuse of the system catalyst,
as shown in Figure 5.
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0.25 mmol glucose (45 mg), CX4SO3H/NbCl5 (5/7.5 wt%), MW, 150 ◦C, 17.5 min, water/NaCl, and
MIBK (1/3 v/v).

2.9. Reaction Mechanism

The mechanism of glucose for fructose isomerization is still a matter of debate. There
are two mechanistic proposals for the key step of the isomerization of glucose to fructose:
one proceeding via a 1,2-enediol intermediate [59,70–73] and an intramolecular hydride
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shift from C-2 to C-1 [11,57,74–76] (Scheme 1). A study with isotopic labeling using D2O
was performed under the same optimized conditions (0.25 mmol glucose (45 mg), 150 ◦C,
17.5 min, water/NaCl, and MIBK (1/3 v/v) for NbCl5 (7.5 wt%), CX4SO3H (5 wt%), and
CX4SO3H/NbCl5 (5/7.5 wt%), except for the solvent (H2O was replaced by D2O).
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Analysis of the mass spectrum (GC-MS) showed that there was no incorporation of
deuterium atoms into the HMF structure for none of the catalytic systems evaluated: NbCl5,
CX4SO3H, and CX4SO3H/NbCl5. Since D2O was used as the solvent, we propose a mecha-
nistic step of the isomerization of glucose to fructose through simultaneously activating the
carbonyl group at the C-1 position and the hydroxyl group at the C-2 position on glucose
(intermediate I, Scheme 1) proceeding an intramolecular hydride shift from C-2 to C -1
catalyzed by NbCl5 (state transition II and intermediate III, Scheme 1). Then, cyclization oc-
curs through the attack of the hydroxyl on the carbonyl (intermediates IV and V, Scheme 1).
The subsequent dehydration of fructose occurs with the CX4SO3H/NbCl5 consortium with
protonation of the hydroxyl bound to the anomeric carbon of fructofuranose, followed by
the loss of a water molecule and the formation of the enol (intermediate VIII, Scheme 1).
The enol that is in tautomeric equilibrium with the keto (aldehyde) form (intermediate IX,
Scheme 1). From the aldehyde, there is the protonation of a second hydroxyl, followed
by the loss of a water molecule, leading to the formation of an α,β-unsaturated aldehyde
(intermediate X, Scheme 1). Finally, the protonation of the secondary hydroxyl (intermedi-
ate XI, Scheme 1) followed by the loss of a water molecule leads to the formation of the
aromatic ring of the HMF.

3. Materials and Methods
3.1. Materials

Nb2O5·nH2O (NbO), NbOPO4·nH2O (NbP), and HNb3O8 were supplied by Compan-
hia Brasileira de Metalurgia e Mineração (CBMM, Araxá, Minas GeraisBrazil). The niobium
pentachloride (NbCl5) and the standard HMF were purchased from Sigma-Aldrich (Saint
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Louis, United States), as well as all other materials and reagents that were necessary for the
development of this work.

3.2. Synthesis of CX4SO3H

The CX4SO3H was synthesized according to the procedures reported in the litera-
ture [77–79].

3.3. General Procedure for Conversion of Glucose into HMF

In a Pyrex® glass tube suitable for microwave, the following were added: 0.25 mmol
glucose (45 mg), 5.0 wt% of CX4SO3H, 7.5 wt% of niobium chloride (NbCl5), 1.0 mL of
aqueous solution saturated with NaCl, and 3.0 mL of MIBK. After sealing the tube, this
mixture was taken to a MW reactor (CEM Discovery), where it was heated to 150 ◦C under
magnetic stirring for 17.5 min. At the end of the experiment, the mixture was cooled at
room temperature and the organic phase was separated and dried over anhydrous sodium
sulphate to remove residual water; the mixture was subsequently filtered and transferred
to a 5.0 mL volumetric flask, which had its volume checked with methanol. From this
solution, an aliquot of 100 µL was removed and transferred to another 5.0 mL volumetric
flask. Finally, from this solution, an aliquot of 397 µL was removed into a vial, along with a
603 µL aliquot of methanol. The sample was analyzed by ultra-high-performance liquid
chromatography (UHPLC).

3.4. Quantification of HMF by UHPLC

The chromatograms were obtained by UHPLC employing a Thermo Scientific Accela
LC liquid chromatograph (diode array detector (DAD), autoinjector, and Accela pump)
(Thermo Fischer Scientific, Austin, TX, USA). The column used for separation was a
Hypersil GOLD reverse phase (50 × 2.1 mm, 1.9 µm particle size, and 175 Å pore) (Thermo
Fischer Scientific, Austin, TX, USA). The mobile phase consisted of water and methanol
(1:1), and elution was carried out in isocratic mode for two minutes. The applied amount
was 200 µL min−1 and the injection volume was 1 µL (partial loop), with a temperature
of 25 ◦C for the injector and column. The peak of HMF was detected at a wavelength of
280 nm.

HMF was quantified based on the external calibration technique. Standard solutions
were prepared in methanol, with HMF at concentrations of 2–50 mg L−1 and injected into
the UHPLC system. The calibration curve (R2 = 0.9960) was obtained in relation to the area
of each HMF standard. The HMF yield (%) was calculated based on a calibration curve.

3.5. Catalyst Recycling

The recycling of system catalysts was conducted using a model reaction employing
0.25 mmol glucose (45 mg), 5.0 wt% CX4SO3H, 7.5 wt% NbCl5, 1.0 mL saturated aqueous
solution for NaCl, and 3.0 mL of MIBK. This mixture was heated to 150 ◦C for 17.5 min.
At the end of this period, the system was cooled and the organic phase was separated.
To the aqueous phase that stood in the tube, a new 0.25 mmol glucose load (45 mg) and
MIBK (3.0 mL) were added, which were subjected to the reaction conditions. The recycling
procedure was repeated another seven times.

4. Conclusions

In this study, we presented an efficient route to convert glucose into HMF with a
high 50% yield using the consortium catalysts NbCl5 and CX4SO3H in an MW reactor.
The reaction conditions optimized result was CX4SO3H/NbCl5 (5 wt%/7.5 wt%) as a
consortium catalyst, using water/NaCl and MIBK (1:3 v/v) at 150 ◦C for a 17.5-minute
reaction time. This catalyst system showed excellent recyclability, with its catalytic activity
maintained for six cycles. Thus, the glucose isomerization is due to the Lewis acid (NbCl5),
followed by the fructose dehydration to HMF, which is due to CX4SO3H/NbCl5. The
application of this consortium catalytic system is attractive, environmentally friendly, and
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cost-effective for the conversion of biomass into higher value-added products. Finally,
isotopic labeling experiments suggested a mechanism for the glucose isomerization for
fructose reactions involving an intramolecular hydride shift from C-2 to C-1 since the incor-
poration of a deuterium atom was not observed; the proposed mechanism was validated
using mass spectrometry.
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