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Abstract: Efficient synthetic methods that avoid the extensive use of hazardous reagents and solvents,
as well as harsh reaction conditions, have become paramount in the field of organic synthesis.
Organocatalysis is notably one of the best tools in building chemical bonds between carbons and
carbon-heteroatoms; however, most examples still employ toxic volatile organic solvents. Although
a portfolio of greener solvents is now commercially available, only ethyl alcohol, ethyl acetate,
2-methyltetrahydrofuran, supercritical carbon dioxide, ethyl lactate, and diethyl carbonate have
been explored with chiral organocatalysts. In this review, the application of these bio-based solvents
in asymmetric organocatalytic methods reported in the last decade is discussed, highlighting the
proposed mechanism pathway for the transformations.
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1. Introduction

Organic compounds have been used for decades as catalysts, but their application in
asymmetric catalysis has become even more important in recent years due to their effective
selectivity in a wide range of reactions [1]. In general, the organocatalysts are promptly
available, either from natural or synthetic starting materials, therefore, saving cost, time,
and energy [2]. A plethora of highly effective small-molecule organocatalysts have enriched
the field of organic synthesis, including chiral proline derivatives, N-heterocyclic carbenes,
thioureas, Brønsted acids, and phase-transfer catalysts (PTC), such as the quaternary
ammonium salts derived from cinchona alkaloids [3].

Furthermore, the experimental application requires milder conditions when compared
with most metal catalysts, and the low toxicity of the organocatalysts bring great utility to
medicinal chemistry [4–6].

Due to these properties, organocatalysis has become an important tool for rapid and
efficient building up of C-C and C-heteroatom chemical bonds [7,8]. In 2021, asymmetric
organocatalysis was recognized with the Nobel Prize in Chemistry for Benjamin List [9] and
David MacMillan [10], pioneers in the use of chiral secondary amines as organocatalysts and
their broad understanding of asymmetric catalytic systems through enamine and iminium
ions as key intermediates. Nevertheless, many other catalytic processes, volatile organic
solvents, especially dichloromethane and chloroform, have been used, and relatively high
catalyst loading is required, representing major drawbacks for organocatalysis [11].

Efficient synthetic methods with eco-friendliness and sustainability that avoid the
extensive use of toxic and hazardous reagents and solvents, as well as harsh reaction
conditions, have become paramount in the field of organic synthesis [12]. A major source
of waste in chemical manufacturing, particularly in the pharmaceutical industry, is solvent
losses. An inventory of waste produced by pharmaceutical manufacturers revealed that
solvents and water accounted for 58% and 28%, respectively, of the residue, compared to
8% for the raw materials [13].
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Waste prevention can be achieved if most of the reagents and solvents are recyclable.
Using appropriate catalysts and non-volatile solvents, the reaction medium can be recycled,
leading to low E factors [14]. Alternative solvents suitable for green chemistry are those
that have low toxicity, are easy to recycle, inert, and do not contaminate the product [15].

Organocatalysis is continuously adapted to current chemical transformations, which
in some cases allowed for overcoming the limitations [16], as well as improved enantioselec-
tive catalytic properties. Therefore, the scientific community is focused on the replacement
of traditional organic solvents with greener ones in organocatalytic approaches [17], as
for example, the use of eutectic mixtures and water in asymmetric organocatalysis [5,18].
Recently, Miele and colleagues reviewed the use of bio-based solvents in the asymmetric
metal-, bio-, and organocatalysis [19]. Herein, we have reviewed the advances reported in
the last decade on the use of bio-based solvents in asymmetric organocatalytic processes,
highlighting the proposed mechanism key step of the cited examples.

2. Bio-Based Solvents

Solvents used in the chemical industry are often derived from non-renewable fossil
resources, which are commonly harmful to nature and human health. Accordingly, there
is a continuous requirement to replace them in chemical transformations with solvents
derived from renewable resources, such as biomass [20]. Nevertheless, a disadvantage of
bio-based solvents is related to their synthetic route, considering that in some cases, it is still
necessary to improve the production cost, as well as selectivity, recycling, and yields [21].

Bio-based solvents are derived from vegetable, animal, or mineral raw materials using
chemical and physical processes that are, in general, safer for the environment and humans.
Due to the regulatory constraints that restrict the use of a large number of traditional
volatile organic compounds (VOCs), such as halogenated or aromatic derivatives, the
bio-based solvents are on the rise [22–24].

Examples of chemical reactions where the replacement of traditional solvents by bio-
based solvents providing greater selectivity of the applied catalysts and an increase in
reaction yields were reported. In addition, in general, these solvents show higher stability
for handling when compared with the VOCs [25].

Given that their conviction is compatible with sustainable development, it is assumed
that bio-solvents provide an environmental balance with reduced VOCs, biodegradability,
increased safety, and non-ecotoxicity. The processes involved in solvent production must
be eco-compatible, with raw material widely available at an affordable cost, as well as
recyclable and easy to purify. Moreover, low toxicity and performance similar to traditional
solvents are idealized [26].

In this sense, there is considerable interest in conducting organocatalyzed reactions in
aqueous or semi-aqueous media due to their green nature, as well as the special solvent effects
of water on organic reactions, but it is still limited to a group of reactions [27]. In the following
sections, the application of the bio-based solvents ethyl alcohol, 2-methyltetrahydrofuran,
ethyl acetate, ethyl lactate, supercritical carbon dioxide, and diethyl carbonate in asymmetric
organocatalytic methods is discussed.

2.1. Ethyl Alcohol

The production of ethyl alcohol from renewable sources has been gaining momentum
in recent decades, as this process does not generate toxic by-products and provides an
economically viable and sustainable destination for organic matter waste [28]. Bioethanol is
usually obtained from the fermentation of carbohydrates, which are highly abundant and
relatively inexpensive [21]. Moreover, bioethanol can also be produced from lignocelluloses
of agricultural residues, although in these processes, a pre-treatment step of the raw
material is necessary due to the presence of a high amount of fibers [29].

Among the bio-based solvents, ethanol is the most common, being also used in
the synthesis of other bio-based solvents, as well as in several chemical transformations,
including asymmetric organocatalysis [24,30].
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2.1.1. Catalysis Via Covalent Bonding

Chiral secondary amines have been applied as chiral organocatalysts since the begin-
ning of asymmetric catalysis, and their activation mode occurs through the formation of a
covalent bonding between the organocatalyst and the carbonyl substrate. As a result, an
enamine intermediate or iminium ion is formed, thus, modifying the energy of the frontier
orbitals, HOMO of the enamine and LUMO of the iminium ion. The increase in HOMO
and the decrease in LUMO energies result in higher reactivity of both intermediates, so
they become more nucleo- and electrophilic, respectively. The stereochemistry of products
in organocatalyzed reactions by proline derivatives are determined by the presence of an
acid group or steric hindrance. The reactant approach to the intermediate can occur on the
same side, due to the hydrogen bonding with the acid, or on the opposite side of the bulky
group [31].

The asymmetric Michael addition reaction of aldehydes 1 to nitroolefins 2 was first
reported in 2005 by Hayashi, using toluene and (R)-diphenylprolinol trimethyl silyl ether
(Jørgensen–Hayashi catalyst, 5 mol%) at room temperature [32]. In 2012, Wang and col-
leagues [33] reported the synthesis of the same compounds 4 employing a proline derivative
3 as a heterogeneous catalyst, in a mixture of EtOH-H2O (1:1) as a solvent, with good to
excellent yields and excellent enantiomeric excesses (ee), as well as high diastereoisomeric
ratios (dr). Although the obtained results were slightly inferior to Hayashi’s work, they
have turned this transformation more sustainable, since organocatalyst 3 could be reused
for four cycles without losing enantioselectivity. The choice of EtOH-H2O was due to the
fact that polymer 3 was insoluble in the other solvents tested (Scheme 1).
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Scheme 1. Asymmetric Michael addition using a proline derivative 3 as heterogeneous organocatalyst.

In the same year, Yang and colleagues [34] described the asymmetric aldol reaction
using another proline derivative as a heterogeneous catalyst. They developed the chiral
catalyst 7 based on silica magnetic microspheres that supported proline, showing high
catalytic activity as well as enantio- and diastereoselectivity, resulting in seven different
examples. According to the authors, the aldol reaction is probably also catalyzed by the
weakly acidic surface hydroxyl groups on the silica shell. Further advantages of this work
are the use of ethanol as solvent and reuse of catalyst up to five runs without loss in activity
(Scheme 2). It is worthy to note that when chloroform, a non-green solvent, was evaluated
in the optimization study, the product 8a was obtained in only 57% yield and 58% ee.
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Scheme 2. Asymmetric aldol reaction with silica magnetic microspheres supported proline derivative 7.

The synthesis of pyrans or thiopyrans 12 via multicomponent organocatalyzed reaction
was evaluated by Elnagdi and coworkers [35]. In this study, the reaction was carried out
with benzaldehyde (5), malononitrile (9), and compounds possessing activated methylene
10, using L-proline (11) as the organocatalyst. Under the optimized conditions, it was
possible to obtain eight examples of compound 12, with yields varying between 60–92%
(Scheme 3).
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Another use of proline (11) as organocatalyst for asymmetric synthesis was described
by Dong and colleagues [36]. They combined a one-pot photo- and organocatalysis consist-
ing of an oxidative dearomatization of 2-arylindoles 13, followed by asymmetric Mannich
reaction in ethanol. Due to significant solvent effects on the reactivity of organic reactions,
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the authors also tested acetonitrile, methanol, dichloroethane, THF, DMF, and DMSO, but
the best yield was obtained with ethanol. The authors explored L-proline (Scheme 4) and
D-proline as organocatalysts to obtain a series of C2-quarternary indolin-3-one derivatives
14 with excellent enantio- and diastereoselectivity.
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Moreover, Yadav and Singh [37] used a proline derivative 17 as organocatalyst in the
presence of ethanol, exploring a series of prolinamides for the direct asymmetric aldol
reaction between isatins 15 and acetone (16) to obtain the corresponding derivatives 18.
During the optimization study, other polar solvents such as water and DMF also showed
excellent yields (99%) but low to moderate ee (38–51%), whereas DCM furnished 96% yield
and only 45% ee. The authors suggest that the hydrogen bonding between the catalyst and
isatin is more efficient, improving the ee due to the presence of bromine in the phenyl ring
of prolinamide 17 (Scheme 5).
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Due to a large number of pharmaceuticals and natural products that contain the
γ-lactam core, Joie and colleagues [38] developed a process to obtain 1,3,5-triarylpyrrolidin-
2-ones 23 with three contiguous stereogenic centers. The authors described a one-pot
method comprising an aza-Michael/aldol domino reaction of ketoamides 19 and aldehydes
20 in the presence of the Jørgensen–Hayashi catalyst 21 and ethanol as solvent, followed
by the addition of stabilized Wittig reagent 22 after 3–16 h, without prior purification, to
promote aldehyde olefination. It is worthy to note that chloroform, dichloromethane, and
toluene were also tested as solvents, but the key intermediate was not observed. In total,
14 examples of compounds 23 were obtained as a single diastereoisomer with good to
excellent enantioselectivities (Scheme 6).
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Later in 2019, Ding and colleagues [39] studied the use of catalyst 25 in asymmetric
arylmethylation/N-hemicetalization reactions in mild conditions to obtain dihydropy-
rido [1,2-α]indoles 26 with excellent enantioselectivities. The solvent screening included
dichloromethane, acetone, toluene, methanol, isopropanol, and ethyl acetate and showed
that the Michael addition could be accelerated by protic solvents, and ethanol presented
the best performance. In the developed one-pot two steps method, a Michael addition
initially occurs in ethanol and DABCO as a base to deprotonate the indole 24, followed by
treatment with TFA (trifluoroacetic acid) (Scheme 7).

Deobald and colleagues [40] developed an asymmetric organocatalytic epoxidation of
α,β-unsaturated aldehyde 20 in a mixture of ethanol/water (3:1) as solvent using a new di-
arylprolinol silyl ether catalyst 28 with good to excellent enantio- and diastereoselectivities
(Scheme 8a). Moreover, the chiral epoxides 29 were employed in a one-pot Passerini reaction
without isolation of the epoxides (Scheme 8b), furnishing epoxy-α-acyloxycarboxamides 32
that were evaluated as cathepsins inhibitors [41].
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Santos and colleagues [42] reported the one-pot synthesis of aziridines-α-
acyloxycarboxamides 34. In the studied protocol, the organocatalyst 28 was used in an
ethanol/water mixture as solvent to afford the aziridines, which, without isolation, were
then submitted to the Passerini reaction (Scheme 9). Under the optimized condition, it was
possible to reach a broad scope of 18 aziridine-α-acyloxycarboxamides 34, with moderate
to good yields and up to 94% ee. Furthermore, the chiral aziridines were also employed in
the Ugi reaction, furnishing new peptidomimetics that were evaluated against cathepsin
K [43].
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Feu and colleagues [44] investigated an asymmetric Michael addition mediated
by organocatalyst 28 in an ethanol/brine mixture as solvent. The method employed
α,β-unsaturated aldehydes 20 and malonates 35 at room temperature for up to 34 h. In
this context, it was possible to obtain nine examples of compounds 36 with moderate to
good yields and excellent ee. The authors report that after activation of the aldehyde, the
iminium ion could be stabilized by the chloride anion (Scheme 10). Moreover, the Michael
adducts 36 were used for the synthesis of chiral indoles.
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41 was efficiently obtained through an asymmetric Michael addition of nitromethane 39 
to cycloalkene-1-carboxaldehyde 40 in the presence of ethanol, benzoic acid, and 2,4,6-
collidine. This method was based on the previous reports by Hayashi [32] and Wang [33], 
in which the catalyst 21 and the α,β-unsaturated aldehyde originate an iminium ion, re-
sulting in the product 41, with excellent yield and ee, by increasing the catalyst loading 
and using 2,4,6-collidine for the activation of nitromethane. The γ-amino acid 42 could 
then be obtained from reduction of compound 41, followed by protection and oxidation. 
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Odoh and colleagues [45] studied the asymmetric synthesis of pentasubstituted cyclo-
hexenes 38 from aldehydes 20 and α-acetyl-β-substituted-α,β-unsaturated esters 37. The
optimized condition includes the Jørgensen–Hayashi organocatalyst 21 and Na2CO3 as an
additive (Scheme 11). The developed method provided 12 examples of pentasubstituted
cyclohexenes with yields between 55–84% in 9–89 h, and excellent diastereo- and enantiose-
lectivities. The authors proposed a transition state to obtain 38, involving the generation of
the iminium ion formed by the reaction between the organocatalyst and the aldehyde 20,
in which it subsequently reacts with the ester 37 to obtain the enamine. Moreover, other
solvents were evaluated, for example, CH2Cl2, THF, and toluene, obtaining yields below
10%, and dr and ee were not determined.
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Gellman and colleagues [46] described the synthesis of the peptide (1R,2R)-2-
(aminomethyl)cyclopentanecarboxylic acid 43 in 17 steps (Scheme 12). The key intermedi-
ate 41 was efficiently obtained through an asymmetric Michael addition of nitromethane
39 to cycloalkene-1-carboxaldehyde 40 in the presence of ethanol, benzoic acid, and 2,4,6-
collidine. This method was based on the previous reports by Hayashi [32] and Wang [33],
in which the catalyst 21 and the α,β-unsaturated aldehyde originate an iminium ion, result-
ing in the product 41, with excellent yield and ee, by increasing the catalyst loading and
using 2,4,6-collidine for the activation of nitromethane. The γ-amino acid 42 could then be
obtained from reduction of compound 41, followed by protection and oxidation.

Using a similar approach, in 2015, Bernardi and colleagues [47] studied the preparation
of intermediates that would give access to the core of telaprevir, a serine protease inhibitor
of the hepatitis C virus. The authors performed an optimization of the protocol described
by Gellman [46] with catalyst (S)-21 and the same substrates. Then, they applied the
new optimal condition in the asymmetric addition of amidomalonates 44 to cycloalkene-1-
carboxaldehyde 40 with lithium acetate and acetic acid in the presence of ethanol at room
temperature. The described method furnished compound ent-45a, whereas compounds
45a and 45b could be obtained with catalyst (R)-21 in moderate to good yields (Scheme 13).
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Scheme 13. Asymmetric addition of amidomalonates 44 to cycloalkene-1-carboxaldehyde promoted
by catalyst 21.

Catalyst 21 was also employed with ethanol as a solvent by Duan and colleagues [48]
in the asymmetric formal [2+2] cycloaddition of 2-vinyl pyrroles 46 and cinnamaldehyde
20, followed by reduction. Based on tandem iminium–enamine activation, the protocol
made possible the synthesis of 19 examples with moderate to good yields and enantiomeric
excesses (Scheme 14). The authors also tested THF as a solvent, resulting in 40% yield and
90% ee for 47a. Previous reports in the literature showed that [2+2] cycloadditions can be
efficiently organocatalyzed in dichloromethane [49] and THF:1,4-dioxane (1:2) mixture [50].

Recently, Zu and coworkers [51] reported the use of cinnamaldehyde 20 and methyl
coumalate 48 in a cross-vinylogous Rauhut–Currier reaction with TFA and the proline
derivative 25 as catalyst (Scheme 15). The method showed to be efficient in leading to a
wide variety of products 49 with good to excellent yields and enantioselectivities. It is
noteworthy that when changing the solvent from dichloromethane to ethanol, the reaction
time decreased from 72 to 24 h, the stereoselectivity of the reaction was maintained, and
the yield increased. In previous studies reported in 2012, the best reaction conditions for
the organocatalyzed Rauhut–Currier reaction was in DCM for 24 h [52]. The mechanistic
study demonstrated that up to a certain point, two catalyst molecules are involved in
the reaction, being one on the formation of the iminium ion intermediate and the other
activating nucleophilically methyl coumalate.
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Interestingly, Greco and colleagues [53] developed a protocol considering environ-
mental and economic issues when applying a heterogeneous catalyst 50 and a EtOH:H2O
mixture as the solvent in a continuous flow regime for a stereoselective aldol reaction of
cyclic ketones 6 with aromatic aldehydes 5. Immobilization of the organocatalyst was
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successfully developed in a polystyrene monolithic column with the (S)-5-(pyrrolidin-2-yl)-
1H-tetrazoles. The adducts were obtained through a complete conversion of aldehydes 5
with good to excellent enantio- and diastereoisomeric controls. The immobilized catalyst
50 maintained its stereoselective performance in flow for 120 h (Scheme 16). Although,
in this protocol, only water was fundamental for the enantioselectivity of the reaction
with ee of 95%, against 84% ee in ethanol, the EtOH:H2O mixture was necessary for better
substrates solubilization. Organocatalyzed aldol reactions have had widespread success
in building interesting molecules, yet toxic solvents such as DCM [54,55], chloroform [56],
and DMF [57] are still continually used.

Catalysts 2023, 13, 553 12 of 56 
 

 

 
Scheme 15. Rauhut–Currier reaction of cinnamaldehyde 20 and methyl coumalate 48 catalyzed by 
proline derivative 25. 

 
Scheme 16. Asymmetric aldol reaction of cyclic ketones 6 and aromatic aldehydes 5 with 
heterogeneous catalyst 50. 

Concerning the primary amine catalysts, they also proved to be efficient in the pres-
ence of ethanol. For example, in 2013, Wang and colleagues [58] investigated the use of 
diphenyl-1,2-ethanediamine as a chiral organocatalyst in the enantioselective Michael ad-
dition of aryl methyl ketones 51 with 2-furanones 52 and p-toluenesulfonic acid as co-
catalyst. The presence of two primary amines activated both substrates, forming an 
enamine with 51 and a hydrogen bonding with 52. The β-lactones could be obtained with 
yields between 63–92% and excellent enantio- and diastereoselectivities (Scheme 17). 

Scheme 16. Asymmetric aldol reaction of cyclic ketones 6 and aromatic aldehydes 5 with heteroge-
neous catalyst 50.

Concerning the primary amine catalysts, they also proved to be efficient in the presence
of ethanol. For example, in 2013, Wang and colleagues [58] investigated the use of diphenyl-
1,2-ethanediamine as a chiral organocatalyst in the enantioselective Michael addition of
aryl methyl ketones 51 with 2-furanones 52 and p-toluenesulfonic acid as co-catalyst. The
presence of two primary amines activated both substrates, forming an enamine with 51
and a hydrogen bonding with 52. The β-lactones could be obtained with yields between
63–92% and excellent enantio- and diastereoselectivities (Scheme 17).

2.1.2. Activation Via Hydrogen Bonding

The usual organocatalysts for activation via hydrogen bonding are thioureas,
squaramides and phosphoric acids [59]. The energy of the substrate LUMO decreases,
resulting in a more electrophilic species that is susceptible to nucleophilic attacks. The
hydrogen bonding also causes an additional stabilization of the transition state [1,3].

The asymmetric Michael addition of ketones 55 to β-nitrostyrenes 2 was investigated
by Pramanik’s group [60] to obtain the corresponding adducts 57. In the developed method,
proline-oxadiazolone organocatalyst 56 was synthesized and applied in the presence of
ethanol as a solvent and triethylamine as a base, allowing for obtaining 18 examples of
Michael adducts 57, reaching yields of up to 97% with excellent enantio- and diastereose-
lectivities. It is worthy to note that other solvents, such as DMSO, THF, DCE, CHCl3, and
2-propanol, were also tested; however, they did not present better results when compared
to ethanol. The authors proposed that the selectivity was due to an electrostatic interaction
between the nitro group and nitrogen of pyrrolidine ring, including an extended hydrogen
bonding in the transition state (Scheme 18).
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Scheme 18. Pyrrolidine-oxadiazolone organocatalyst 56 in asymmetric Michael reaction.

Bhusare and co-workers [61] developed a convenient protocol for the synthesis of
Baylis–Hillman adducts using a proline derivative 59 as organocatalyst. In the screening
of solvents, water and dioxane also were evaluated, but ethanol provided a reduction in
reaction time (from 48 to 12 h). The α-methylene-β-hydroxy derivatives 60 were obtained
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with good to high yields and ee up to 96% (Scheme 19). The authors described that insertion
of acetyl group in the active nitrogen of the catalyst restricts the pathway for formation of
imine intermediate in the transition state, thus, allowing the hydrogen bonding to promote
the reaction.
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Scheme 19. Asymmetric synthesis of α-methylene-β-hydroxy derivatives with organocatalyst 59.

The same group also studied the asymmetric synthesis of α-aminophosphonates 63
via a one-pot reaction (Scheme 20) [62]. The transformation involves aldehydes 5, anilines
61, and triethyl phosphite (62) as starting materials and was catalyzed by organocatalyst
59 in presence of glacial acetic acid. The method allowed for obtaining 20 derivatives of
α-aminophosphonates 63 with good to excellent yields and ee. The authors proposed a
mechanism pathway in which the formation of the imine initially occurs, then, due to the
hydrogen bonding with the organocatalyst in the transition state, compounds 63 are formed.
In this work, water and dioxane were also evaluated as solvents, however, showing lower
yields and ee.
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Bhusare’s group [62] investigated the synthesis of β-malonophosphonates 65 deriva-
tives using trialkyl phosphites (62) and α,β-unsaturated malononitriles 64, mediated by
proline derivative 59 as organocatalyst. In this perspective, the method allowed for ob-
taining 13 examples of β-malonophosphonate derivatives 65 with yields of up to 85% and
ee reaching up to 78% (Scheme 21). In this protocol, other solvents were studied, such as
water and toluene, and it was found that, among them, the most effective for the synthesis
of β-malonophosphonate derivatives was DCM, furnishing the product of interest 65a with
only 40% yield and 34% ee.
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Scheme 21. Organocatalyst 59 promoted synthesis of chiral β-malonophosphonates 65.

Bhusare and colleagues [63] also developed a method for the asymmetric Baylis–
Hillman reaction. The protocol was guided by organocatalyst 66, and aromatic aldehydes
5 and methyl acrylate (58) were adopted as starting materials to obtain the β-hydroxy
acrylates 60. The reaction was carried out at room temperature, in up to 19 h, furnishing
10 examples of the β-hydroxy acrylates 60 with yields varying between 75–90% and excel-
lent enantioselectivity (reaching up to 100% ee) (Scheme 22). Other solvents were inves-
tigated, such as water, toluene and DMF, and among them, DCM was the most efficient
furnishing product ent-60b with only 62% yield and 59% ee. The proposed mechanism
pathway involves a combination of hydrogen bonding of the organocatalyst with the enol
form of methyl acrylate (58) and a covalent activation of the aldehyde 5 by the proline
moiety, resulting in the enamine.

Smith’s group [64] developed a protocol for the enantioselective synthesis of substi-
tuted dihydropyran derivatives 70, in which ethanol was used as a solvent to promote the
reaction between 4,4,4-trifluorobutenones (68) and ethyl 2,3-butadienoate (67) via [4+2]
cycloaddition. In this method, using quinidine (69) as organocatalyst at room temperature
and for up to two days, it was possible to obtain 12 derivatives of dihydropyrans 70, with
yields varying between 34–71% and reaching ee of up to 90% (Scheme 23). Other solvents
were evaluated, and the most efficient was toluene, furnishing the desired product in 85%
yield and 79% ee. In the scope and limitations, different trifluoromethylenone derivatives
were also explored using toluene or acetone as solvents.
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Zlotin’s group [65] described the Michael reaction between kojic acid derivatives 71
and nitroolefins 2 using only 1 mol% of the C2-symmetric tertiary amine-squaramide 72 as
organocatalyst in ethanol or water as solvents, affording adducts 73 in high yields and ee
(Scheme 24). Other solvents, such as DCM, THF, MeOH, and EtOAc, were also evaluated,
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but the best results were obtained with ethanol. Interestingly, it was also possible to recover
and reuse the catalyst in up to 7 cycles.
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Later, in 2021, the same group [66] demonstrated that the squaramide 72 could be
applied efficiently with 3-hydroxychromen-4-ones 74 using ethanol as solvent, since the
stereoinduction decreased in aprotic solvents such as EtOAc, PhMe, and hexane. The
corresponding Michael adducts 75 were obtained with high yields and enantioselectivities,
and the organocatalyst could be reused in 10 cycles without significant loss of activity
(Scheme 25). Differently from the mechanism shown in Scheme 24, the authors proposed
that in addition to the deprotonation of chromone 74 by tertiary amine group of the catalyst,
a strong hydrogen bonding with the electron-deficient olefin 2 also occurs, probably due to
the steric hindrance of the substituent R3 with the squaramide substituents.

Aral and colleagues [67] have synthesized a range of chiral β-aminoalcohols that
were evaluated as organocatalysts for opening of glycidol (77) with phenols 76. In this
perspective, using catalyst 78 in ethanol as a solvent, the method afforded three examples
of 3-aryloxy-1,2-propanediols 79, with yields of 45–65% and ee of up to 58%. The authors
proposed a mechanism pathway based on the activation of the glycidol ring followed by
phenol attack, which was promoted by hydrogen bonding with the catalyst (Scheme 26).
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2.1.3. Activation Via Ion Pair

Non-covalent organocatalysis can also occur through an ion pair of the catalyst with the
substrate. The electrostatic interaction between the cationic and anionic species generated
in situ causes a steric hindrance on one of the faces of the electrophile. For example, it
allows a stereoselective approach of the nucleophile. This process may be performed via
phase transfer catalysis (PTC), when the cationic organocatalyst interacts with the substrate
at the aqueous or solid phase, forming an ion pair intermediate soluble in organic solvent
and, thus, enabling chemical transformations [68]. On the other hand, it might occur via an
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asymmetric counter anion directed catalysis (ACDC) reaction, proceeding through an ion
pairing with a chiral anion provided by the catalyst [69].

Ashokkumar and Siva [70] developed a tetrafunctional cinchonine derivative 80,
resulting in a protocol with low catalyst loading (1 mol%), short reaction time (30 min),
good yields, and excellent ee. The success of this method in the asymmetric conjugate
addition of malonates 9 or 35 to nitroolefins 2 is due to the multiple active sites that are
present in the catalyst, which increase the number of ion pair interactions with the substrates
(Scheme 27). During the optimization study, the following solvents were evaluated: MeOH,
EtOH, acetone, DCM, CHCl3, THF, and toluene, and the results showed that the alcohols
were the best for this Michael addition reaction.
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yields between 85–97% and ee reaching up to 99%. The authors also explored these ad-
ducts to obtain γ-alkyl-substituted amides (Scheme 28). In this work, a screening of sol-
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Scheme 27. Michael addition reaction of malonates 9 or 35 to nitroolefin 2 with tetrafunctional
organocatalysts 80a and 80b.

Ashokkumar and colleagues [71] studied a Knoevenagel condensation between differ-
ent α-branched aldehydes 1 with various malonates 35. The reaction was explored through
dynamic kinetic resolution and the organocatalyst was a cinchona derivative 82 at room
temperature. The scope of this method was demonstrated by 16 examples with yields
between 85–97% and ee reaching up to 99%. The authors also explored these adducts to
obtain γ-alkyl-substituted amides (Scheme 28). In this work, a screening of solvents was
carried out, and it was noted that, among the non-biobased evaluated, the best one was
DMF, furnishing the desired product in only 74% yield and 69% ee.
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In 2018, Silva and colleagues [72] described a novel protocol for obtaining functional-
ized oxazol-2(3H)-thiones 87 using 9-amino-9-deoxy-epi-cinchonine (86) as a bifunctional
organocatalyst (Scheme 29). When the authors employed i-PrOH as a solvent, the results
encouraged the search for other alcohols, and ethanol was selected to the asymmetric
Michael addition without any additive, and compounds 87 could be efficiently obtained
with good to excellent yields and ee. It is noteworthy that in this Michael addition protocol,
DCM and toluene proved to be inefficient, furnishing compound 87a in only 10 and 15%
yields, respectively, although with excellent enantioselectivities. The mechanistic study
showed that more than one molecule of the chiral catalyst is likely to be involved in the
transition state, generating an ion-pair from an acid-base equilibrium of the catalyst with
84 and the formation of the iminium ion with 85.
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Liu’s group [73] carried out the study of aldol reactions mediated by asymmetric
counter anion directed catalysis (ACDC) with trans-cyclohexanediamine L-tartrate salt (88).
In that regard, there is a combination of the achiral iminium catalyst and chiral Brønsted
acid catalyst. The method was developed with aromatic aldehydes 5 and cyclic ketones
6 at room temperature, allowing for obtaining six examples of compounds 8 with yields
ranging from 73–99%, good ee, and excellent diastereoselectivities (Scheme 30). The authors
evaluated other solvents, such as DCM, DMF, and THF, and surprisingly, none of them led
to obtaining the desired derivatives 8.
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2.2. Methyltetrahydrofuran

2-Methyltetrahydrofuran (2-MeTHF) is obtained from lignocelluloses, a renewable
feedstock, where the predominant source is the dry plants residue. The hemicellulose and
cellulose present in the raw material are converted to furfural and levulinic acid, the main
precursors of 2-MeTHF [29].

This bio-based solvent, in most cases, reproduces or exceeds the results obtained with
THF, thus, being an effective alternative. Although 2-MeTHF demonstrates satisfactory
and competitive results and even has lower toxicity, it is observed that, in many works,
this solvent is not even applied in solvent screening, which perpetuates the use of THF as
the main source of ether-based solvent in organocatalysis. In addition, this commercially
available solvent has good stability in acidic and basic environments, low miscibility with
water, and biodegradability, which makes it a viable substitute for dichloromethane and
toluene [20]. It can still be dried without the need for dangerous drying agents, and due to
the clean work-up, allows easy recovery of the product [74,75].

2.2.1. Catalysis Via Covalent Bonding

The asymmetric Michael addition reaction of α,α-dicyanoalkenes 64 to 2-enoylpyridine
N-oxides was first reported in 2014 by Singh’s group [76] using toluene and bifunctional
thiourea catalyst. In 2019, Martelli and colleagues [77] reported the reaction of chalcones
89 with α,α-dicyanoalkenes 64 with 9-amino-9-deoxy-epi-cinchonine (90) as catalyst in
the presence of 2-MeTHF with excellent enantio- and diastereoselectivities. The Michael
adducts 91 still showed promising results when evaluated against Plasmodium falciparum
with low cytotoxic activity (Scheme 31).
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in a 24 h continuous flow experiment. 
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by cinchonine 90 and their corresponding P. falciparum inhibition.

Cañellas and colleagues [78] developed a protocol for the synthesis of chiral enones
95 via a Robinson annulation reaction using the organocatalyst 94 based on a diamine
supported on polystyrene (PS). This method allowed for obtaining 14 examples of bicyclic
chiral enones with moderate to excellent yields and ee reaching up to 93% in 1–12 h
(Scheme 32). The structural peculiarity of substrate 93 allows a simultaneous formation
of enamine and imine in the transition state. The authors, during the optimization study,
evaluated other solvents, such as DCM and DMF, and among them, THF presented the
best result, with 90% yield and 91% ee to produce 95c. The supported catalyst 94, in batch
mode, could be recovered and reused in up to 10 cycles and was also efficiently employed
in a 24 h continuous flow experiment.

Huang and colleagues [79] designed a chiral proline derivative 96 as catalyst to apply
in the asymmetric aldol reaction between aldehydes 5 and ketones 6 or 16. They tested
the effect of solvents (CH2Cl2, EtOAc, CH3OH, DMSO, THF, α,α,α-trifluorotoluene, brine,
2-methyl-tert-butanol and 2-Me-THF) and found high chemical yields and good enantio-
and moderate diastereoselectivities when 2-MeTHF or brine were used in the presence of 4-
nitrobenzoic acid as an additive (Scheme 33). In some cases, with 2-MeTHF, it was possible
to observe the formation of large amounts of the stable imidazolidinone intermediate
without the formation of the desired product 8, but when brine was used, the formation of
this intermediate was significantly suppressed.



Catalysts 2023, 13, 553 23 of 52Catalysts 2023, 13, 553 24 of 56 
 

 

 
Scheme 32. Synthesis of enones 95 via organocatalyzed Robinson annulation. 

 
Scheme 33. Asymmetric aldol reaction catalyzed by chiral prolinamide 96. 

2.2.2. Activation Via Non-Covalent Bonding 
The applicability of 2-MeTHF in organocatalysis with activation via non-covalent 

bonding was described for the enantioselective Michael/hemiketalization addition of hy-
droxycoumarins 97 to enones 89 by Šebesta and colleagues [80]. It is noteworthy that even 
though they obtained a yield of 86% and 96% ee in dioxane-acetonitrile for 99e, they con-
sidered the impact of this solvent on health and the environment, thus, examining differ-
ent bio-based solvents, and recognized 2-MeTHF as the best option. The developed pro-
tocol resulted in a series of hydroxyketones, including (R)-warfarin, that quickly under-
went an equilibrium for their hemiketal form 99, using the squaramide 98 as a catalyst. 
The formation of an iminium ion intermediate with enone and hydrogen bonding with 

Scheme 32. Synthesis of enones 95 via organocatalyzed Robinson annulation.

Catalysts 2023, 13, 553 24 of 56 
 

 

 
Scheme 32. Synthesis of enones 95 via organocatalyzed Robinson annulation. 

 
Scheme 33. Asymmetric aldol reaction catalyzed by chiral prolinamide 96. 

2.2.2. Activation Via Non-Covalent Bonding 
The applicability of 2-MeTHF in organocatalysis with activation via non-covalent 

bonding was described for the enantioselective Michael/hemiketalization addition of hy-
droxycoumarins 97 to enones 89 by Šebesta and colleagues [80]. It is noteworthy that even 
though they obtained a yield of 86% and 96% ee in dioxane-acetonitrile for 99e, they con-
sidered the impact of this solvent on health and the environment, thus, examining differ-
ent bio-based solvents, and recognized 2-MeTHF as the best option. The developed pro-
tocol resulted in a series of hydroxyketones, including (R)-warfarin, that quickly under-
went an equilibrium for their hemiketal form 99, using the squaramide 98 as a catalyst. 
The formation of an iminium ion intermediate with enone and hydrogen bonding with 

Scheme 33. Asymmetric aldol reaction catalyzed by chiral prolinamide 96.

2.2.2. Activation Via Non-Covalent Bonding

The applicability of 2-MeTHF in organocatalysis with activation via non-covalent
bonding was described for the enantioselective Michael/hemiketalization addition of hy-
droxycoumarins 97 to enones 89 by Šebesta and colleagues [80]. It is noteworthy that even
though they obtained a yield of 86% and 96% ee in dioxane-acetonitrile for 99e, they consid-
ered the impact of this solvent on health and the environment, thus, examining different
bio-based solvents, and recognized 2-MeTHF as the best option. The developed protocol
resulted in a series of hydroxyketones, including (R)-warfarin, that quickly underwent
an equilibrium for their hemiketal form 99, using the squaramide 98 as a catalyst. The
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formation of an iminium ion intermediate with enone and hydrogen bonding with hydrox-
ycoumarin led the reaction with low to excellent yields and good to excellent enantiomeric
control (Scheme 34).
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2.3. Ethyl Acetate

Ethyl acetate is biodegradable, with relatively low toxicity and low cost, thus, being
safe for humans and the environment, resulting in a sustainable alternative to benzene,
acetone and dichloromethane [29].

The production of bio-based ethyl acetate is closely linked to ethanol, considering that
it is one of the main raw materials, since bio-ethanol and acetic acid in the presence of
lipases are efficiently converted to this solvent. However, the major production of ethyl
acetate is still from non-renewable sources, natural gas and crude oil, where high energy
consumption is required and with the formation of hazardous waste [81].

2.3.1. Catalysis Via Covalent Bonding

Due to the broad spectrum of biological activities assigned to coumarins, Lee and cowork-
ers [82] studied the asymmetric Michael reactions of ketones 6 or 55 to 3-aroylcoumarins
100 to obtain enantiomerically enriched coumarin derivatives 102. The authors tested a
series of chiral catalysts, and according to the results obtained, it is possible to note that
differently from primary amines, secondary amines do not show product formation, and
this fact could be attributed to the low reactivity between the catalyst and ketone 6 or 55. In
the solvent screening, no improvement of enantioselectivity was observed when they used
either polar (EtOAc, THF, and MeOH) or non-polar (DCM and toluene) solvents, thus, the
authors proceeded with the optimization using EtOAc. Thus, they developed an efficient
method for enantioselective synthesis of chroman-2-ones 102 based on quinidine derivative
101 as catalyst in presence of ethyl acetate as solvent, with yields between 10–98% and
high enantio- and diastereoselectivities (Scheme 35). It stands out that ent-102d could be
prepared with 88% ee in the same conditions employing catalyst 90 (Scheme 36).
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Recently, based on the importance of the pharmaceutical intermediate (R)-pantolac-
tone, Du and colleagues [83] reported the enantioselective aldol reaction of α-branched 
aldehydes 1 and glyoxylate derivatives 103, using phenolic tert-leucinamide 104 as anor-
ganocatalyst in EtOAc. In this aldol reaction, EtOAc (91% yield and 93% ee) showed better 
results than the conventional solvent DCM (86% yield and 89% ee) for 105a. According to 
the proposed transition state, the catalyst promotes the reaction via hydrogen bonding 
with the enamine intermediate and glyoxylate 103, furnishing products 105 with up to 
97% ee and 91% yield. The authors also highlight the efficiency of the method in maintain-
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Recently, based on the importance of the pharmaceutical intermediate (R)-pantolactone,
Du and colleagues [83] reported the enantioselective aldol reaction of α-branched aldehydes
1 and glyoxylate derivatives 103, using phenolic tert-leucinamide 104 as anorganocatalyst
in EtOAc. In this aldol reaction, EtOAc (91% yield and 93% ee) showed better results
than the conventional solvent DCM (86% yield and 89% ee) for 105a. According to the
proposed transition state, the catalyst promotes the reaction via hydrogen bonding with
the enamine intermediate and glyoxylate 103, furnishing products 105 with up to 97% ee
and 91% yield. The authors also highlight the efficiency of the method in maintaining the
yield and enantioselectivity of (R)-pantolactone 105a at a scale of 50 mmol (Scheme 37).

The asymmetric Michael addition of aldehydes 106 to maleimides 107 was studied by
Kozma and colleagues [84] to obtain succinimides 109. In the developed method, chiral
heterogeneous organocatalysts were evaluated using amino acids such as L-phenylalanine
(108) and clay minerals or alumina. In this sense, the protocol allowed for obtaining a
broad scope consisting of 24 examples of succinimides 109, reaching yields of up to 99%
and excellent ee (Scheme 38). In the optimization study, other non-biobased solvents
were evaluated and the authors verified that diethyl ether (Et2O) was the most effective,
presenting conversion of >99% and 97% of ee.
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Jia and colleagues [85] designed a new catalyst based on Jiaphos with a diastereoiso-
meric P-chirogenic phosphine 112. They performed the synthesis of the catalyst in five 
steps and evaluated its application in enantioselective (4+2) annulations. Several solvents 
were screened (toluene, acetonitrile, CHCl3, THF, and dioxane), but the authors chose 
EtOAc due to the green chemistry point of view. Moreover, the chemoselectivity was im-
proved by adding benzoic acid. Thus, under the optimized conditions, it was possible to 
synthesize 29 3,3′-spirocyclic oxindoles 113 via enantioselective allene–olefin (4 + 2) annu-
lation with excellent yields and enantioselectivity (Scheme 39). 
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Scheme 38. Synthesis of succinimides 109 via asymmetric Michael reaction.

Jia and colleagues [85] designed a new catalyst based on Jiaphos with a diastereoiso-
meric P-chirogenic phosphine 112. They performed the synthesis of the catalyst in five steps
and evaluated its application in enantioselective (4+2) annulations. Several solvents were
screened (toluene, acetonitrile, CHCl3, THF, and dioxane), but the authors chose EtOAc
due to the green chemistry point of view. Moreover, the chemoselectivity was improved by
adding benzoic acid. Thus, under the optimized conditions, it was possible to synthesize
29 3,3′-spirocyclic oxindoles 113 via enantioselective allene–olefin (4+2) annulation with
excellent yields and enantioselectivity (Scheme 39).
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(Scheme 40). The method allowed the preparation of 10 compounds 116 with low to ex-
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action conditions, long reaction times were necessary to obtain the compounds, ranging 
from 3 to 14 days. The authors proposed a transition state in which the enamine attacks 
the alkylidene malonates by the Re-face. In this protocol, other solvents were evaluated, 
and among them, the one that proved to be the most effective was THF, furnishing the 
desired product 116c with 89% yield, 90:10 dr, and 94% ee. 

Nakashima and Yamamoto [87] studied a flow-through chiral aldol reaction via a 
packed bed column with 5-(2-pyrrolidinyl)-1H-tetrazole (117) at room temperature. The 
authors evaluated different parameters, among them flow rate and catalyst column reac-
tor volume (methods A, B or C) (Scheme 41). In general, seven compounds 8 were ob-
tained by method A with yields between 26–99% and enantiomeric excesses reaching up 
to 97%. On the other hand, with method B, it was noticed that in most examples, the yields 
were ranged from 49–92%, whereas by method C, only one example was evaluated, being 
8t obtained with 86% yield and 62% ee. Furthermore, the authors expanded the method, 
replacing acetone (16) with cyclohexanone, and by using acetonitrile as solvent, the corre-
sponding aldol product was obtained with 95% yield and 92% ee. 

Scheme 39. Asymmetric synthesis of 3,3′-spirocyclic oxindoles mediated by catalyst 112.

Syu and colleagues [86] studied an asymmetric Michael addition between ketones
6 and alkylidene malonates 114 mediated by a proline derivative 115 as organocatalyst
(Scheme 40). The method allowed the preparation of 10 compounds 116 with low to
excellent yields and good to excellent enantio- and diastereoselectivity. Due to the mild
reaction conditions, long reaction times were necessary to obtain the compounds, ranging
from 3 to 14 days. The authors proposed a transition state in which the enamine attacks the
alkylidene malonates by the Re-face. In this protocol, other solvents were evaluated, and
among them, the one that proved to be the most effective was THF, furnishing the desired
product 116c with 89% yield, 90:10 dr, and 94% ee.

Nakashima and Yamamoto [87] studied a flow-through chiral aldol reaction via a
packed bed column with 5-(2-pyrrolidinyl)-1H-tetrazole (117) at room temperature. The
authors evaluated different parameters, among them flow rate and catalyst column reactor
volume (methods A, B or C) (Scheme 41). In general, seven compounds 8 were obtained by
method A with yields between 26–99% and enantiomeric excesses reaching up to 97%. On
the other hand, with method B, it was noticed that in most examples, the yields were ranged
from 49–92%, whereas by method C, only one example was evaluated, being 8t obtained
with 86% yield and 62% ee. Furthermore, the authors expanded the method, replacing
acetone (16) with cyclohexanone, and by using acetonitrile as solvent, the corresponding
aldol product was obtained with 95% yield and 92% ee.
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Monteiro and colleagues [88] investigated the synthesis of protected chiral aziridines 
118 through the reaction between α,β-unsaturated aldehydes 20 and a protected amine 33 
with the use of organocatalyst 21 (Scheme 42). The described protocol furnished five de-
rivatives of protected chiral aziridines 118 with yields of 55–85%, ee reaching up to 85%, 
and a diastereoisomeric ratio of up to 92:8. In this study, a screening of solvents for the 
synthesis of aziridines 118 was carried out, and it was noted that CH3CN was the most 
promising solvent among the non-biobased ones but presented lower results in yield and 
ee. The authors used the chiral aziridines for the construction of reduced hydantoins via 
[3+2] annulation reaction with isocyanates. 
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Scheme 41. Aldolic reaction catalyzed by proline-derived tetrazole in a flow system.

Monteiro and colleagues [88] investigated the synthesis of protected chiral aziridines
118 through the reaction between α,β-unsaturated aldehydes 20 and a protected amine
33 with the use of organocatalyst 21 (Scheme 42). The described protocol furnished five
derivatives of protected chiral aziridines 118 with yields of 55–85%, ee reaching up to 85%,
and a diastereoisomeric ratio of up to 92:8. In this study, a screening of solvents for the
synthesis of aziridines 118 was carried out, and it was noted that CH3CN was the most
promising solvent among the non-biobased ones but presented lower results in yield and
ee. The authors used the chiral aziridines for the construction of reduced hydantoins via
[3+2] annulation reaction with isocyanates.
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Looking forward to the preparation of enantiomerically pure compounds that con-
tain hydroxyphthalides 121 and 122, Liu and colleagues [89] developed a new method 
based on N-heterocyclic carbene (NHC) obtained in situ by deprotonation of the tria-
zolium salt 120. The process consists of the formation of chiral acyl azolium intermediate 
from the reaction of aldehyde 5 and 120 in presence of 3,3′,5,5′-tetra-tert-butyldiphenoqui-
none (DQ) as oxidant. The authors also described examples using enals 20 without the 
need for oxidants to produce 122. The reaction medium applies ethyl acetate as a solvent 
and N,N-diisopropylethylamine (DIPEA) as the base to obtain a series of derivatives with 
moderate to good ee (Scheme 43). It stands out that the authors also tested THF as solvent, 
but it showed a lower yield for 121a (81%). 

 
Scheme 43. Asymmetric acylation of hydroxyphthalides catalyzed by NHC derived from triazolium 
salt 120. 

In 2021, Ye’s group [90] studied the use of the triazolium salt 124 in dynamic kinetic 
resolution (DKR) of α-trifluoromethyl hemiaminals 123. They developed an efficient 
method to obtain asymmetric esters 125 in high yields and enantioselectivities up to 97% 
employing ethyl acetate as solvent, potassium carbonate as base, and 3,3′,5,5′-tetra-tert-

Scheme 42. Synthesis of protected chiral aziridines mediated by organocatalyst 21.

Looking forward to the preparation of enantiomerically pure compounds that contain
hydroxyphthalides 121 and 122, Liu and colleagues [89] developed a new method based
on N-heterocyclic carbene (NHC) obtained in situ by deprotonation of the triazolium salt
120. The process consists of the formation of chiral acyl azolium intermediate from the
reaction of aldehyde 5 and 120 in presence of 3,3′,5,5′-tetra-tert-butyldiphenoquinone (DQ)
as oxidant. The authors also described examples using enals 20 without the need for
oxidants to produce 122. The reaction medium applies ethyl acetate as a solvent and N,N-
diisopropylethylamine (DIPEA) as the base to obtain a series of derivatives with moderate
to good ee (Scheme 43). It stands out that the authors also tested THF as solvent, but it
showed a lower yield for 121a (81%).
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Scheme 43. Asymmetric acylation of hydroxyphthalides catalyzed by NHC derived from triazolium
salt 120.

In 2021, Ye’s group [90] studied the use of the triazolium salt 124 in dynamic kinetic
resolution (DKR) of α-trifluoromethyl hemiaminals 123. They developed an efficient
method to obtain asymmetric esters 125 in high yields and enantioselectivities up to 97%
employing ethyl acetate as solvent, potassium carbonate as base, and 3,3′,5,5′-tetra-tert-
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butyldiphenoquinone (DQ) as oxidant. Furthermore, THF, DCE, Et2O, and EtOAc were also
tested in the solvent screening, and ethyl acetate showed the best performance (92% yield
and 93% ee), followed by THF (92% yield and 89% ee). It stands out that the authors carried
out the synthesis of 125a in a gram scale, reaching 99% yield with 94% ee (Scheme 44).
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first by forming the iminium and enamine intermediates to obtain products 132 after re-
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Scheme 44. Asymmetric acylation of hemiaminals 123 catalyzed by NHC derived from triazolium
salt 124.

McGorry and colleagues [91] described in their work a simple process to obtain a series
of chiral amino alcohols 128 with high ee. They applied the MacMillan’s second-generation
imidazolidinone 127 to catalyze the α-sulfamidation of unbranched aldehyde 1 using sulfonyl
azides 126 in aqua media with the addition of ethyl acetate (3–7% v/v), affording the corre-
sponding α-amino aldehydes, which were then reduced with NaBH4 (Scheme 45). During
the optimization study, several solvents were evaluated, including DCM, toluene, THF, and
acetone, but the best results were obtained with the H2O/EtOAc mixture.
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The potential applicability of ethyl acetate in organocatalyzed reaction was demon-
strated by Yao and Wang [93] in 2014, employing the commercially available organocata-
lyst (DHQD)2PHAL 135 for the N-allylic alkylation of hydrazone 133 with Morita–Baylis–
Hillman (MBH) carboxylates 134. The adducts 136 could be obtained with yields up to 
94% and high ee. The same protocol, when evaluated in DCM, was inferior in terms of 
yields and stereoselectivities. The proposed transition state involves the formation of a 
more reactive intermediate via covalent bonding by quinuclidine attack on the MBH car-
boxylate (Scheme 47). 
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Wallbaum and colleagues [92] screened a series of imidazolidinone organocatalysts to
promote the 1,3-chlorochalcogenation of meso-cyclopropyl carbaldehydes 130 with sulfenyl
and phenylselenyl chlorides 129. The best enantioselectivity was achieved with catalyst
133 using ethyl acetate as solvent at −4 ◦C, although better yield and diastereoselectivity
were obtained with DCM. The enantioselective desymmetrization reaction proceeds first
by forming the iminium and enamine intermediates to obtain products 132 after reduction
with NaBH4 on moderate to good yields, ee and diastereoselectivities (Scheme 46).
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Scheme 46. Enantioselective desymmetrization of aldehydes 130 with catalyst 131.

The potential applicability of ethyl acetate in organocatalyzed reaction was demon-
strated by Yao and Wang [93] in 2014, employing the commercially available organocatalyst
(DHQD)2PHAL 135 for the N-allylic alkylation of hydrazone 133 with Morita–Baylis–
Hillman (MBH) carboxylates 134. The adducts 136 could be obtained with yields up to 94%
and high ee. The same protocol, when evaluated in DCM, was inferior in terms of yields
and stereoselectivities. The proposed transition state involves the formation of a more
reactive intermediate via covalent bonding by quinuclidine attack on the MBH carboxylate
(Scheme 47).

2.3.2. Activation Via Non-Covalent Bonding

Xie and colleagues [94] reported the enantioselective synthesis of spiro[indoline- 3,4′-
pyrano[2,3-c]pyrazole] derivatives 139 using the commercially available catalyst
(DHQD)2PYR 138 with excellent yields and moderate to excellent enantioselectivities.
During the optimization study, several solvents were evaluated (toluene, xylenes, CH2Cl2,
CHCl3, Et2O, THF, acetonitrile, EtOH, DMF), and ethyl acetate was selected. The reaction
occurs via organocatalytic asymmetric Michael/cyclization cascade reaction of N-benzyl
isatylidene malononitriles 64 with 1-phenyl-3-methyl-5-pyrazolones 137. The catalyst
provides enantiocontrol through the formation of pyrazolone enolate, which, after its
addition to isatylidene malononitrile, leads to the formation of the electrophilic intermedi-
ate, activated via hydrogen bonding of the protonated quinuclidine. The authors further
derivatized product 139d to a pyranotriazolopyrimidine, known for its biological activity
(Scheme 48).
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Ding and Wolf [95] demonstrated in their work an efficient asymmetric synthesis of
α-oxetanyl and α-azetidinyl derivatives, obtained by reaction between oxindole 140 and
nitroalkene 141 using ethyl acetate as a solvent and squaramide 142 as catalyst, providing
the desired products with satisfactory yields and enantioselectivities (Scheme 49). In
addition, they also performed reactions with acyclic α-fluoroketones 144 and 145 using the
same conditions but in low to moderate ee. To improve the stereoselectivity, an optimization
study was carried out providing cyclic and acyclic fluoroenolate asymmetric additions
with reaction times between 70 to 110 h (Scheme 50).
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developed a method to promote the enantioselective addition of diphenyl phosphonate 
148 to ketimines derived from isatins 149 with good to high yields and good to excellent 
enantioselectivities, except for compound 151b (Scheme 51). In the optimization study, 
dichloromethane, chloroform, toluene, methanol, and tetrahydrofuran were also tested, 
but they showed a decrease in enantioselectivities when compared to EtOAc. It is worth 
noting that the synthetic procedure was tested on a gram scale to obtain 151a with 81% 
yield and 93% ee. 

Interestingly, Wu and colleagues [97] developed a novel chiral bifunctional phos-
phine organocatalyst 152 bearing squaramide that was applied in the MBH reaction to 
obtain derived oxaindoles, using isatins 15 and enone esters 58 as starting materials and 
ethyl acetate as solvent. The squaramide acts as a hydrogen bonding donor in the in-situ-
generated phosphine enolate, which resulted in products 153 with moderately to excellent 
enantioselectivities and yields up to 99% (Scheme 52). It is noteworthy that MBH reactions 
are one of the main C-C bonding formation tools with excellent atom economy. Further-
more, they are useful tools in the formation of densely functionalized alcohols. This class 
of reactions is conventionally reported in DCM [98], THF [99], and chloroform [100] as 
solvents. 
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Moreover, the efficient use of squaramide analogue 150 as a chiral catalyst was demon-
strated in the presence of ethyl acetate as solvent by Jang and coworkers [96]. They
developed a method to promote the enantioselective addition of diphenyl phosphonate
148 to ketimines derived from isatins 149 with good to high yields and good to excellent
enantioselectivities, except for compound 151b (Scheme 51). In the optimization study,
dichloromethane, chloroform, toluene, methanol, and tetrahydrofuran were also tested,
but they showed a decrease in enantioselectivities when compared to EtOAc. It is worth
noting that the synthetic procedure was tested on a gram scale to obtain 151a with 81%
yield and 93% ee.
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Interestingly, Wu and colleagues [97] developed a novel chiral bifunctional phosphine
organocatalyst 152 bearing squaramide that was applied in the MBH reaction to obtain
derived oxaindoles, using isatins 15 and enone esters 58 as starting materials and ethyl ac-
etate as solvent. The squaramide acts as a hydrogen bonding donor in the in-situ-generated
phosphine enolate, which resulted in products 153 with moderately to excellent enantiose-
lectivities and yields up to 99% (Scheme 52). It is noteworthy that MBH reactions are one
of the main C-C bonding formation tools with excellent atom economy. Furthermore, they
are useful tools in the formation of densely functionalized alcohols. This class of reactions
is conventionally reported in DCM [98], THF [99], and chloroform [100] as solvents.

Du’s group [101] carried out an asymmetric addition of 1,4-Michael between azadienes
154 and thiocyanoindanones 155, mediated by a bifunctional organocatalyst 156 derived
from squaramide. In this study, several solvents were evaluated, in which dichloromethane
was the one that furnished the compound of interest with the highest yield, but when the
authors used ethyl acetate, there was an improvement in enantio- and diastereoselectivities,
so it was fixed as a solvent. Toluene also presented good results, with yields of up to 88%
(slightly higher than EtOAc) but with lower ee, reaching 62%. Using the optimized condi-
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tions, the method allowed for obtaining a scope consisting of 21 examples of compounds
157, with yields of up to 87% and good enantio- and high diastereoselectivities (Scheme 53).
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Song and Du [102] described the enantioselective synthesis of 4-acyloxythiazole deriva-
tives via organocatalytic cascade Michael/hemiketalization/retro-aldol reaction. To this
end, the authors employed thiazolones 158 and α-nitroketones 159 as substrates with the
bifunctional squaramide catalyst 142a in the presence of ethyl acetate as solvent. The
proposed mechanism pathway includes an activation of both substrates through hydrogen
bonding. This method resulted in a wide variety of β-functionalized nitrocompounds 160
with moderate to excellent yields and up to 95% ee, even on a gram scale (Scheme 54).
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Wu and co-workers [103] investigated the preparation of the synthetically useful
and medicinally important 2H-thiopyrano [2,3-b]quinolones 162, employing a squaramide-
cinchone derivative 156 as catalyst. An asymmetric tandem Michael–Henry reaction in ethyl
acetate between 2-mercaptoquinoline-3-carbaldehydes 161 to trans-nitrostyrenes 2 resulted
in a protocol with excellent yields and stereocontrol. The proposed mechanism involves
both deprotonation of the thiol and activation of nitrostyrene via hydrogen bonding by
the catalyst (Scheme 55). Ethyl acetate as solvent proved to be important in the yield and
enantioselectivity, since when the reaction was carried out with DCM, the product 162a
was obtained at 80% yield and 87% ee.

More recently, the utility of bifunctional squaramide 164, in the synthesis of het-
erocyclic compounds, was further demonstrated by Shikari and colleagues [104] with
spirooxindoles 165 via a domino reaction between isatin 15 with different N-substituents
and γ-hydroxy enones 163. During the solvent screening, toluene, 5, THF, and CH3CN
were evaluated, and EtOAc showed the best results. A wide variety of compounds were
obtained with yields up to 90%, high diastereoselectivity, and excellent ee, including scale-
up. The proposed transition state of this transformation involves increased electrophilicity
of isatin by hydrogen bonding formed with the catalyst 164 (Scheme 56).
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Nagy and co-workers [105] reported the synthesis of binaphthyl-cinchone thio- and
squaramides. The authors extend the application of these new organocatalysts into three
reaction classes, among them, the enantioselective Michael addition reaction of acetylace-
tone 166 to trans-nitrostyrene 2, affording products 168 with excellent yields and ee when
using the organocatalysts 167a,b. The best results were obtained in the presence of ethyl
acetate when compared with THF as solvent. The reaction probably proceeded through
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the activation of a squaramide hydrogen bonding donor with the nitrostyrene substrate,
concomitantly with the formation of the enolate from quinuclidine moiety (Scheme 57).
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Zhang’s group [106] studied the enantioselective synthesis of dihydropyrimidinethiones
(DHPM) 172 mediated by a bisphosphorylimide type organocatalyst 171 (Scheme 58). Un-
der the optimized condition, which included a reaction time of 12 h at 50 ◦C, it was possible
to obtain 13 examples of DHPM 172 with yields between 83–97% and good ee. The method
was developed via a Biginelli multicomponent reaction, which stands out for its conver-
gence and atom economy. In this study, other solvents were evaluated and, among them,
dichloromethane proved to be efficient, affording the product 172a with 75% yield and
91% ee.
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Scheme 58. Bisphosphorylimide 171 mediated asymmetric Biginelli reaction.

Liu and colleagues [107] used a chiral phosphoric acid (CPA) 175 as catalyst in ethyl ac-
etate as solvent for the asymmetric allylation of isatin-derived 3-indolylmethanols 174. The
phosphoric acid catalyst activated simultaneously both substrates via hydrogen bonding,
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which allows a cascade reaction, i.e., the addition of o-hydroxystyrenes 173 followed by an
elimination of hydrogen resulting in compounds 176 with excellent diastereo- and enantio-
control and low to good yields (Scheme 59). This reaction showed the best stereoselectivity
with EtOAc when compared with other solvents such as toluene and dichloroethane.

Catalysts 2023, 13, 553 41 of 56 
 

 

176, 25 examples
44-84% yield

up to 97% ee, up to >20:1 dr
R3: R5: H, Me, Cl, F, Br 
R4: Bn, Ph, Me

R1: H, Me, OMe
R2: H, alkyl, Bn

EtOAc, 35 ºC174173
Catalyst 175 (10 mol%)

Reaction conditions:

Selected examples:

176e. 62% yield
97% ee
6:1 dr

176b. 76% yield
94% ee

>20:1 dr

O
P

O O
OH

Naph

Naph

N
H

N

OH

O

R4

R2

OH

NH

N O

R4

R2
OH

R1

R1

R3

R5

R3

R5

176f. 76% yield
90% ee
6:1 dr

176c. 52% yield
94% ee
5:1 dr

176d. 77% yield
90% ee

O
P

O O
O

Naph

Naph N
N

O
R4

R2

O

R1

R3

R5
H

H

176a. 71% yield
97% ee

>20:1 dr

NH

N O

Bn

OH

NH

N O

OH

NH

N O

Ph

OH

NH

N O

Bn

OH

NH

N O

Bn

Et
OH

NH

N O

Bn

Bn
OH

Key step of mechanism:

 
Scheme 59. Allylation of 3-indolylmethanols 174 with o-hydroxystyrenes 173. 

Later, the same class of catalyst was reported by Shao and Cheng [108], where an 
investigation was conducted with indolenines 178 and sulfones 177. The synthesis of ben-
zothiazole derivatives 180 with good yield and enantioselectivity occurred through a cas-
cade Mannich addition/Smiles rearrangement (Scheme 60). Although Mannich reactions 
are conventionally described in chloroform [109] and THF [110], in the presence of ethyl 
acetate, the reaction demonstrated to be more efficient than in DCE, toluene, and THF. 

 
Scheme 60. Cascade Mannich addition/Smiles rearrangement of indolenines 178 and sulfones 177. 

Scheme 59. Allylation of 3-indolylmethanols 174 with o-hydroxystyrenes 173.

Later, the same class of catalyst was reported by Shao and Cheng [108], where an
investigation was conducted with indolenines 178 and sulfones 177. The synthesis of
benzothiazole derivatives 180 with good yield and enantioselectivity occurred through a
cascade Mannich addition/Smiles rearrangement (Scheme 60). Although Mannich reactions
are conventionally described in chloroform [109] and THF [110], in the presence of ethyl
acetate, the reaction demonstrated to be more efficient than in DCE, toluene, and THF.

More recently, Shao and colleagues [111] conducted studies on the asymmetric aza-
Henry reaction promoted by the cinchona-thiourea organocatalyst 181 via hydrogen bond-
ing. In this sense, the reaction of indolenines 178 with nitromethane 39 resulted in adducts
182 with up to 81% yield and 94% ee (Scheme 61). In the solvent screening, ethyl acetate
proved to be more efficient than DCM and THF.

Rodriguez’s group [112] studied the production of chiral polysubstituted cyclohexanes
185 using ketoamides 183 and nitroalkenes 2, mediated by the Takemoto catalyst (derived
from thiourea) 184. The reaction was carried at room temperature for four days. Under
the optimized protocol, it was possible to obtain five examples of 185, with yields of up to
67% and up to 98% ee and good diastereoselectivities (Scheme 62). During the study, other
solvents were evaluated, and it was noted that the most effective was DCM, which led to
the formation of the product with 45% yield, although much lower than that obtained with
EtOAc. The authors also addressed the reaction between 1,3-ketoamides with acrolein by
using other non-bio-based solvents.
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Scheme 61. Asymmetric aza-Henry reaction of indolenines 178 to nitromethane 39.

Kumar and colleagues [113] demonstrated the synthesis of α-aminophosphonates in
the presence of ethyl acetate as solvent, employing a cinchona-derived thiourea 186 as
chiral organocatalyst. Using a simple protocol, they were able to obtain 12 derivatives
151 with good yields and enantioselectivity. Interestingly, in the proposed transition
state, the quinuclidine nitrogen in catalyst 186 plays an important role in the equilibrium
between phosphite and phosphonate shifting to reactive phosphite form (Scheme 63). In
this work, there was also a screening of solvents, and it was observed that xylene presented
a satisfactory result in terms of yield (87%) but lower ee (72%) when compared with EtOAc.
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Scheme 63. Asymmetric synthesis of α-amino phosphonates catalyzed by thiourea derivative 186.

Chen’s group [114] developed an organocatalyzed formal [5+1] annulation using
DABCO via a cascade Michael-aldol reaction in ethanol resulting in products in racemic
form. To obtain enantiomerically enriched products, they tested this protocol using quinine
derived thiourea 181 as a chiral catalyst and ethyl acetate as solvent to obtain 189 with 79%
enantioselectivity and up to >95:5 dr (Scheme 64).
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2.4. Supercritical Carbon Dioxide

Carbon dioxide can be mainly obtained from renewable natural sources (plants) and
industrial processes (burning of fuels) [115]. The CO2 becomes a supercritical fluid when
the temperature and pressure are higher than its critical values (31.1 ◦C and 7.38 MPa).
The supercritical carbon dioxide (scCO2) is considered a green solvent since it is stable,
widely available, non-toxic and potentially recyclable, and presents low viscosity and high
diffusivity [116].

2.4.1. Activation Via Covalent Bonding

Liu’s group evaluated the effect of compressed CO2 on an asymmetric aldol reaction
promoted by L-proline derivative 190 as catalyst [117]. They observed that compressed
CO2 induced the formation of supramolecular assemblies of amphiphilic proline derivative
in water. The developed method proved to be efficient since it allowed for obtaining the
compound of interest ent-8g with 99% yield and 93% ee. In the proposed mechanism, the
bifunctional catalyst acts via a combination of hydrogen bonding and covalent activation
(Scheme 65). The authors also evaluated the recovery and reuse of the organocatalyst,
which remained active even after five reaction cycles.
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2.4.2. Activation Via Hydrogen Bonding

In 2012, Zlotin’s group [118] described the first enantioselective Michael synthesis
of malonates 9 or 35 to α-nitroolefines 2 using liquid CO2 as the solvent and a thiourea
derivative catalyst 184 (Scheme 66). The transition state involves the formation of a more
reactive intermediate via hydrogen bonding by thiourea and deprotonation of the malonate
by tertiary amine. The developed protocol resulted in the preparation of 13 compounds 81
with moderate to good ee. Although these results are below those obtained by Ashokkumar
and Siva [70], the protocol allows for obtaining the same class of compounds without the
need for structural modification of the catalyst and in the presence of liquefied CO2, and
the reaction was demonstrated to be similar to that in toluene with 60% yield and 92% ee
for 81a.
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Kuchorov and colleagues studied an asymmetric version of the Michael addition in a
supercritical carbon dioxide system using diphenylphosphite (148) and nitroalkenes 2 as
starting materials [119]. In this protocol, the authors evaluated bifunctional organocatalysts
191 and 192 containing the tertiary amino group and the squaramide moiety. The method
allowed for obtaining β-nitrophosphonates 193 with yields of up to 97% and 94% ee. The
proposed transition state includes an activation of the nitroalkene through hydrogen
bonding by the squaramide, followed by deprotonation of the phosphite by the tertiary
amine (Scheme 67). Squaramide 191 bearing the adjacent piperidine unit showed the
best catalytic performance in the model reaction in liq-CO2, which was similar to or just
slightly lower than the corresponding results obtained earlier in the CH2Cl2, toluene, or
Et2O media.

Zlotin’s group reports the first use of scCO2 as the solvent in enantioselective catalytic
domino-reactions [120]. The authors demonstrated that chiral tertiary-amine squaramide
192 was able to catalyze the Michael reaction between chalcone 89 and α-nitroalkene 2 to
obtain the desired products 194 with high yields (up to 97%) and enantioselectivity (up to
98% ee) (Scheme 68). Moreover, trifluoromethane (CHF3) in a supercritical state was also
tested, and the performance was similar to the scCO2.
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The same group described the application of bifunctional tertiary-amine squaramides
in Michael reactions in the presence of scCO2 as the solvent [115]. In this case, they
developed the novel pseudo-enantiomeric bifunctional squaramides 195 and 196, modified
with the long-chained alkoxy group, and obtained the desired Michael adducts 194 and
ent-194 with moderate to high yields (up to 98%) and high enantioselectivity (up to 98% ee)
(Scheme 69).
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2.5. Ethyl Lactate

Ethyl lactate is a nontoxic and biodegradable solvent formed by the esterification
reaction of ethanol and lactic acid that can be generated from biomass raw materials
through fermentation [121]. This bio-based solvent is used in additives, perfumes, and as
a cleaning agent, and its physical properties are adequate to replace methylene chloride
and chloroform.

Activation Via Non-Covalent Bonding

As far as we know, only one example in asymmetric organocatalysis using ethyl lactate
as a solvent has been described so far. In 2021, Verková and colleagues [122] developed a
sequential one-pot two-step Michael addition applying squaramide 197 as catalyst. When
the substrate was cyclohexanone 6, a basic additive NaOAc and co-catalyst (S)-proline were
required, affording the intermediate lactol 198, and without any purification, the product
199 was obtained after sequential reductive etherification with 70% yield (66% ee, 95:5 dr)
(Scheme 70).
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Interestingly, when the authors used a more reactive Michael donor substrate, such
as methyl 2-oxocyclopentane-1-carboxylate 200, neither the additive nor the co-catalyst
were necessary, and in addition, a shorter reaction time was observed (3 d compared to
8 d). Thus, the product 202 was obtained with 72% yield and enantiomeric purity > 99%.
(Scheme 71).
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2.6. Diethyl Carbonate

The industrial production of monomeric dialkyl carbonates has historically used
condensation of the corresponding alcohol with phosgene as a carbonyl source. However,
the production of diethyl carbonate (DEC) has become more sustainable by being able to
incorporate CO2 into organic molecules [123]. This solvent has ecofriendly features, such
as low toxicity, polarity, and high biodegradability.

Activation Via Non-Covalent Bonding

Bhanage and Ganesh described the synthesis of 1,2,3,4-tetrahydroquinolines (206)
through organocatalyzed asymmetric hydrogenation [124]. In this method, substituted
quinolines 203 were adopted as starting materials, Hantzsch esters (204) as the hydrogen



Catalysts 2023, 13, 553 47 of 52

source, and the chiral Brønsted acid 205 was evaluated as catalyst. Propylene carbonate,
dimethyl carbonate, and diethyl carbonate were screened as solvents, and the best results
were obtained with DEC. In the proposed mechanism, the quinoline and Hantzsch ester
(HEH) were activated via hydrogen bonding by the catalyst 205. Under the optimized
condition, this protocol allowed for obtaining nine examples of 1,2,3,4-tetrahydroquinolines
206 with excellent yields and ee (Scheme 72).
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3. Conclusions

In summary, in this review, we discussed the reports published in the last decade on
asymmetric organocatalysis using bio-based solvents. A wide variety of proline, cinchona,
and BINAP derivatives were shown to be effective catalysts, including in obtaining phar-
macologically active compounds. Moreover, many important organic reactions, including
the Morita–Baylis–Hillman, Mannich, cycloadditions, and especially, the Michael addition,
may be efficiently carried out in their asymmetric version using bio-based solvents. Some
methods also proved to be highly efficient in scale-up procedures by using heterogeneous
catalysts in a continuous flow regime.

However, mainly ethanol, 2-MeTHF, ethyl acetate, and supercritical CO2 have been
explored so far, thus, further studies are needed to evaluate other bio-based solvents such
as cyrene, γ-valerolactone, and limonene. The use and acceptance of these renewable
solvents can be increased only if competitive prices are achieved to replace traditional
organic solvents.

Despite the current growth in the development of more sustainable protocols, it is
evident that most of the examples mentioned in this review demonstrated that the solvent
choice was due to its greater efficiency in the process and not exclusively because of
the environmental impact. However, it is not possible to generalize that the bio-based
solvents are always the best option since small changes in the structure of substrates may
modify significantly the solubility and, thus, the reactivity. As we have demonstrated, a
large number of successful examples have already been reported in the literature, which
should stimulate other research groups to consider these alternative greener solvents in the
near future.
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