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Abstract: The persulfate-based advanced oxidation processes employing heterogeneous photo-
catalysts to generate sulfate radicals (SO4

•−) from peroxydisulfate ion (PDS, S2O8
2−) have been

extensively investigated to remove organic pollutants. In this work, BiOX (X = Cl, Br, and I) photo-
catalysts were investigated to activate PDS and enhance the transformation rate of various organic
substances under UV (398 nm) and Vis (400–700 nm) radiation. For BiOCl and BiOBr, in addition to
excitability, the light-induced oxygen vacancies are decisive in the activity. Although without organic
substances, the BiOI efficiency highly exceeds that of BiOBr and BiOCl for PDS activation (for BiOI,
15–20%, while for BiOBr and BiOCl, only 3–4% of the PDS transformed); each BiOX catalyst showed
enhanced activity for 1,4-hydroquinone (HQ) transformation due to the semiquinone radical-initiated
PDS activation. For sulfamethoxypyridazine (SMP), the transformation is driven by direct charge
transfer, and the effect of PDS was less manifested. BiOI proved efficient for transforming various
organic substances even under Vis radiation. The efficiency was enhanced by PDS addition (HQ
is wholly transformed within 20 min, and SMP conversion increased from 40% to 90%) without
damaging the catalyst; its activity did change over three consecutive cycles. Results related to the
well-adsorbed trimethoprim (TRIM) and application of biologically treated domestic wastewater as a
matrix highlighted the limiting factors of the method and visible light active photocatalyst, BiOI.

Keywords: benzoquinone; sulfonamides; sulfate radical ion; semiquinone; matrix effect; BiOX

1. Introduction

Nowadays, environmental pollution, including water pollution, has received particu-
lar attention, and treating water pollutants has become an urgent task. Some biologically
active organic contaminants, such as endocrine-disrupting chemicals, pharmaceuticals,
and personal care products, are non-biodegradable and cannot be removed entirely us-
ing conventional water treatment methods. Therefore, the effective elimination of these
contaminants has become a leading research topic in environmental sciences. Moreover,
the world has faced the pandemic caused by COVID-19, which resulted in the growing
global use of antibiotics and their concentration in wastewater [1–3]. The concentration of
antibiotics in influent wastewater is typically in the order of nanograms per liter and often
reaches several milligrams per liter. During wastewater treatment, their concentration is
usually reduced, although a significant part of them and some of their metabolites can often
remain in the effluent and reach the surface waters. This further increases the probability
of developing antibiotic-resistant bacterial strains, having unpredictable consequences [4].

Heterogeneous photocatalysis is one of the Advanced Oxidation processes (AOP),
which is suitable for the economical removal of non-biodegradable water pollutants, espe-
cially by using photocatalysts that can be excited by visible light. In a photocatalyst excited,
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the electron (ecb
−) in the conduction band and hole (hvb

−) in the valence band, created
by photoinitiated charge separation, must avoid recombination and reach the surface to
react with the organic compound or generate reactive species (radicals and radical ions) to
degrade it. The widely studied first-generation photocatalysts, such as TiO2 and ZnO, can
be excited in the UV range, and the transformation of the organic substances is generally
initiated by hydroxyl radical (•OH) based reactions [5]. In recent decades, the number
of publications related to synthesizing and testing visible light-excitable photocatalysts
with lower bandgap energy has increased significantly [6–8]. Another important goal is
to achieve a longer lifetime of the photogenerated charges to enhance the oxidation and
reduction processes realized through direct charge transfer on the surface and increase the
efficiency of the transformation of organic and inorganic components in this way [5,9].

Bismuth-containing photocatalysts are intensively researched materials; most pub-
lications focus on bismuth oxohalides (BiOX, X = F, Cl, Br, I) due to their highly unique
structure and beneficial optical and catalytic properties. Furthermore, their advantages
are chemical stability, easy preparation, good adsorption properties, and superior photo-
catalytic activity [10–15]. BiOF and BiOCl are active in the UV range (band gap: ~3.6 eV
for BiOF and ~3.2 eV for BiOCl), while BiOBr, and especially BiOI, are active in the vis-
ible range (band gap: ~2.6 eV for BiOBr and ~1.8–2.1 eV for BiOI) [14,16]. In addition
to optical properties and widely different bandgap values, the adsorption capacity and
surface properties of BiOX photocatalysts also differ. Photoinduced oxygen vacancies (OVs)
are easily formed on their surface (especially for BiOBr and BiOCl), which can change
their color, absorption, and adsorption properties. All of these can be beneficial in terms
of photocatalytic activity [17,18]. The number and quality of reactive species formed on
the surface of the excited catalyst are decisive for the efficiency and transformation of the
organic target substances. The relative oxidation power of photogenerated hVB

+ changes
in the order of BiOCl > BiOBr > BiOI. The •OH forms with low efficiency in the case of
BiOBr, while the O2

•− formation is characteristic for each BiOX [19]. Several attempts have
been made to enhance the efficiency of BiOX photocatalysts, including the preparation of
composite catalysts, such as BiOCl/BiOBr [20], BiOCl/BiOI, [21–23], and TiO2/BiOX [24],
with improved stability and enhanced visible-light activity.

The efficiency of heterogeneous photocatalysis can be enhanced via the addition of
substances that are effective electron scavengers and the source of highly reactive radicals
simultaneously, such as ozone [25] and H2O2 [26]. In recent years, persulfate (PS)-based
AOPs have been considered a promising method to eliminate organic pollutants in water
due to the favorable properties of sulfate radical ion (SO4

•−), which is a strong nonselective
oxidant with high redox potential (2.6–3.1 V), similar to the •OH (1.9–2.7 V) [27–32]. The
source of SO4

•− can be peroxomonosulfate (HSO5
−, PMS) or peroxydisulfate ion (S2O8

2−,
PDS); their activation can occur via energy or electron transfer. In the case of the combina-
tion PS process with heterogeneous photocatalysis, the excited photocatalysts act as electron
donors, and PS can capture photogenerated ecb

− to generate SO4
•−. In addition to SO4

•−,
other reactive species, such as singlet oxygen (1O2), also form and are responsible for the
enhanced transformation and mineralization rate of target substances. Simultaneously, the
photocatalytic process can be promoted due to the improved separation of charge carriers.

Recently intensive studies were conducted to investigate the combination of hetero-
geneous photocatalysis with the PS process [33–37], using PDS [38,39] and PMS [40–42]
to enhance the efficiency. Some publications have reported the efficient application of
BiOBr [43] or BiOI composite to activate PDS [44–46]. However, to our knowledge, the
direct comparison of pure BiOI, BiOBr, and BiOCl for activation of PDS under UV and
visible light has not yet been published. In this work, we compare the efficiency of the
BiOX photocatalysts for the activation of PDS and the conversion of different organic
compounds (1,4-benzoquinone (BQ), 1,4-hydroquinone (HQ), sulfamethoxypyridazine
(SMP), and trimethoprim (TRIM)). The reusability of the BiOX catalyst showing the best
activity and the investigation of its use in biologically treated municipal wastewater as a
matrix was also studied.
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2. Results and Discussion
2.1. Characterization of the BiOX Photocatalyst

The synthesis method optimized and published by Bárdos et al. [15] was used to
prepare the BiOX photocatalysts, having spherical hierarchical microcrystals composed
of individual nanoplates. The synthesized catalysts were characterized using powder
X-ray diffractometry (XRD). The specific surface area (using measurements based on
N2 adsorption), the reflectance, and bandgap values (using DRS measurements) were
determined. The results (Figure 1 and Table 1) provided data consistent with the data in the
literature [13,47]. According to the bandgap value, BiOBr can be excited with the photons
emitted by UV-LED, while BiOI can be excited by both LEDs. However, a significant
part of the photons (λ > 512 nm) emitted by the Vis-LED is unsuitable for creating the
photogenerated ecb

−–hvb
+ pair. The energy of 398 nm photons is inadequate for the

excitation of BiOCl, having a 3.26 eV bandgap value.
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Figure 1. UV–Vis DRS spectra (a) (shadow indicates the emission range of LED (violet: UV-LED, red:
Vis-LED)), Kubelka Munk Curves (b), and XRD patterns (c) of BiOCl, BiOBr, and BiOI.

Table 1. The specific surface areas and bandgap values of the photocatalysts.

Bandgap Surface Area Primary Particle Size

BiOCl 3.26 eV (363 nm) 16 m2 g−1 31 nm
BiOBr 2.76 eV (435 nm) 18 m2 g−1 39 nm
BiOI 2.01 eV (512 nm) 45 m2 g−1 21 nm

2.2. Transformation of the Target Substances Using BiOX Photocatalysts

The efficiency of the photocatalytic elimination of organic substances depends on the
quality and quantity of the reactive species formed on the surface of the excited photo-
catalyst and the reactivity of the target substances towards them. The formation of the
non-selective •OH is unlikely in the case of the irradiated BiOX [13,19,48]; the transforma-
tion of organic substances occurs mainly via reactions with other, more selective species,
such as singlet oxygen (1O2) or O2

•−/HO2
• [19]. Another option for the transformation

of organic substances is the direct charge transfer [13,48]. In this work, four organic sub-
stances were chosen to determine and compare the activity of BiOX photocatalyst and
investigate the relative contribution of the various processes to the transformation of or-
ganic substances. The target compounds were carefully chosen to characterize the activity
of catalysts from different points of view.

2.2.1. Transformation of BQ

Fónagy et al. [49] demonstrated that the transformation of BQ in O2-free suspension
occurs via direct charge transfer; the reaction with eCB

− results in the formation of HQ [50]:

BQ + 2 e− → HQ k = 3.9 × 1010 M−1 s−1 (1)
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consequently, the transformation rate of BQ and formation rate of HQ is primarily deter-
mined by the density of the photogenerated ecb

− on the surface, which depends on the
absorption property, excitability of the catalyst, and the recombination rate of photogener-
ated charges at a given photon flux and wavelength.

Figure 2 shows the BQ transformation in O2-free suspensions of BiOX photocatalysts
using UV LED (398 nm) and Vis LED (400–700 nm). BQ is also efficiently transformed
by direct photolysis, even under Vis radiation. Although the transformation of BQ by
both direct charge transfer and photolysis results in HQ, there is a characteristic difference
between the two processes regarding HQ conversion. In the case of direct charge transfer,
BQ completely transforms to HQ [49], while in the case of direct photolysis besides HQ,
other aromatic and ring-opening products form [51].
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Figure 2. Transformation of BQ (a,d) and formation of HQ (b,e) and the sum of the BQ and HQ
concentration (c,f) in O2-free BiOX suspensions, under UV (a–c) and Vis (d–f) radiation (a,d).

Based on the bandgap energy (Table 1), BiOI and BiOBr can be excited with 398 nm
photons, but not BiOCl, while only BiOI can be excited using a Vis LED. Nevertheless, in
the case of UV LED, the transformation of BQ occurred at a rate similar to that of photolysis
in the case of BiOCl and BiOBr, and transformation was observed even under visible light
radiation. Both catalysts were blackened under irradiation; this change was reversible,
and both photocatalysts changed their color back in the dark. A similar observation has
been published and interpreted with photoinitiated oxygen/halogen vacancies, which
may result in better absorption properties, band gap changes, and enhanced photocatalytic
activity [18]. The oxygen vacancy-mediated mechanism of CO2 photoreduction was sug-
gested for BiOX [17], especially for BiOBr. In the case of BiOCl and BiOBr under UV light,
the conversion of HQ from BQ was significantly higher (85 and 100%) than in the case of
photolysis (less than 50%), which suggests that the heterogeneous photocatalytic transfor-
mation contributes to the BQ transformation (Figure 2). However, the direct photolysis
of BQ must be addressed, especially for BiOCl and BiOBr. Within the emission range of
the Vis LED, BiOCl, and BiOBr show high reflectance, and HQ conversion is closer to that
measured during photolysis, indicating that it contributes significantly to the conversion.

The BiOI catalyst should be discussed separately. The BiOI can be excited by both
LEDs and, opposite to the BiOCl and BiOI, efficiently absorb the emitted photons even
in the emission range of Vis LED (Figure 1 and Table 1). The color change of BiOI was
not observed under irradiation. The transformation of BQ in BiOI suspension was much



Catalysts 2023, 13, 513 5 of 18

slower than in solution via photolysis, and BQ completely transformed into HQ (Figure 2).
Presumably, in the case of BiOI suspension, the photons are absorbed by the catalyst and
the dominant way of BQ transformation is the direct charge transfer, beside that the role of
photolysis is negligible.

2.2.2. Transformation of HQ

The HQ transformation was investigated in aerated suspensions (Figure 3). The
concentration of the HQ does not change in irradiated and aerated solutions or O2-free
suspensions and is poorly (<2%) adsorbed on the surface of photocatalysts. The transforma-
tion requires the simultaneous presence of BiOX photocatalyst, irradiation, and dissolved
O2 [50] and occurs due to the reaction with O2

•− [52] resulting in BQ. In this case, the HQ
transformation rate directly refers to the O2

•− formation rate [49].

O2 + e− → O2
•− k = 2.3 × 1010 M−1 s−1 (2)

HQ + O2
•− → HBQ• + HO2

− (3)

HBQ• → BQ•−+ H+ (4)

BQ•− + O2 → BQ + O2
•− (5)

BQ + O2
•− → BQ•−+ O2 k = 9.8 × 108 M−1 s−1 (6)
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Figure 3. Transformation of HQ (a,d) and formation of BQ (b,e) and the sum of the HQ and BQ
concentration (c,f) in aerated BiOX suspensions under UV (a–c) and Vis (d–f) radiation.

The formation rate of O2
•− determined by Lv et al. [19] under simulated sunlight and

changed in the order BiOCl > BiOBr ∼= BiOI, while the relative oxidation power of hvb
+ was

in the order of BiOCl > BiOBr > BiOI. However, in our case, the transformation rate of HQ
changed in the order BiOI > BiOBr > BiOCl, reflecting the optical properties and excitability
of the catalysts (Figures 1 and 3, Table 1). Under Vis radiation, the activity of BiOCl and
BiOBr was negligible, while more than 80% of HQ was converted to BQ within 60 min in
the BiOI suspension. The results are consistent with the bandgap values, based on which
BiOCl and BiOBr cannot be excited by visible light, or only to a small extent, while BiOI
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can be well excited even by Vis light. The blackening of BiOCl and BiOBr was observed
in suspensions containing O2 and was less intense under Vis radiation than under UV.
The sum of the HQ and BQ concentration decreased slowly in UV, while did not change
in Vis irradiated suspensions (Figure 3). The slight decrease in the sum of HQ and BQ
concentration suggests that further BQ transformation occurs, resulting in the ring-opening
process. For BiOI, the application of Vis LED proved to be more efficient than UV LED at
the same electric power (4.6 W), even though the UV photon flux is twice the photon flux
in the visible range.

2.2.3. Transformation of SMP and TRIM

SMP and TRIM, as widely used, hardly biodegradable antibiotics, often detected in
surface water, were used as environmentally relevant target substances. A significant
difference between the substrates is that SMP is poorly adsorbed on BiOX photocatalysts,
while the adsorption of TRIM is substantial, particularly in the case of BiOI.

The SMP transformation using BiOI photocatalysts was investigated by Náfrádi et al. [48],
and the direct charge transfer was reported as the primary transformation way. The indirect
photodegradation [53,54] and reaction with ecb

− cannot be excluded partly because of
the reactivity of pyridazine moiety towards eaq

−. However, in the case of TiO2 excited
with 398 nm light, direct energy transfer [55] was observed, and a reaction with 1O2 [56]
was also assumed. Similar to HQ, direct photolysis of SMP is negligible in O2-free irradi-
ated suspension. The transformation surprisingly occurred at similar rates for all three
catalysts using UV LED and was much faster than HQ transformation under the same
experimental conditions (Figure 4). The observed activity cannot be interpreted solely
based on excitability, especially in the case of BiOCl [57]. Most probably, the photoinitiated
change of the catalysts properties, the formed oxygen vacancies, and the surficial Bi5+ and
Bi0 play a significant role in the efficiency and highly favorable to the redox capacity for
the photocatalysts and transformation of SMP by direct charge transfer. The synergism
between Bi0 and Bi5+ was demonstrated and was proved to be the reason for the enhanced
degradation of organic substances [52–55]. The decomposition was a hole-driven process;
moreover, O2

•− has an additive role. However, under visible light illumination, only the
BiOI catalyst showed activity; the transformation efficiency was half that observed under
UV radiation (Figure 4), similar to the BQ transformation also driven by direct charge
transfer (Figure 2).
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Figure 4. Transformation of SMP in aerated BiOX suspensions under UV (a) and Vis (b) irradiation.

Opposite the HQ and SMP, the relative adsorbed amount of TRIM was 39% for BiOI.
Lower values, 6% for BiOBr, and less than 2% for BiOCl were determined. To distinguish
the amount of adsorbed and transformed TRIM; NaF solution was added to the samples
for TRIM desorption before analysis [48]. Opposite to the good adsorption properties, no
more than 6% of TRIM transformed in BiOX-containing suspension, even in the case of
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BiOI (Figure S1). The reason could be the low reactivity of TRIM towards less reactive ROS,
such as O2

•− and 1O2. The transformation by charge transfer is most probably ruled out in
this case. This result clearly shows the limitation of the applicability of BiOX photocatalysts
because of the lack of the effective formation of highly oxidizing non-selective species, such
as •OH.

2.3. Effect of PDS

The effects of PDS on the BiOX Structure and Properties, and the Transformation of
PDS without Organic Substances

The effect of 1.0 × 10−3 M PDS on the photocatalyst stability was investigated under
UV and Vis radiation. XRD and DRS results proved that there is no significant change in
their structure, optical properties, and excitability of the photocatalysts (DRS spectra and
band gap values have not changed) (Figure 5).
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Figure 5. The Effect of PDS on the XRD diffractogram of BiOX ((a): BiOCl; (b): BiOBr; (c): BiOI)
photocatalysts under UV and Vis radiation in aerated suspensions.

In an aerated BiOI suspension containing no organic matter, the transformation of
1.0 × 10−3 M PDS results in the formation of 3.0 × 10−4 M and 3.7 × 10−4 M SO4

2−

under UV and Vis radiation, respectively, i.e., 15–20% of PDS was transformed in 60 min.
However, in the case of BiOBr and BiOCl, only 3–4% PDS was converted even under UV
radiation (Figure 6). That means BiOI is much more efficient for PDS reduction than BiOBr
or BiOCl.
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Figure 6. The concentration of sulfate ion results in PDS (1.0 × 10−3 M) transformation in UV and
Vis irradiated, aerated BiOX suspensions without organic substances.

The ineffectiveness of BiOCl is not surprising given its excitation and absorption
properties (Table 1); however, better efficiency of UV-irradiated BiOBr was expected, as
publications reported for activation of PDS [43,58] or PMS [59], even under visible light
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radiation. In the case of PDS, the enhanced Bisphenol-A transformation was interpreted by
oxygen vacancies mediated PDS activation process resulting in 1O2 as the main reactive
species under alkaline suspension of BiOBr [43]. A likely explanation of our results could
be the competition between O2 and PDS for ecb

−. The ecb
− capture by O2 can be more

favorable for BiOBr than BiOI due to the different conduction band potentials [19]; thus,
O2 can effectively compete with PDS for ecb

−. Another important factor could be the
surface charge, which is negative for all BiOX to varying degrees depending on the halogen
atom [22,60] and probably less favorable for the surface reactions of negatively charged
ions, such as PDS for BiOCl and BiOBr than BiOI. The different surface properties of BiOX
were also well reflected in the amount of adsorbed SMP.

2.4. Effect of PDS on the Transformation of the Target Substances

Without irradiation, the organic substances do not transform; the direct oxidation with
PDS is negligible in each case. The positive effect of PDS was pronounced in the case of
HQ not only for BiOI but also for BiOCl and BiOBr photocatalysts (Figure 7); however, the
PDS transformation was efficient without an organic substrate only for BiOI (Figure 6). In
the case of BiOI, the enhanced transformation is most likely caused by the formed SO4

•−.
However, this interpretation needs to be revised for BiOBr and BiOCl.
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the effect of PDS (purple: UV; red: Vis).

The transformation of HQ results in BQ via semiquinone radical (HBQ•), which
also can form via the comproportionation between BQ and HQ. The PDS can undergo
reductive transformation into SO4

•− by HBQ• and enhance the transformation rate in
this way [61–63]. However, the authors interpret the transformation of various organic
substances in the presence of PDS or PMS differently. Fang et al. [62] reported that the
SO4

•− is responsible for the enhanced 2,4,4′-trichlorobiphenyl transformation in the case of
HBQ• activated PDS. Similarly, Zhou et al. [61] activated PMS by HBQ• for the degradation
of sulfamethoxazole. The •OH or SO4

•− were not detected, and 1O2 was found to be
responsible for sulfamethoxazole transformation. Similarly, Bu et al. [43] reported that
the photon-initiated oxygen vacancies, Bi5+ and Bi0, are responsible for the PDS transfor-
mation and cause enhanced activity of BiOBr in the presence of PDS. The Bisphenol-A
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transformation was justified by the formation of 1O2, but the contribution of SO4
•− was

not confirmed.
Comparing the effect of PDS on HQ degradation for BiOX catalysts, BiOI is the

most advantageous; the HQ is wholly transformed within 20 min. For BiOBr and BiOCl,
75% conversion was reached during 60 min even under UV radiation. Their efficiency was
far exceeded by BiOI, even under Vis radiation. Most likely, in the case of BiOCl and BiOBr,
mainly HBQ• initiated the transformation of PDS is responsible for the enhanced efficiency.
In addition, the photon-initiated oxygen vacancies, the surficial Bi5+ and Bi0 may have a
role. However, estimating the contribution of individual effects is beyond the scope of our
work and requires several additional measurements.

The effect of PDS on SMP conversion is moderated compared to that observed for
HQ (Figure 7), where the HBQ•-induced transformation of PDS also contributes. For
BiOCl and BiOBr catalysts, the increased efficiency was observed only under UV radiation,
confirming the crucial role of oxygen vacancies in activating PDS. The SMP transformation
was enhanced at the beginning of the treatment; after that, the transformation slowed
down. For BiOI, the positive effect of PDS was pronounced under UV and Vis radiation.
After 60 min of Vis irradiation, the 40% conversion increased to more than 90% (Figure 7),
while the SMP conversion increased by 10% under UV radiation. However, the conversion
efficiency of SMP was still much lower than that of HQ when the HBQ•-initiated process
also contributed to the enhanced efficiency.

The effect of PDS on TRIM transformation was investigated using BiOI under Vis
radiation, and a slight increase in efficiency was observed; nearly 24% of TRIM was
transformed (Figure S1). However, this measurement also confirms that the activity of BiOX
catalysts is highly dependent on the compound to be converted, even in the presence of
PDS. Moreover, the well-adsorbed TRIM can partially inhibit PDS activation on the surface.

Although SO4
•− is effective for mineralization, significant TOC changes were not

observed during the treatments. TOC did not decrease during the 60-min treatment without
PDS, while a maximum decrease of 10% was measured in the presence of PDS for HQ
and SMP. The pH of BiOX suspension was about 6.0–6.5, the addition of target substances
did not significantly change that. During treatment, the pH decreased slightly (to 5.0–4.0
without PDS, and to 4.5–3.7 in the presence of PDS), likely because of the formed organic
acids. Probably, pH change has no significant effect on PDS transformation and SO4

•−

initiated reactions [64]; however, it can affect the surface properties of the photocatalysts
and the HO2/O2

•− ratio during treatment.

2.5. Effect of Dissolved Oxygen

PDS can affect the conversion rate of organic compounds in heterogeneous photo-
catalysis in many ways, such as forming new reactive species (SO4

•−, 1O2) and enhanc-
ing the charge separation due to the inhibition of the recombination of photogenerated
charges [34,36,65]. To investigate this phenomenon, measurements were performed in
O2-free suspensions (Figure 8).

While the conversion rates of BQ and SMP in O2-free suspensions without PDS
were negligible, the degradation proceeded efficiently in the presence of PDS (Figure 8).
A significant difference is that in the case of HQ, the positive effect of dissolved O2 is well
manifested even in the presence of PDS. In contrast, for SMP, the transformation rate is not
affected by O2. In the case of HQ, O2 plays an important role, as O2

•− is highly efficient
in its conversion, while for SMP, the direct charge transfer was assumed as the primary
process. The PDS probably partially takes over the electron capture role of O2 in the case
of BiOI. Still, the positive effect of the formed SO4

•− overcompensates this adverse effect,
and both reactive species can contribute significantly to the HQ transformation in aerated
suspension. In the case of SMP, the lack of an O2 effect suggests that there is no contribution
of 1O2 or O2

•− to the transformation in the presence of PDS and confirms the additive role
of the highly reactive SO4

•−, the formation of which is not related to the dissolved O2.
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Figure 8. The Effect of dissolved O2 on the transformation of HQ (a,b) and SMP (c).

2.6. Reusability of the BiOI Photocatalyst

The study of the stability and reusability of the catalyst has a crucial role in practical
application. BiOI, the most efficient photocatalyst under Vis radiation, was chosen to
investigate reusability. Another reason was that the efficient transformation of PDS without
organic substances was proved only in the case of BiOI.

Degradation of 1.0 × 10−4 M HQ and 5.0 × 10−5 M SMP was monitored for three
consecutive cycles (Figure 9), under Vis radiation, using 5.0 × 10−4 M PDS concentration.
After the end of a cycle, the concentration was adjusted to 1.0 × 10−4 M for HQ and
5.0 × 10-5 M for SMP by adding a small volume of concentrated solution. 5.0 × 10−4 M
PDS was added to the suspension at the beginning of each run.

The transformation rate of both target substances did not change during the three
consecutive cycles (Figure 9). Slightly decreased activity may be due to products’ accu-
mulation and competition with HQ and SMP for reactive species. There is no significant
change in the XRD patterns and DRS spectra after the third cycle (Figures S2 and S3); thus,
there is probably no change in the photocatalyst structure. Based on the ion chromatog-
raphy measurements, the SO4

2− concentration at the end of the cycle was 2.77 × 10−4 M,
5.23 × 10−4 M, and 7.80× 10−4 M, so the extent of PDS decomposition was almost constant
(1.4 × 10−4 M, 1.2 × 10−4 M, and 1.3 × 10−4 M PDS decomposed during the first, second
and third cycle), confirming the unchanged activity of the BiOI photocatalyst.

2.7. Effect of Inorganic Ions and Biologically Treated Domestic Wastewater as Matrix

The effect of matrix and matrix components is important for practical applicability;
thus, pH, Cl− (3.4 × 10−3 M), HCO3

− (8.6 × 10−3 M), and biologically treated domestic
wastewater on the efficiency was investigated (Figure 10). The concentration of Cl− and
HCO3

− was adjusted to their concentration in the biologically treated wastewater. Table S1
shows the parameters of the matrix.
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Figure 10. The effect of biologically treated domestic wastewater (ww), pH, Cl− (3.4 × 10−3 M),
and HCO3

− (8.6 × 10−3 M) on the transformation of SMP (c0(SMP) = 1.0 × 10−4 M;
c0(PDS) = 1.0 × 10−3 M) in BiOI suspension irradiated with Vis LED.

Biologically treated domestic wastewater almost wholly inhibited the transformation
of both HQ and SMP, even in the presence of PDS. The matrix components may affect
the surface properties of the photocatalyst, such as the surface charge and adsorption
properties, or act as radical scavengers [66]. The effect of Cl− (3.4 × 10−3 M) was neg-
ligible (Figure 10), even in PDS containing suspension; opposite that, Cl− can scavenge
SO4

•− (7) [67]. Nevertheless, the formed Cl-containing reactive species (8–10) [68] can
contribute to the transformation of organic substances, and their further reactions can even
result in •OH [69]. Consequently, the radical scavenging effect is not manifested in the
decrease in the transformation rate [27].

Cl− + SO4
•− → Cl• + SO4

2− k = 3.6 × 108 M−1 s−1 (7)
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Cl• + Cl− → Cl2•− k = 7.8 × 109 M−1 s−1 (8)

Cl•/Cl2•− + H2O→ ClOH•− + H+/+ Cl− (9)

ClOH•− → •OH + Cl− (10)

The HCO3
− (8.6 × 10−3 M) can also react with SO4

•− [70] and results in CO3
•− (11),

a less reactive and selective species [71]:

HCO3
− + SO4

•− → CO3
•− + SO4

2− + H+ k= 2.8 × 106 M−1 s−1 (11)

HCO3
− only slightly reduced the transformation rate (Figure 10), but the intensive or-

ange color of the catalysts became white. XRD and DRS results proved that BiOI transforms
into bismuth subcarbonate ((BiO)2CO3) (Figures S2–S4). The band gap of the formed, white
material was 3.12 eV, close to the value reported for (BiO)2CO3 [72]. Surprisingly, however,
this was not reflected in the cessation of activity since (BiO)2CO3 is also photoactive [73,74].
The Bi3+ entering the solution during the recrystallization could also activate the transfor-
mation of PDS. The harmful effect of HCO3

− can be eliminated by changing the pH to 4.
The change of the pH to 4 with sulfuric acid caused a slight decrease in the transformation
rate compared to that determined in Milli-Q water. In biologically treated domestic wastew-
ater, the transformation rate increased due to the elimination of HCO3

− at acidic pH, but
it was still significantly below the value measured in Milli-Q water (Figure 10). Probably
the reason for this is not the effect of inorganic ions but organic compounds that are well
adsorbed on the surface of BiOI. The TOC content of the wastewater decreased by 35% due
to the addition of BiOI in the dark because of the adsorption of organic components. If they
cannot transform, they block the transformation of the poorly adsorbed HQ, SMP, and PDS,
and even the excitation of the BiOI. This assumption was confirmed by the observation;
that the bleaching of BiOI in the matrix takes place much more slowly (Figure S4). This
can also be interpreted by the adsorption of the organic components of the matrix on the
surface, as they exert a protective effect against inorganic ions, i.e., the HCO3

−.

3. Materials and Methods
3.1. Materials

Bismuth nitrate pentahydrate (Bi(NO3)3 × 5 H2O), NaI, NaCl and NaBr, ethylene
glycol, and ethanol were used for synthesizing photocatalysts. For photocatalytic test reac-
tions, 1,4-hydroquinone (HQ), sulfamethoxypyridazine (SMP), and trimethoprim (TRIM)
were used as target substances. Air or N2 gas was applied to control the dissolved O2
concentration of the treated solution or suspension. For investigation of the effect of perox-
ydisulfate ion, Na2S2O8 (PDS) solution was added to the suspension. The pH was adjusted
with H2SO4 or NaOH solutions. Fe2(SO4)3, potassium oxalate, ammonium-reineckate salt,
and 1,10-phenanthroline were used for the actinometric measurements. Table S2 shows the
data of the materials used in this work. Each material was used without further purification.
Table S1 shows the date of the biologically treated domestic wastewater (from the water
treatment plant, Szeged, Hungary) used as a matrix.

3.2. Preparation of BiOX Photocatalysts

The BiOX photocatalysts were prepared via a solvothermal method, as described in
the literature [13]. The Bi(NO3)3 × 5 H2O (2.07 g) and KI (0.7067 g), KBr (0.5066 g), or KCl
(0.3174 g) were dissolved in 50 mL ethylene glycol with continuous stirring and heating (up
to 45 ◦C). The suspension was heat-treated for 3 h at 120 ◦C in a PTFE-coated steel autoclave.
The solid material was washed with distilled water and ethanol, then vacuum-filtered with
a 0.1 µm pore size filter (Durapore®, hydrophilic PVDF) and dried for 24 h at 40 ◦C.

3.3. Photocatalytic Test Reactions

Two commercial LED tapes were used as light sources: the UV-LED emitting at
398 nm (LEDmaster, λemission= 398 ± 10 nm, 288 lumens, 4.6 W) and Vis-LED emitting
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warm white light (LEDmaster, λemission= 400–700 nm, 600 lumens, 4.6 W). 1.0 m of LED tape
(60 LED/meter) was fixed on the inside of the aluminum, double-walled reactor having a
66 mm inner diameter (Figure 11a,b). The reactors were equipped with a water-cooling
system to ensure the LEDs’ constant light output. The electrical power required to operate
the LEDs was the same (4.6 W) in all cases; thus, the efficiency of the photocatalysts was
determined at the same electrical energy input.
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In each case, 200 cm3 suspension was irradiated in a cylindrical glass reactor (inner
diameter: 40 mm) placed in the center of the double-walled reactor. The suspensions were
stirred in the dark for 30 min to determine the amount of adsorbed target substance. O2 or
N2 gas was continuously bubbled through the solution or suspension to keep constants the
dissolved O2 concentration; the bubbling was started 15 min before starting the reaction.
The experiments were started by turning on the light source and adding PDS solution
to the suspension containing photocatalysts and organic target substance. The initial
concentration of HQ, BQ, SMP, and TRIM was 5.0 × 10−5 M or 1.0 × 10−4 M, while the
BiOI photocatalyst dosage was 1.0 g dm−3. The concentration of PDS was changed within
the range of 0.2–2.0 × 10−3 M.

After sampling, 25 µL 0.3 M Na2S2O3 solution was added to the sample to decom-
pose the remaining PDS. The photocatalyst samples were centrifuged immediately (Drag-
onlab, 15,000 RPM) and filtered with syringe filters (0.22 µm, FilterBiO, PVDF-L) before
further analysis.

3.4. Characterization of the Light Sources

The emission spectra of the LEDs (Figure 11c) were recorded using a two-channel
fiber-optic CCD spectrometer (AvaSpec-FT2048) in the 180–880 nm wavelength range. The
photon flux of the light sources was determined using Reinecke’s salt [75,76] and the widely
applied ferrioxalate [77,78] actinometry. Reinecke’s salt actinometry can be applied in the
visible range, in the 400–600 nm region, while ferrioxalate actinometry can be used in the
UV and near-UV regions (254–500 nm) [78].

The UV LED’s photon flux determined by Reinecke’s salt actinometry was
(5.81± 0.03)× 10−6 molphoton s−1, and a slightly lower value, (5.12± 0.02)× 10−6 molphoton s−1

was obtained by ferrioxalate actinometry [77]. The photon flux was (3.25 ± 0.25) ×
10−6 molphoton s−1 for the Vis-LEDs, obtained by Reinecke’s salt actinometry. For cal-
culating the apparent quantum yield of the transformation, the photon flux determined by
Reinecke’s salt actinometry was applied.

3.5. Characterization of Photocatalysts

The synthesized catalysts were characterized using powder X-ray diffractometry (XRD)
(Rigaku Miniflex II, Cu Kα radiation source, 5.0–90.0 2Theta◦ range, with 4.0 2Theta◦ min−1

resolution). The surface area was determined via N2 adsorption/desorption isotherms
using a Quantachrome NOVA 2200 analyzer. Diffuse reflectance spectroscopy (DRS) was
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performed using an Ocean Optics DH-2000 light source and Ocean Optics USB4000 detector.
The band gap energy values were evaluated by the Kubelka-Munk approach and the Tauc
plot [79] and reinforced by the first derivative approach method [80].

3.6. Analytical Methods

HPLC measurements were performed with an Agilent 1100 HPLC equipped with
a diode array UV detector (DAD) to separate the intermediates and determine 1,4-HQ,
1,4-BQ, SMP, and TRIM concentration in the treated suspension. The stationary phase was
a Kinetex 2.6u XB-C18 100A (Phenomenex) reverse phase column, and the mobile phase
consisted of 10 v/v% acetonitrile and 90% formic acid solution (0.1 v/v%) for the analysis
of SMP containing samples. The flow rate of eluent was 0.70 mL min−1. The same column
was used for BQ and HQ containing samples; the mobile phase consisted of 50% methanol
and 50% water. The flow rate of eluent was 1.0 mL min−1. To analyze TRIM-containing
solutions, Gemini 3u C6-phenyl 110A reverse phase column was used with 10% methanol
and 90% ammonium-formate buffer (20 mM, pH = 3.7) as eluent; the flow rate was 0.4 mL
min−1. The detection wavelength was 250, 290, 261, and 275 nm for BQ, HQ, SMP, and
TRIM, respectively. The transformation efficiency of target substances was characterized
by the initial degradation rate and percent of decomposed material after 10 and 60 min
treatment. The initial transformation rate was obtained from linear regression fit to the
concentration-time plot, generally up to 20% transformation. Some experiments were
repeated three times to check the reproducibility of the experimental results.

The transformation of PDS was followed by the determination of SO4
2−. The SO4

2−

concentration was measured using ion chromatography (Shimadzu Prominence LC-20AD).
Shodex 5U-YS-50 column for cation detection (eluent contained 4.0 mM methanesulfonic
acid and 2.5 mM phthalic acid), and Shodex NI-424 5U for anion detection (eluent: 2.3 mM
aminomethane solution). The flow rate of the mobile phase was 1.0 mL min−1.

The total organic carbon (TOC) content of the samples was determined by a Multi
N/C 3100 analyzer (Analytik Jena, Jena, Germany) equipped with an NDIR detector. For
spectrophotometric measurements, an Agilent 8453 UV-Vis spectrophotometer was used.

4. Conclusions

In this work, the effect of PDS on the transformation of various organic substances was
investigated, in BiOCl, BiOBr, and BiOI suspensions, under UV (398 nm) and Vis radiation.
The method described in the literature was used for the synthesis of the BiOX catalysts;
their modification was not aimed. The parameters of the catalysts corresponded to the
literature data; accordingly, 398 nm UV light is theoretically not suitable for the excitation
of BiOCl; BiOBr can be excited mainly by UV light, while BiOI can also be efficiently excited
by visible light. Due to PDS being an effective ecb

− scavenger and the source of sulfate
radical ion (SO4

•−), an enhanced transformation rate of organic compounds was expected.
Without organic matter, BiOI showed outstanding activity in PDS transformation;

15–20% of PDS was transformed even under Vis radiation, while for BiOBr and BiOCl
only 3–4% of PDS transformed under 398 nm irradiation. The increased efficiency of HQ
transformation in the presence of PDS can be partially attributed to PDS activation by
HBQ•-this process contributed dominantly to the activation of PDS and the increase of HQ
conversion for BiOCl and BiOBr, and additively for BiOI. BiOI showed the highest activity,
especially under visible light radiation, most probably due to its outstanding activity in
the activation of PDS among the tested BiOXs. For BiOBr and BiOCl, 75% conversion was
reached during 60 min even under UV radiation in the presence of PDS. The efficiency
was far exceeded by BiOI, even under Vis radiation; the HQ wholly transformed within
20 min. Similarly, for BiOI the SMP conversion increased to more than 90% from 40%.
However, the conversion efficiency of SMP was still much lower than that of HQ when the
HBQ•-initiated process also contributed to the enhanced efficiency.

Our results reflect that the activity of BiOX catalysts, through various factors, signifi-
cantly depends on the model compound used-both in the presence and without PDS. For
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BiOCl and BiOBr, most likely, photogenerated oxygen-vacancies and Bi0 play an important
role and influence the activity. In O2-free, PDS-containing suspensions, the efficient trans-
formation of HQ and SMP confirmed that the improved activity is primarily related to the
enhanced efficiency of direct charge transfer and SO4

•− formation.
The structure and activity of BiOI did not change during three consecutive cycles in the

presence of PDS; however, in the biologically treated wastewater, the organic compounds of
the matrix adsorbed on the BiOI surface blocked the processes taking place and significantly
reduced the efficiency. Furthermore, BiOI was sensitive to HCO3

−.
Our results proved that combining the PDS process with BiOI photocatalyst is a

promising process that can be used for the selective conversion and degradation of organic
pollutants since its effectiveness depends significantly on the properties of the compound
to be removed. Some critical limiting factors in terms of efficiency and applicability are
highlighted. In addition, many questions arose relating to the processes taking place on
the surface of BiOX catalysts, as well as the formation and role of different reactive species,
which motivate further research to obtain a more comprehensive picture of the activation
of PDS with BiOX photocatalyst.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/catal13030513/s1, Table S1. The parameters of the biologically
treated domestic wastewater; Table S2. The name, manufacturer, and purity of the used materials;
Figure S1. The transformation of TRIM in aerated BiOI suspensions, irradiated with Vis LED
(c0(TRIM) = 1.0 × 10−4 M; c0(SMP) = 1.0 × 10−4 M; NaF was added for desorption); Figure S2.
The Effect of PDS, inorganic ions, and SMP on the XRD diffractogram of BiOI photocatalysts under
UV and Vis radiation in aerated suspensions; Figure S3. The Effect of PDS and inorganic ions
on the DRS spectra diffractogram of BiOI photocatalysts under UV and Vis radiation in aerated
suspensions; Figure S4. The effect of pH and inorganic ions on the color of BiOI suspension (a: Milli-
Q; b: biologically treated domestic wastewater, pH = 7.8; c: biologically treated domestic wastewater,
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