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Abstract: Bismuth vanadate (BiVO4), W-doped BiVO4 (BiVO4:W), and Mo-doped BiVO4 (BiVO4:Mo)
nanoparticles were synthesized at pH = 4 using a green hydrothermal method. The effects of 2 at% W
or Mo doping on the microstructural and optical characteristics of as-prepared BiVO4 nanoparticles
and the effect of combining particle morphology modification and impurity dopant incorporation
on the visible-light-derived photocatalytic degradation of dilute Rhodamine B (RhB) solution are
studied. XRD examination revealed that these obtained BiVO4-based nanoparticles had a highly
crystalline and single monoclinic phase. SEM and TEM observations showed that impurity doping
could modify the surface morphology, change the particle shape, and reduce the particle diameter to
enlarge their specific surface area, increasing the reactive sites of the photocatalytic process. XPS and
FL measurements indicated that W- and Mo-doped nanoparticles possessed higher concentrations
of oxygen vacancies, which could promote the n-type semiconductor property. It was found that
the BiVO4:W and BiVO4:Mo powder samples exhibited better photocatalytic activity for efficient
RhB removal than that shown by pristine BiVO4 powder samples under visible light illumination.
That feature can be ascribed to the larger surface area and improved concentration of photogenerated
charge carriers of the former.

Keywords: BiVO4; impurity doping; nanoparticle; hydrothermal method; photocatalyst; visible-light-driven

1. Introduction

Degradation of harmful substrates, specifically those sourced from industrial wastes,
using semiconductor photocatalysts to remove organic pollutants from sewage remains
an important issue [1–3]. The photocatalysis degradation approach using functional oxide
semiconductors is believed to be an efficient, eco-friendly, and clean strategy for the removal
of organic pollutants without any harmful byproduct [4,5]. Past studies have not only
involved the selective synthesis of new visible-light-driven photocatalysts, but also focused
on the improvement of photocatalytic degradation efficiency for organic contaminants,
as well as investigating the effect factors and photocatalytic reaction mechanisms [6–8].
Bismuth vanadate (BiVO4) is a non-titania-based semiconductor photocatalyst and shows
promise for application in renewable energy production systems (such as green fuel pro-
duction from sunlight and water) and the resolution of environmental pollution (such as
water remediation and degradation of organic pollutants) [9].

BiVO4 nanoparticles possess a monoclinic scheelite structure. They are a promis-
ing and extensively n-type semiconducting photocatalytic nanomaterial with an optical
bandgap energy of approximately 2.4–2.5 eV, and they can be used to harvest solar en-
ergy [2,10]. This material has a low production cost, is non-toxic, and possesses considerable
chemical stability, as well as exhibiting high photocatalytic activity under visible light irra-
diation [1]. To improve the photocatalytic activity, it is important to enlarge the specific
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surface area and improve the density of the photogenerated charge carriers of photocata-
lysts [7]. Theoretical electronic structural calculations have revealed that both tungsten (W)
and molybdenum (Mo) are shallow donors in monoclinic BiVO4 crystals [11,12]. Substitu-
tion of W or Mo ions for some V5+ sites in BiVO4 can enhance its n-type characteristics [9,13].
Previous reports have well demonstrated that doping BiVO4 with W and Mo can exten-
sively improve its photocatalytic performance [14–17]. Thus, appropriate amounts of W or
Mo doping could increase the concentration of photogenerated charge carriers and possibly
enhance the photocatalytic and photoelectrochemical performance significantly. Parmar
and colleagues have reported that BiVO4 doped with 2 at% W and Mo can dramatically
enhance the water photo-oxidation activity [11]. Tian et al. reported that hydrothermal
Mo-doped BiVO4 microcrystals (doping levels of ~2 to 13 mol%) had a better photocurrent
density than that of pure BiVO4 microcrystals [18]. Thalluri et al. found that the optimum
surface atomic percentages of dopants for hydrothermally synthesized BiVO4 powders
were 0.9% and 1.2% for W and Mo for sun-derived water oxidation [9].

Several wet-chemical approaches, such as the solution combustion method, sol-gel
process, co-precipitation method, and hydrothermal method, can be used for fabricat-
ing low-dimensional crystalline oxide nanostructures [8,19]. The hydrothermal synthesis
method is convenient and environmentally friendly, and this feasible, low-temperature
process allows shape and size control [19]. It is commonly used to prepare BiVO4-based
nanostructures [20]. It is well agreed that variations of the pH value of the hydrothermal
reaction solution can strongly affect the morphology, particle diameter, specific surface area,
and surface charge of synthesized BiVO4-based products [8,21]. Dong et al. reported that
monoclinic phase BiVO4 crystalline particles synthesized in acidic solutions (pH < 5) using
a hydrothermal method exhibited good adsorption capacity and excellent photocatalytic
degradation performance [10]. Li et al. [3] and Ressnig et al. [22] found that BiVO4 nanopar-
ticles synthesized at pH = 4 had excellent photocatalytic activity in organic dye degradation
due to the effect of morphological features. In this study, three kinds of BiVO4-based
nanoparticles were synthesized at pH = 4.0 using a hydrothermal method for the pho-
todegradation of Rhodamine B (RhB) solution. Herein, the effects of the impurity dopant
(2 at% W or Mo) on the microstructural features and optical properties of as-synthesized
BiVO4 nano-sized products and the improvement of photocatalytic degradation of RhB
in aqueous solution through W and Mo doping under visible light illumination at room
temperature were investigated.

2. Results and Discussion
2.1. Physical Characteristics of Hydrothermally Synthesized BiVO4-Based Nanoparticles

Figure 1 presents the XRD patterns of pure BiVO4, W-doped BiVO4 (BiVO4:W), and
Mo-doped BiVO4 (BiVO4:Mo) powder samples prepared at pH = 4 using a hydrothermal
method. The diffraction peaks of the three XRD patterns were identified and in good
agreement with the standard data for the monoclinic scheelite BiVO4 (JCPDS file No.
14-0668); in addition, no diffraction peaks other than those of the mBiVO4 phase, such as
Bi2O3, appeared in the XRD patterns of these powder samples. These results indicated that
pure monoclinic phase BiVO4 crystals were obtained. The two theta (2θ) angular positions
of the three relative intensity peaks at 18.88◦, 28.83◦, and 30.55◦ identified the (011), (−121),
and (040) lattice planes. In addition, sharp diffraction peaks were observed from the three
BiVO4-based samples, revealing that the synthesized oxide powders had good crystallinity.
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Figure 1. XRD patterns of BiVO4, W-doped BiVO4 (BiVO4:W), and Mo-doped (BiVO4:Mo) nanoparti-
cles synthesized using a hydrothermal method at pH 4.0.

These hydrothermally synthesized oxide powders had a monoclinic structure and
exhibited preferential growth along the (−121) plane. It is worth noting that the relative
intensities of the diffraction peaks of I(011)/I(−121) and I(040)/I(−121) for the BiVO4:W and
BiVO4:Mo powder samples were 32% to 28% lower than those of the BiVO4 powder sample
(I(011)/I(−121) = 0.356 and I(040)/I(−121) = 0.304), indicating that the substitution of W and
Mo into mBiVO4 lattices led to enhancement of the growth rate of the (−121) plane and
may have caused changes in the particle morphology and diameter. In addition, we also
found that the 2θ angles of the four major diffraction peaks, including (011), (−121), (040),
and (161), slightly shifted toward the high 2θ angle side when BiVO4 was doped with W or
Mo, implying the incorporation of W and Mo ions into mBiVO4 crystals.

Figure S1 shows three SEM micrographs of the hydrothermally synthesized BiVO4-
based nanoparticles. It was found that W or Mo doping significantly influenced the powder
morphology. As shown in Figure S1a, both irregular granular and plate-like small particles
clustered into micro-sized aggregates. When BiVO4 was doped with W, the morphology
of the as-synthesized powder sample observably changed to aggregates of nano-sized
crystals along with acicular-like and slice-like particles (seen in Figure S1b). For the BiVO4
doped with Mo, ultra-fine aggregated particles were found, as shown in Figure S1c. The
measured specific surface areas of the three obtained oxide powder samples are listed in
Table 1. The impurity-doped BiVO4 powder samples exhibited a higher specific surface
area (>7.07 m2g−1) than that of the undoped BiVO4 powder sample (~4.71 m2g−1), and the
BiVO4:Mo powder sample (8.21 m2g−1) had the highest specific surface area. The increased
surface area of oxide nanoparticles could provide more active reactive sites during the
photocatalytic degradation process [6].

Table 1. Microstructural features, optical characteristics, and photocatalytic activities of hydrother-
mally synthesized undoped and impurity-doped BiVO4 nanoparticles.

Photo-
Catalyst

Average Particle Size
(nm)

SBET
1

(m2g−1)

Main Raman
Peak Wavenumber

(cm−1)

Optical
Bandgap

(eV)

Photo-Degradation
Efficiency

(%)

Reaction Rate
Constant
(min−1)

BiVO4 164 4.709 824.4 2.48 61.8 0.0076
BiVO4:W 137 7.079 816.4 2.49 74.4 0.0111
BiVO4:Mo 135 8.214 818.1 2.50 86.8 0.0167

1 Specific surface area of powder sample.
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TEM micrographs of the three BiVO4-based powder samples are presented in Figure 2,
showing the significantly granular morphology of the nanoparticles. The particle size of
the sampled nanoparticles was estimated from the corresponding TEM images in ImageJ
software, and the average particle sizes of the undoped, W-doped, and Mo-doped BiVO4
powder samples were determined to be 164, 137, and 135 nm, respectively (Table 1). Iwase
et al. have reported that 1 mol% Mo- or W-doped BiVO4 particles prepared by an aqueous
route possessed finer crystallinity than un-doped BiVO4 [16]. It was recognized that the
as-synthesized BiVO4-based powders comprised nano-sized crystallites, and the average
particle sizes of the two impurity-doped samples were finer than that of the undoped
sample because the extrinsic doping caused lattice distortion and caused weak internal
stress, which apparently led to inhibition of the crystal growth and thus reduced the
growth rate.
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Figure 2. TEM micrographs of hydrothermally synthesized BiVO4-based nanoparticles. (a) undoped,
(b) W-doped, and (c) Mo-doped BiVO4 samples.

The presence of the constituent elements of Bi, V, and O in these as-synthesized BiVO4-
based nanoparticles, as well as the W and Mo in the two impurity-doped powder samples,
were confirmed by wide-scan XPS analysis (data not shown). The core-level XPS spectra of
the three BiVO4-based powder samples taken at the Bi 4f, V 2p, and O 1s binding energy
regions are shown in Figure 3. In addition, the W 4f and Mo 3d core-level XPS spectra of the
BiVO4:W and BiVO4:Mo samples are provided in the Supplementary Materials (Figure S2).
The fine-scan XPS examination both identified the chemical bonding states of the elements
in these oxide powder samples and confirmed that the Bi 4f, V 2p, W 4f, and Mo 3d orbitals
split into two characteristic peaks owing to the spin–orbit interaction, which was consistent
with the XPS results of previous reports [11].

In the Bi 4f XPS spectra shown in Figure 3a, the two characteristic peaks located at
binding energies of 158.6 eV and 163.8 eV corresponded to the Bi 4f7/2 and Bi 4f5/2 states,
respectively, indicating that the oxidation state of Bi ions was +3 in the obtained oxide
powders [13,23]. A strong V 2p3/2 peak and a weak V 2p1/2 peak were located at binding
energies of approximately 516.2 eV and 523.8 eV (Figure 3b), representing the oxidation
state of V ions of +5 [13,23]. Moreover, it was found that the characteristic peaks of Bi
4f7/2 and V 2p3/2 of the W- and Mo-doped BiVO4 samples slightly shifted toward the
low binding energy region due to the impurity doping effect. As shown in Figure S2, the
peaks of the W 4f XPS spectrum positioned at 34.9 eV and 36.9 eV were assigned to the W
4f7/2 and W 4f5/2 states (Figure S2a), and the characteristic peaks located at 231.9 eV and
235.1 eV exhibited in the Mo 2d XPS spectrum were consistent with the Mo 2d5/2 and Mo
2d3/2 states (Figure S2b) [11].



Catalysts 2023, 13, 475 5 of 14

Catalysts 2023, 13, x FOR PEER REVIEW 5 of 14 
 

 

and improve the photocatalytic activity [24,25]. Moreover, the binding energies of the OL 
and Ov sub-peaks of the W- and Mo-doped powder samples showed slight shifts of 0.2 eV 
toward the lower binding energy side; these were related to changes in the strength of the 
metal–oxygen bond energy resulting from the substitution of W and Mo ions for V ion 
sites in BiVO4 nanocrystals. 

 
Figure 3. Core-level XPS spectra of (a) Bi 4f, (b) V 2p, and (c) O 1s regions of three BiVO4-based 
powder samples. 

Electron spin resonance (ESR) measurement explores the energy absorption behavior 
of asymmetric electron orbitals under variations in the magnetic field and specific electro-
magnetic wave frequency. Figure 4 shows three ESR spectra obtained from the undoped 
and impurity-doped powder samples, revealing significant anisotropy owing to the na-
ture of the crystal-field asymmetry [26]. It was found that the resonance field (Hr = 3384 
Oe) and resonance linewidth (ΔH = 300 Oe) of the BiVO4:Mo sample were higher than 
those of the BiVO4 and BiVO4:W samples (Hr ~ 3372 Oe and ΔH ≤ 1000 Oe), indicating that 
the former possessed a higher magnitude of lattice distortion. The calculated results of the 
Landé g-factor for BiVO4, BiVO4:W, and BiVO4:Mo were 2.082, 2.083, and 2.074, respec-
tively. The g-factor of the BiVO4:Mo sample was close to the g-factor values (2.00) in pub-
lished reports [16]. 

Figure 3. Core-level XPS spectra of (a) Bi 4f, (b) V 2p, and (c) O 1s regions of three BiVO4-based
powder samples.

The O 1s XPS spectra are shown in Figure 3c. Each XPS characteristic curve was
divided into two distinct sub-peaks, which were located at 529.4 eV and 530.8 eV for the
undoped powder sample. They corresponded to lattice oxygen in mBiVO4 crystals (OL)
and surface oxygen vacancies (Ov). The area ratios of Ov to OL sub-peaks for the BiVO4,
BiVO4:W, and BiVO4:Mo powder samples were 0.197, 0.222, and 0.255, respectively. These
calculated results revealed significant increases in the oxygen vacancy concentrations of the
two impurity-doped powder samples. The Ov formation in oxide semiconductors could
promote the generation of shallow donors, enhance the absorption of visible light, and
improve the photocatalytic activity [24,25]. Moreover, the binding energies of the OL and
Ov sub-peaks of the W- and Mo-doped powder samples showed slight shifts of 0.2 eV
toward the lower binding energy side; these were related to changes in the strength of the
metal–oxygen bond energy resulting from the substitution of W and Mo ions for V ion sites
in BiVO4 nanocrystals.

Electron spin resonance (ESR) measurement explores the energy absorption behavior
of asymmetric electron orbitals under variations in the magnetic field and specific electro-
magnetic wave frequency. Figure 4 shows three ESR spectra obtained from the undoped
and impurity-doped powder samples, revealing significant anisotropy owing to the nature
of the crystal-field asymmetry [26]. It was found that the resonance field (Hr = 3384 Oe) and
resonance linewidth (∆H = 300 Oe) of the BiVO4:Mo sample were higher than those of the
BiVO4 and BiVO4:W samples (Hr ~ 3372 Oe and ∆H ≤ 1000 Oe), indicating that the former
possessed a higher magnitude of lattice distortion. The calculated results of the Landé
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g-factor for BiVO4, BiVO4:W, and BiVO4:Mo were 2.082, 2.083, and 2.074, respectively.
The g-factor of the BiVO4:Mo sample was close to the g-factor values (2.00) in published
reports [16].
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The chemical structures of the BiVO4-based nanoparticles were identified by the
Raman analytical technique, and three Raman spectra are presented in Figure 5. The
intense band centered at 824.4 cm−1 correlated with the symmetric V-O stretching mode
(νs), and a weak signal located at the low wavenumber side shoulder (713.1 cm−1) was
assigned to the anti-symmetric V-O stretching mode (νas) for the pristine crystalline BiVO4
particles [27]. The spectra related to the symmetric and anti-symmetric bending modes
(δs and δas) of the vanadate anion (VO4

3−) were found at 363.4 cm−1 and 321.3 cm−1,
respectively. In addition, two external modes attributed to rotation and translation were
detected at 207.0 cm−1 and 121.7 cm−1, individually. It is well known that the Raman
band position, namely the peak wavenumber of the Raman band, is strongly related to the
short-range order, and also that the width of the Raman band, namely the full width at half
maximum (FWHM), is sensitive to lattice defects and structural disorder, crystallinity, and
particle size [8]. The peak position of the most intensive Raman band of the two impurity-
doped powder samples shifted toward the low wavenumber side as compared with that
of the un-doped powder sample (Figure 5 and Table 1), indicating that the short-range
symmetric stretching mode of the VO4 tetrahedra in the structure of monoclinic BiVO4
turned into a more regular state [28]. The FWHMs of the most intensive Raman bands
for the BiVO4, BiVO4:W, and BiVO4:Mo powder samples were 44.07, 48.37, and 48.87,
respectively. That feature revealed that the value of FWHM significantly increased when
a small amount of impurity dopant was incorporated into the BiVO4 crystals and caused
slight lattice distortion.

The fluorescence (FL) spectra of the three powder samples were obtained to charac-
terize and explore the recombination rate of photogenerated electrons and holes [29]. As
shown in Figure 6, the emission spectra exhibited a strong emission intensity at approxi-
mately 514–518 nm when excited by the near-UV light wavelength of 350 nm. The BiVO4:W
and BiVO4:Mo powder samples had relatively lower emission intensities (spectra (ii) and
(iii)), whereas the pristine BiVO4 powder sample possessed the strongest emission intensity
(spectrum (i)). It is well agreed that a stronger FL emission intensity contributes to a
higher recombination rate of photogenerated carriers [30]. Therefore, a lower FL intensity
implies higher photogenerated electron–hole pair separation efficiency and thus higher
photocatalytic activity [31].
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The BiVO4-based powder samples exhibited similar absorption spectra in the wave-
length range of 300–800 nm, as shown in Figure 7a. Each absorption curve showed low
absorption in the wavelength range of 600–800 nm; displayed a steep shape absorption
feature, representing the absorption edge, within the range of 450–520 nm; and showed
a strong absorption ability in the measured wavelength region shorter than 450 nm. The
nature of the absorption edge is attributed to the band-to-band transition of direct bandgap
semiconductor materials, whereas the absorption bands contained a slight tail extending
to the right-sides until approximately 550 nm. This feature resulted from defects in the
BiVO4-based crystals. In addition, it was found that the absorbance magnitudes of the
impurity-doped powder samples (curves (ii) and (iii)) were twice as high as that of the
un-doped powder sample (curve (i)) in the 600–800 nm region due to the former exhibiting
an irregular particle morphology and possessing a much larger specific surface area.
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Figure 7b depicts the curves of absorption energy (αhν) versus photon energy (hν),
which were transferred from the recorded absorbance data. It was found that the absorption
edges of the two impurity-doped powder samples slightly shifted toward the high photon
energy side (i.e., blue-shift behavior) relative to that of the undoped powder sample. The
width of the optical bandgap (Eg) was estimated from Tauc plots based on the relationship
(αhν)2 ∝ (hν − Eg), where hν is the photon energy. The optical bandgap energies were
determined to be 2.48, 2.49, and 2.50 eV for the BiVO4, BiVO4:W, and BiVO4:Mo powder
samples (Table 1) by extrapolation of the onset of the dropping part to the x-axis (photon
energy, eV) in the Tauc plots (as shown in Figure 7b by the dotted lines). The determined
data are close to the results reported by Lei et al. [21] and Sharifi et al. [23].

Oshikiri and colleagues reported that the conduction band (CB) bottom of pristine
BiVO4 crystals is dominated by V 3d orbitals, and the valence band (VB) top is contributed
by hybridized O 2p states and Bi 6s orbitals, according to the calculated results of BiVO4
electronic structures based on the density-functional theory [32]. The hybridization of the O
2p and Bi 6s orbitals extends the top of VB, increases the mobility of photo-excited holes, and
favors the photocatalytic degradation rate of organic dyes and pollutants [8]. This nature
plays an important role in photocatalytic activity applications and the improvement of the
photodegradation efficiency of Bi-based oxide photocatalysts. The obtained monoclinic
BiVO4-based nanoparticles had an optical bandgap width of approximately 2.48–2.5 eV,
which led to a characteristic of visible light absorption, confirming their applicability in
visible light-driven photocatalysis.

2.2. Photocatalytic Degradation Performance of BiVO4-Based Photocatalysts

The proposed photocatalytic reaction principle and mechanism [1] of a BiVO4 photo-
catalyst under visible light illumination are illustrated in Figure 8. Knowing the relative
positions of the VB and CB potentials of the oxide semiconductor with respect to the poten-
tials of •OH/H2O and O2/•O2

− is helpful to understanding the photocatalytic reaction
procedures and mechanisms. The positions of the conduction band minimum (CBM) and
valence band maximum (VBM) are +0.3 eV and +2.78 eV, respectively [33,34]. In addition,
the potential for the generation of •OH [•OH/H2O] radicals is +2.68 eV for a normal hy-
drogen electrode (NHE) and that for •O2

− [O2/•O2
−] radicals is +0.13 eV for an NHE [35].

Under the excitation of visible light, the photogenerated electrons transition from the VB
to the CB of the BiVO4 semiconductor, and photogenerated holes remain in the VB due to
electron deletion. Photogenerated electrons and holes then migrate to the surface of the
BiVO4 nano-sized semiconductor. Subsequently, photogenerated electrons reduce O2 to
•O2

− and photogenerated holes convert H2O into •OH. Both •O2
− and •OH support the

photodegradation of RhB.
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The photocatalytic degradation reaction is mainly related to the absorption and des-
orption of molecules on the surface of the photocatalyst. It is generally accepted that adding
surfactants into the synthesis process could reduce the surface tension of the solution and
make the precursors of oxide nanopartcles highly dispersive, therefore greatly increasing
the photocatalytic performance [36,37]. Sodium dodecylbenzene sulfonate (SDBS) is a
neutral anionic surfactant and is widely used as a morphology-directing agent. Zeng et al.
reported that while adding SDBS into the reaction solution of hydrothermal synthesis
did not change the crystal structure of BiVO4-based nanoparticles, it could reduce the
average particle size, increase the specific surface area, and rise hydroxyl content on the
as-synthesized oxide nanoparticles to improve the photocatalytic activity properties [36].

The photocatalytic degradation rate of diluted RhB solution as a function of visible
light illumination time for the three BiVO4-based nanoparticles is shown in Figure 9a.
Notably, the degradation of RhB dye by visible light irradiation was negligible due to its rel-
atively stable structure, and the dark adsorption ability of these BiVO4-based photocatalysts
was approximately 4% (after standing in the dark for 30 min). For each mixed suspension,
after visible light illumination for 120 min the photocatalytic activity efficiencies of different
photocatalysts were found to be as follows: BiVO4:Mo (86.8%) > BiVO4:W (74.4%) > BiVO4
(61.8%). The RhB solution degradation efficiency of the undoped BiVO4 nanoparticles in
this study is higher than that of hydrothermally synthesized pure BiVO4 microcrystals
reported by Tian et al. (55.9%) [20] and comparable to the photocatalytic activity of mBiVO4
hollow microspheres with the pH of the reaction solution controlled at 4 (70%) [3]. Based
on the above evaluation and analysis, it is found that a small amount of Mo doping is a
simple and effective approach to significantly improve the photocatalytic activity.

When the initial concentration of organic dye is low, the pseudo-first-order approxi-
mation, expressed as Equation (1), can be utilized to quantitatively analyze the reaction
rate of dye degradation [13,38].

ln (C0/Ct) = kt (1)

where C0 and Ct represent the concentrations of dye in the mixed solution before and
after light irradiation for t min, k is the degradation rate constant (min−1), and t is the
irradiation time (min). Each RhB aqueous solution photodegradation curve was analyzed
by the pseudo-first-order degradation model as shown in Figure 9b, and the calculated
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k values are listed in the last column of Table 1. The tendency of the degradation rate
constant depends on the impurity dopant and corresponds well with the tendency of
photodegradation efficiency. In addition, it is worth noting that the k value difference was
more than double between the undoped and Mo-doped mBiVO4 powder samples.
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solution by BiVO4-based nanoparticles under visible light irradiation.

Figure 10 presents recycled results of BiVO4:Mo nanoparticles under visible light
irradiation. After three photodegradation reaction cycles, the removal efficiency of RhB
dye was still at 80% compared to the performance of the fresh oxide nanoparticle photo-
catalyst (~87%), indicating stability. The monoclinic BiVO4 nanoparticles doped with W
and Mo enhanced the photocatalytic activity because the dopants enhanced the density of
photogenerated carriers, reduced charge-transfer resistance, and minimized the recombi-
nation ratio of photoexcited electron–hole pairs [11,13]. Moreover, the surface condition
and surface area play critical roles in photocatalytic activity. It can be well summarized
that the photocatalytic activity is not only related to the specific surface area associated
with the morphology and diameter of the nano-sized BiVO4-based photocatalysts; it also
determines the charge generation and separation efficiency of the electron–hole pairs and
efficient suppression of electron–hole recombination ability, which are correlated with their
compositions and crystallinity.
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3. Materials and Methods
3.1. Chemicals and Synthesis Procedures of BiVO4-Based Nanoparticles

Three kinds of bismuth vanadate (BiVO4)-based powder samples, including undoped,
W-doped, and Mo-doped BiVO4, were synthesized using a hydrothermal method. First,
stoichiometric amounts of bismuth(III) nitrate pentahydrate (Bi(NO3)3·5H2O, Alfa Aesar,
Ward Hill, MA, USA) and ammonium metavanadate (NH4VO3, Acros, Geel, Belgium) were
individually dissolved in 2M nitric acid (HNO3, J.T. Baker, Phillipsburg, NJ, USA) solution
(10 mL), and each mixture was stirred for 30 min at room temperature (RT). Following
this, 2.5 mg sodium dodecylbenzene sulfonate (SDBS, Sigma-Aldrich, Burlington, MA,
USA) was added to the former as the morphology-directing agent [39]. The stoichiometric
amount of W or Mo sodium salt was added to the latter to prepare the impurity-doped
BiVO4-x precursors. Sodium tungstate dihydrate (Na2WO4·2H2O, Alfa Aesar), and sodium
molybdenum oxide dihydrate (Na2MoO4.2H2O, Alfa Aesar) were selected as the raw
materials for the W and Mo ion sources, respectively. The impurity doping levels were
fixed at 2 at% (M/(V + M), M = W or Mo) in each resultant solution for the preparation of
the impurity-doped samples. Following this, the 2 mixtures (Bi and V ions precursors) were
mixed together in molar ratio of 1:1 and again stirred for 30 min at RT to obtain a stable and
homogenous yellow precursor solution. Each chemical used in this study was an analytical
grade reagent. The pH value of the reaction solutions was adjusted to 4 by adding an
appropriate amount of NaOH solution. The as-prepared precursor solution was transferred
into a 45 mL capacity Teflon-lined stainless-steel autoclave (Parr Instrument Company,
model 4744, Moline, IL, USA), and the hydrothermal reaction synthesis was performed at
200 ◦C for 8 h under autogenous pressure. After the autoclave naturally cooled to RT, the
Bi-based oxide precipitates were collected and washed 3 times with distilled water and
once with ethanol before finally being dried at 60 ◦C for 10 h in the atmosphere.

3.2. Physical Properties Characterization and Photocatalytic Activity Measurement

The crystal structure of the as-prepared products was examined on an X-ray diffrac-
tometer (Bruker, Billerica, MA, USA) in the region of 2θ = 10◦–70◦ using Cu Kα radiation.
The morphologies and particle sizes of the as-synthesized BiVO4-based powders were ob-
served and investigated with a Hitachi S-4800 scanning electron microscope (SEM, Tokyo,
Japan) and JEOL JEM2100F transmission electron microscope (TEM, Tokyo, Japan). The
surface area of the oxide powders was measured using the BET technique using N2 adsorp-
tion/desorption isotherms with a Micromeritics ASAP2020 surface area and porosimetry
system (Norcross, GA, USA). The elemental compositions and core-level binding energies
were examined and recorded with a ULVAC-PHI PHI 5000 VersaProbe X-ray photoelectron
spectroscope (XPS, Kanagawa, Japan). The electron spin resonance (ESR) spectra were col-
lected with a Bruker EMX-10 electron paramagnetic resonance (EPR) spectrometer (Bremen,
Germany) operating in the X-band frequency at approximately 9.83 GHz and 15 mW. The
Raman spectra were examined and collected with a Nanobase XperRAM S Raman spec-
trometer (Seoul, South Korea) with an excitation wavelength of 532 nm. Fluorescence (FL)
emission spectra were measured using a Shimadzu RF-5301PC spectrofluorophotometer
(Koyoto, Japan) with a Xenon lamp as a 350 nm excitation light source. The near UV-visible
absorption spectra were recorded on a JASCO V-770 UV-Vis/NIR spectrophotometer (Okla-
homa City, OK, USA), which was used for a reflectance standard UV-Vis diffuse reflectance
experiment in the wavelength range of 300–800 nm.

The photocatalytic activity of the BiVO4-based nanoparticles was evaluated by measur-
ing and analyzing the photodegradation efficiency of dilute Rhodamine B (RhB) solution
under visible light at different times. The Bi-based oxide photocatalyst (0.01 g) was added
into the as-prepared aqueous solution (100 mL) containing RhB dye (10 mg/L). In the
dark condition, the mixture was stirred for 30 min to achieve the adsorption saturation
of each species of photocatalyst suspension. Subsequently, the mixture was subjected to
300 W visible light illumination using an Xe lamp (500 W, λ ≥ 400 nm). At specified time
intervals, the suspension (0.8 mL) was collected by centrifugation at 500 rpm for 5 min
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for the next measurement. The concentration of RhB was determined by measuring the
absorption characteristics on a Hitachi U-2900 double-beam spectrophotometer (Tokyo,
Japan). Cycling experiments were carried out to evaluate recyclability and stability of
photocatalytic performance for developing the BiVO4-based photocatalyst.

4. Conclusions

Undoped, W-doped, and Mo-doped BiVO4 nanocrystalline particles were successfully
prepared by the green hydrothermal route. These hydrothermally synthesized products
had a single-phase monoclinic structure and high crystallinity. Results showed that lightly
doping mBiVO4 with W or Mo could modify the surface morphology, alter the particle
shape, refine the particle size, and thereby increase the specific surface area. In addition,
W or Mo ions partly replaced V5+ in mBiVO4 crystals, both increasing the density of
oxygen vacancies and promoting their n-type character. Such features helped to enhance
the photocatalytic activity. The W- and Mo-doped BiVO4 nanoparticles showed higher
photocatalytic activity for photodegradation of diluted RhB solution than the undoped
BiVO4 nanoparticles, and the BiVO4:Mo photocatalyst exhibited the best photodegradation
efficiency of almost 87% under visible light illumination for 120 min. The enhanced
photocatalytic degradation efficiency was related to neither the specific surface area value
nor the generation/recombination rate of the photogenerated charge carriers of the as-
prepared oxide semiconductor photocatalysts.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/catal13030475/s1, Figure S1: SEM micrographs of hydrothermally
synthesized BiVO4-based nanoparticles. (a) undoped, (b) W-doped, and (c) Mo-doped BiVO4 samples,
Figure S2: (a) W 4f and (b) Mo 3d core-level spectra of hydrothermally synthesized BiVO4:W and
BiVO4:Mo powder samples, respectively.
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