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Abstract: The supramolecular approach is becoming increasingly dominant in biomimetics and
chemical catalysis due to the expansion of the enzyme active center idea, which now includes binding
cavities (hydrophobic pockets), channels and canals for transporting substrates and products. For
a long time, the mimetic strategy was mainly focused on the first coordination sphere of the metal
ion. Understanding that a highly organized cavity-like enzymatic pocket plays a key role in the
sophisticated functionality of enzymes and that the activity and selectivity of natural metalloenzymes
are due to the effects of the second coordination sphere, created by the protein framework, opens
up new perspectives in biomimetic chemistry and catalysis. There are two main goals of mimicking
enzymatic catalysis: (1) scientific curiosity to gain insight into the mysterious nature of enzymes, and
(2) practical tasks of mankind: to learn from nature and adopt from its many years of evolutionary
experience. Understanding the chemistry within the enzyme nanocavity (confinement effect) requires
the use of relatively simple model systems. The performance of the transition metal catalyst increases
due to its retention in molecular nanocontainers (cavitins). Given the greater potential of chemical
synthesis, it is hoped that these promising bioinspired catalysts will achieve catalytic efficiency and
selectivity comparable to and even superior to the creations of nature. Now it is obvious that the
cavity structure of molecular nanocontainers and the real possibility of modifying their cavities
provide unlimited possibilities for simulating the active centers of metalloenzymes. This review will
focus on how chemical reactivity is controlled in a well-defined cavitin nanospace. The author also
intends to discuss advanced metal–cavitin catalysts related to the study of the main stages of artificial
photosynthesis, including energy transfer and storage, water oxidation and proton reduction, as
well as highlight the current challenges of activating small molecules, such as H2O, CO2, N2, O2, H2,
and CH4.

Keywords: supramolecular chemistry; cavitins; biomimetics; metalloenzymes; metallocavitins;
methane

1. Introduction

Biological catalysts–enzymes, usually demonstrate excellent selectivity and reactivity.
Their mode of functioning is complex and far from completely understood. Metalloenzymes
are ubiquitous and responsible for a wide range of challenging chemical transformations
that proceed under mild conditions and with high chemo-, regio- and stereo-selectivity.
Cavities and pores, being an integral feature of protein bodies in nature, are formed by
folding and self-assembling of polypeptide helices through non-covalent and partially
covalent interactions. In metalloenzymes they serve to accommodate the active sites for the
delivery and bonding of substrates and the excretion of products (Figure 1a). The enzyme
pocket–cavity in the protein body, plays a key role in the control of metal center nuclearity,
substrate binding, substrate–catalyst–reactant pre-association, regio- and stereo-selectivity
and substrate–product in/out exchanges [1]. It also provides a well-defined second co-
ordination sphere for the activation and/or stabilization of intermediate reactive species
and protects the metal center from undesired pathways. The local microenvironment
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of the metal center in the pocket differs substantially from the bulk solution. Cavities
around the active sites of enzymes are of low symmetry and contain different chemical
functionalities, such as recognition sites, catalytic groups and conformational switches.
Chiral discrimination is one of the fundamental processes in enzymes. Functions of the
metal complexes in the cavity are strongly dependent on its properties, including accessible
spin states, oxidation potential and Lewis acidity. These properties are further fine-tuned
by a well-defined first and second coordination sphere (Figure 1b).
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Figure 1. General performance mechanism of M-cavitin catalysts. (a) Crystal structure of [FeFe] hy-
drogenase (Clostridium pasteurianum CpI; PDB: 4XDC), showing [FeFe]-S(Cys)-[4Fe4S] active clus-
ters included in its cavities. Adapted with permission from (Castner et al., 2021) [109]. Copyright 
2021 American Chemical Society. (b) Cavity effects. Reprinted with permission from (Mukherjee et 
al., 2021) [29]. Copyright 2021 American Chemical Society. (c) Conversion of methane to CH3COOH 
on [FeIII-(µO)2-FeIII]-ZSM-5, the arrows show the transport of substrates in and products out. Re-
printed with permission from (Wu et al., 2022) [72]. Copyright 2023 Elsevier.  
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sphere. In biomimetic catalysis, a new direction for the research of advanced cavity-like 
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pects of enzymatic chemistry have been investigated by supramolecular chemistry, in-
cluding molecular self-assembly, folding, molecular recognition, and host–guest chemis-
try on classical macrocyclic hosts provided by synthetic organic chemistry, such as cy-
clodextrins, crown ethers, cyclophanes, and calixarenes [4]. These gave rise to covalent 
cavitins [4,5]. On the other hand, supramolecular chemistry, built on weak and reversible 

Figure 1. General performance mechanism of M-cavitin catalysts. (a) Crystal structure of [FeFe]
hydrogenase (Clostridium pasteurianum CpI; PDB: 4XDC), showing [FeFe]-S(Cys)-[4Fe4S] active
clusters included in its cavities. Adapted with permission from (Castner et al., 2021) [109]. Copyright
2021 American Chemical Society. (b) Cavity effects. Reprinted with permission from (Mukherjee et al.,
2021) [29]. Copyright 2021 American Chemical Society. (c) Conversion of methane to CH3COOH on
[FeIII-(µO)2-FeIII]-ZSM-5, the arrows show the transport of substrates in and products out. Reprinted
with permission from (Wu et al., 2022) [72]. Copyright 2023 Elsevier.

The former is directly involved in metal coordination and usually consists of mixtures
of different donor functionalities. In contrast, the second coordination sphere is not directly
involved in metal binding but connected with the first by weak and reversible non-covalent
interactions, such as hydrogen-bonding, electrostatic interactions, acid–base chemistry, van
der Waals and hydrophobic forces. The second coordination sphere regulates the catalytic
processes, proton or electron shuttling and substrate–product transport and determines the
activity and selectivity of metalloenzymes. The pursuit of broadening our fundamental
understanding of enzymatic catalysis has inspired scientists to develop and explore smaller
synthetic complexes as enzyme mimics [2]. There are two main aims of mimicking enzyme
catalysis: (1) curiosity, to gain insight into the nature of enzyme active sites and (2) practical
tasks of mankind, to learn from nature and adopt from her long evolution experience. For
a long time the traditional metalloenzyme modeling was mainly focused on the first coor-
dination sphere of the metal ion and the second coordination sphere could be introduced
directly only via the related chelate ligands of the first coordination sphere. In traditional
homogeneous catalysis activity, the selectivity and stability of a transition metal catalyst
was controlled by the ligands of the first coordination sphere. In biomimetic catalysis,
a new direction for the research of advanced cavity-like models of metalloenzymes has
gradually appeared and formed [3]. Many important aspects of enzymatic chemistry have
been investigated by supramolecular chemistry, including molecular self-assembly, folding,
molecular recognition, and host–guest chemistry on classical macrocyclic hosts provided
by synthetic organic chemistry, such as cyclodextrins, crown ethers, cyclophanes, and cal-
ixarenes [4]. These gave rise to covalent cavitins [4,5]. On the other hand, supramolecular
chemistry, built on weak and reversible non-covalent interactions, has emerged as a pow-
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erful and versatile strategy for the fabrication of coordination cavitins and has led to the
creation of molecular containers or cages [5,6] and porous polymer molecules such as the
metal-organic frameworks (MOF) and covalent-organic frameworks (COF) (Figure 2] [7,8].
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(b) metal-coordination cages. Extended cavitins: (c) MOF and (d) COF, the arrow symbolizes the
incorporation of the M-complex into the COF cavity (Hu, J et al., 2021) [23].

The extended cavitins quickly gained recognition as industrial heterogeneous catalysis
due to their outstanding characteristics: high-porosity and high-density catalytic metal
centers, remarkable sorption properties, shape selectivity and easy syntheses in preparative
quantities [9]. Metal catalysts can be encapsulated in various types of cavitins, providing
the tools to control their activity and selectivity via the second coordination sphere. The
supramolecular strategy has become more and more dominating in biomimetic chemistry
over the last decade [10,11]. Due to their cavity-like structure and convenient modification,
cavitins provide unlimited possibilities to mimic the active sites of natural enzymes.

2. The Diversity of Cavitins

Microporous compounds, such as charcoal or zeolites [12], have been used for a long
time as carriers for metal ions in heterogeneous catalysts because they greatly increase the
performance of the encapsulated transition metal. Cavity macrocycles, such as cyclodex-
trins, crown ethers, cyclophanes and calixarenes, have been studied as host molecules
in the field of molecular recognition, which is key for the high catalytic efficiency and
selectivity of natural enzymes [13]. To mimic the cavity and pores of natural enzymes, a
number of polycycle molecular containers based on covalent bonding, such as carcerands,
hemicarcerands, cryptophans, capsules and cages, have been prepared during the last
decade. Among the classes of covalent cavitins the most popular are a derivatives of the
cyclotriveratrylene (resorcinarene) [14] as well as cavitins formed by bonding resorcinarene
units [15]. In the ocean of covalent and non-covalent cavitins there are two big classes:
discrete individual molecule monocavitins (Figure 2a,b), such as cyclodextrins, calixarenes,
cryptands, cucurbiturils, metal–organic cages (MOC), covalent organic cages (COC), heli-
cates [16], and many others; and extended ones, polycavitins (Figure 2c,d), such as zeolites,
MOF, COF, porous polymers, porous molecular crystals [17], hollow [18] and dynamic [19]
MOF, and others which all together demonstrate a rich library of architectures varying in
shape, size and geometry. H-bonded capsules based on resorcinarene units (Figure 3a) and
H-organic frameworks (HOF) are evolving into novel and important classes of cavitins.
Metal-COF (MCOF) are also emerging as a bridge between MOFs and COFs via integrating
metal active sites into COFs (see Figure 2d) [20]. In recent years, there has been a growing
interest in more exotic classes of cavitins, such as porous liquids and metal foams. A
porous liquid (PL) is a liquid that combines the cavity of porous solids with the fluidity of
liquids. The permanent pores endow PL unique physicochemical properties, interesting
for catalysis, particularly for photocatalysis. A metal foam is a cellular structure consisting
of a solid metal with pores comprising a large portion of its volume. They are considered
as promising catalyst carriers due to their high porosity, large specific surface area, and
satisfactory thermal and mechanical stability [21]. It is generally assumed that monocavins
are more suitable for the modeling and academic study of enzyme active sites, while poly-
cavitins are used for the fabrication of advanced heterogeneous catalysts. However, in the
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recent years the appearance of MOCs in catalysis has also increased. Using self-assembly
and incorporating different functional groups, complex supramolecular hosts with diverse
shapes, sizes and chemical environments of the cavity have been easily designed from
relatively simple components [15,21].
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Copyright 2021 Elsevier.

2.1. Metallocavitins

MOFs as MOCs are formed by coordination-driven self-assembly. They are composed
of polydentate organic linkers and inorganic nodes containing metal ions or clusters known
as secondary binding units (SBU). The metal in the coordination cavitins may serve not
only in constructive goals but also as a coordinatively unsaturated catalytic center. Other
approaches for the incorporation of metal active sites into cavitins include metallolinkers,
non-covalent encapsulation of metal complexes and enzymes, templated metal–ligand
assemblies and post synthetic metallation [3]. The most popular Schiff base COF possesses
uniformly distributed imine linkages, which revealed a new metal binding mode. The imine
linkage in COFs is the most tunable bond among all the currently employed reversible
COF linkages and readily chelating transition metal via cyclometalation [22]. For example,
the iridacycle B-decorated COF (Figure 2d) exhibited more than 10-fold efficiency than its
molecular analog in photocatalytic hydrogen evolution from aqueous formate solution
under mild conditions [23]. The robust porosity, stability, and chemical functionality of
COF can be controlled by the reasonable selection of organic building blocks. Chirality
is associated with the origin of life on Earth and plays a great role in the functioning of
metalloenzymes. COFs are shown to be capable of inducing chiral molecular catalysts
from non-enantioselective to highly enantioselective in organic reactions [24]. On the
other hand, a method to synthesize chiral MOFs from achiral precursors by modifying the
substituents utilizing chiral fragments was reported recently [25]. While the robust porosity
of MOFs and COFs renders them as promising heterogeneous catalysts, they suffer from
diffusion problems in mass transportation. Due to this, approach for the polymerization of
soluble MOCs [26,27], and the preparation of semi-heterogeneous metal–enzyme-integrated
catalysts using soluble porous imine molecular cages [23] were developed.
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2.2. Design and Characterization

Design strategies have employed subcomponent self-assembly via the simultaneous
formation of dynamic coordinative (N→metal), covalent (N=C), and other bonds. A key
facet of metallo-supramolecular self-assembly is predicting the products of self-assembly
based on constituent metal ion geometry and ligand conformation [28]. Binding selectivity,
created by weak non-covalent interactions between the hosts and guests, is influenced by
the size, shape and flexibility of cavitin [29]. A general design problem is that the linker
units and SBUs should provide a unique flexibility/rigidity balance and directionality
for the ligands to achieve the desired geometry and optimal host–guest interactions [30].
The right balance between the flexibility and rigidity of cavitin is favorable for binding
substrates and releasing products [31]. Shape-persistent organic cavitins permit the precise
control of their size, geometry, and the presence of functional groups in the interior of their
cavities [32]. Adaptability is a hallmark of enzymes and flexible cavitins can mimics this via
structural changes that accompany adsorption and desorption steps [33]. Host flexibility
can greatly affect the cavity size and shape and lead to behaviors analogous to the induced
fit of substrates within the active sites of enzymes. A little structural flexibility is inherent
to some “rigid” metal–organic hosts, but torsional twisting of trigonal prismatic cages leads
to a dramatic change in cavity size [34]. With advances in single-crystal X-ray diffraction
and economic methods of computational structure optimization, cavity sizes can be readily
determined. Practically very useful, simple rules, such as Rebek’s 55% rule [35], fail to take
into account structural flexibility that can allow hosts to significantly adapt their internal
cavity [34]. Computational analysis offers a potential route to quantitatively examine the
flexibility of metalorganic assemblies and may be used in the design of cavitins [36]. For
example, a computational screening method able to predict new cavitins [37]. The Toolkit
cgbind facilitates the characterization and prediction of functional metallocages [38]. A
tight binding chemical method (GFN-xTB) has been developed specifically for geometry
optimization in large molecular systems [39]. The volume calculations on empty cages and
prospective guests with the online utility Voss Volume Voxelator confirmed that Fe4(Zn-L)6
has the appropriate size to accommodate a hydroformylation catalyst [39]. To explain the
catalytic activity of the two dipalladium(II) cages the molecular dynamics simulation was
explored for the evaluation of their conformational flexibility [38]. Hydrophobic MOFs
have unique advantages as catalysts for various reactions: the hydrophobicity is beneficial
for substrates to access the active sites and can improve the water stability of the MOF, they
are also able to achieve spontaneous separation from the hydrophilic new products, thus
improving selectivity [40]. Reversible bond formation is one of the prime prerequisites
for the crystallization of cavitins. A general procedure to grow large single crystals of
three-dimensional imine-based COFs was developed [41] using the principles of dynamic
covalent chemistry [42,43]. In the design of complex cavitins it is necessary to take into
account the balance between reversibility and robustness of the connecting bonds for
enhanced crystal growth [44]. Many useful MOFs with enhanced catalytic performance
possess varying degrees of chemical instability hampering their practical applications.
The MOF/parylene-N hybrid not only imparts the chemical stability of an MOF without
obviously impacting their inherent nature, but also broadens the scope of this catalysts
in different aqueous environments [45]. A novel strategy for the synthesis of a highly
crystalline and porous cyanurate-linked COF (CN-COF) by dynamic nucleophilic aromatic
substitution was reported recently [46]. CN-COFs contain flexible backbones that exhibit
unique AA′-stacking due to the interlayer H-bond interactions, exhibiting good stability.
The complexity of cavitins has increased dramatically over the years. Heteroleptic, mixed-
metal, hybrid and low symmetry assemblies are becoming more commonplace [47,48].
Improvements within SCXRD and the advancement of computational power allow the
rapid and in-depth analysis of these systems [34]. Polyoxometalates (POMs) exhibit unique
chemical properties that make them very attractive as catalysis. The ring-shaped lacu-
nary POM comprises inorganic cavitins containing a large cavity useful for accumulating
metal-cations. Recently an original approach was developed for the selective synthesis of
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multinuclear Cu-containing ring-shaped POM Cu4-Cu16 by the stepwise addition of four
of copper(II) acetate equivalents (Figure 4) [49]. Insertion of POM into an MOF opens up
new opportunities in heterogeneous catalysis [50].
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Perovkskites are another purely inorganic cavitin, which has recently received great
attention as catalysts [51] due to their large surface area, low density, and high loading ca-
pacity. A typical perovskite oxide has the general formula ABO3, in which A is a lanthanum
or an alkaline earth metal and B is a transition metal. The enthusiasm for perovskite oxides
is that they show a highly flexible elemental composition, with a large variation in proper-
ties that can be tailored by doping design. Progress in metallo-supramolecular chemistry
has created the potential to synthesize metallocavitins with more than one function within
the same assembly [47]. The inspiration has come from enzymes that congregate, for exam-
ple, a substrate recognition site, an allosteric regulator element and a reaction center. The
formation of heteroternary cucurbit[8]uril-viologen–naphthol complexes led to bifunctional
photoredox catalysts for hydrogen generation [52]. Novel cubic cages with a different
polarity to the peripheral environment surrounding the cage encapsulating catalytically
active cobalt(II) meso-tetra(4-pyridyl) porphyrin were synthesized for study of polarity
effects in cyclopropanation reactions [53]. The work [54] opens new perspectives for the
synthesis of a more diverse library of coordination nanocages with innovative structures,
metal ion composition and functionality.

3. Cavity Effects

Enzymes are a source of imagination and inspiration for chemists. They incorporate
multiple functionalities in their substrate-binding cavities, in order to achieve high selectiv-
ity and activities. A good example of the cavity effect on a catalytically inactive binuclear
iron complex was demonstrated in a paper [55] devoted to [FeFe]hydrogenase modeling.
The complex Fe2[µ-(SCH2)2NH](CN)2(CO)4

2− was shown to integrate into the inactive
apo-form of [FeFe]-hydrogenases to yield a fully active enzyme. The cavities perform
substrate encapsulation, molecular transformation, intermediate capturing, and product
release, which facilitated the catalytic cycle. Cavity effects are based on entropy effects,
cage-wall effects, absorption, desorption, shape- and size-selectivity [56] and include sec-
ond sphere and hydrogen-bonding interactions, salt-bridges, and long-range allosteric
effects from bound cations and anions (Figure 1b) and, at last, from component interactions.
Basic atomic-molecular properties drastically change upon confinement within the catalyst
framework, leading to effects such as increased excitation energy and lower polarizability,
which can be explained using the “particle in the box” as a simplified model [57]. For
larger molecules, spectroscopic evidence for the intrinsic decrease in the p-p* gap in aro-
matic hydrocarbons, such as naphthalene and anthracene, has been shown [57]. More
recent studies, however, revealed that the pure effect of confinement rather leads to an
increase in the HOMO–LUMO gap and point toward the specific properties of electrostatic
stabilization within the active catalytic site [57]. The transition metal in the majority of



Catalysts 2023, 13, 415 7 of 36

enzymes is the center of their activity, but the cavity itself can perform some activation
of the substrate, isolation of metal complexes to prevent aggregation or decomposition
and increase the local concentration of catalyst and reaction partners. For example, the
intermediary-sized cucurbit[7]uril in aqueous solution selects and effectively accelerates (in
4 × 105) the endo dimerization of cyclopentadiene. DFT calculations suggest that catalysis
is due to an entropy dominated transition-state stabilization in the tightly packed ternary
reaction complex [58]. In another example, the rigid, spherical cavity in spherical cavitin
quantitatively encapsulates azobenzene and stilbene derivatives with 100% cis-selectivity
in water and their cis-azo isomerization is suppressed due to the confinement effect [59].
The Narazov cyclization, which needs an acidic media, in the metallocage [Ga4L6]12− can
proceed at pH 8. In this case, an acceleration comparable to some enzymes is observed,
which is caused by the preorganization of the encapsulated substrate and stabilization of
the transition state. The experimental results and quantum chemical calculations reveal
that a Ga4L6

12− cage accelerates the cyclization reactions of pentadienyl alcohols because of
an increase in the basicity of the complexed alcohol [60,61]. The design of new catalytically
effective cavitin is limited because of our poor understanding of cavity effects in depth. A
simple and effective DFT protocol was suggested, which takes into account both the ther-
modynamic and kinetic aspects of catalysis permitting the elucidation of many effects on
the molecular level [36]. The protection of the reactive functional groups favors reaction at
the unprotected sites. Cavity effects alter the typical reaction pathway, switching reactions
on and off [62], operating substrate selection based on size and shape, leading to unusual
selectivity or inducing stereoselectivity through asymmetric scaffolds. Most importantly
for the reaction rate are the proximity and orientation of the substrates and transition-
state stabilization. The concepts of ‘confinement effect’ and ‘second sphere effects’, often
used in modeling enzymes, are not clear enough and are often unjustifiably substituted or
identified. In the active center of the enzyme there are a number of effects that affect the
catalyzed reaction: purely geometric, such as a limited space, size and shape of the cavity,
physicochemical, associated with the microenvironment, chemical, such as covalent and
non-covalent bonds of the ‘second sphere’ functional groups with the reaction participants,
long-term effects such as electrostatic [63], allosteric and the effects of inter-component
interactions with other enzymes. As a result of these effects the confined molecules can
fundamentally change their chemical and physical properties compared to those in bulk
solution. Cavity effects (CE) are directed to the preorganization of catalysts and reactants,
and confinement effects, identified within the second sphere, affect the reaction itself. Sig-
nificant progress in our understanding of CE in cavitins was reached due to single molecule
fluorescence microscopy imaging (SMS) over the last decade [64]. This technique was
developed to directly monitor the behaviors of individual molecules in a confined space,
thus enabling spatial and temporal visualization and a better understanding of molecular
dynamics. Additionally, it was also observed that confinement induced reactivity change,
on and off switching of reactions, substrate selection, stereoselectivity, regioselectivity, and
product distribution variation.

3.1. Isolation from Bulky Solvent, Selective Incorporation and Stabilization of the M-Complex
and Reactants

The separation of the complex from the bulk solvent and the control of the in/out
exchange is reminiscent of the roles of the protein backbone in metalloenzymes. The
cavity can change the structure of the active site and prevent the catalyst from decom-
posing. The neutral complex Ru(II) (Figure 5) was encapsulated inside a self-assembled
hexameric host similar to (a) (Figure 3, [20]). Different spectral data and molecular
dynamics simulations support the inclusion and motions of the complex inside the
capsule. The embedded complex was assessed by the NaIO4 catalytic oxidation aryl-
methyl alcohols into aldehydes, which is dependent on the substrates’ size in the order
benzyl > 4-phenyl-benzyl > 9-anthracenemethanol [65]. No discrimination between the
substrates was observed in the absence of the cavitin.
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Usually cavitins control the nuclearity of the M-complex. For example, the encap-
sulation of metal complex (b) in monomer form has been demonstrated in a dynamic
H-bonded capsule (a) (Figure 3) [20]. The position of the M-complex inside this capsule
can be derived from NMR analysis and confirmed by docking simulations [19]. Assem-
bling phenothiazine into a cavitin improves its photocatalytic performance and stability
due to less aggregation inducing its quenching and also due to preorganization of the
electron donor–acceptor complex within the cage [66]. Au25 nanocluster encapsulated
into MOF loses surface ligands and exhibits superior activity and stability in the oxidative
esterification of furfural [67]. Enzymes bind reactants within their pockets and reduce the
distance between the M-center and the substrates. Inspired by enzymatic behavior, cavities
can be engineered to co-encapsulate metal catalysts with substrates in such a way that
after M-complex encapsulation, some space remains vacant for the co-encapsulation of
substrates. Substrates of appropriate size and shape react with the confined M-complex due
to the thermodynamically favorable host–guest binding process of molecular recognition
based on complementary physicochemical characteristics, which allows acquisition and
orientation. Substrate selectivity is difficult to rationalize for small molecules, such as H2,
O2, CO2, and CH4, that possess a range of physical characteristics too narrow to allow
either precise positioning or discrimination between the reactants. Nevertheless, metal-
loenzymes have evolved to metabolize these substrates with high selectivity and efficiency
due to small-molecule tunnels and gate-effects, for example, for the selective oxidation of
methane [68]. Substrate may adopt a high-energy conformation that is structurally similar
to the transition state, thus leading to a lowered activation energy. Conformational changes
during substrate binding frequently appear in enzymes. Cavitins help to investigate this
effect. The preferred conformation and orientation of the bound guest determines the
molecular behavior in the cavity. The conformation is dependent upon the intrinsic en-
capsulation capability of the hosts. For example, for long chain alkanes or fatty acids,
bent binding motifs are often observed when they are sequestrated. This can result in the
close proximity of terminal reactive functional groups through enforced orientation of the
guest. Guest encapsulation induces an entropic penalty that is often compensated for by
favorable entropic and enthalpic gains from desolvation of the guest and the liberation of
high-energy solvent molecules from the binding site [56]. This also involves the shielding
of specific reactive groups by supramolecular encapsulation. For example, the electrophilic
α-carbon on a [PhN2]+ ion can be selectively deactivated upon host–guest complexation
with cucurbit[7]uril in aqueous media, achieving a 60-fold increase in the half-life of the
carbocation. However, the electrophilic nitrogen of the encapsulated diazonium ion re-
mains active towards diazo coupling with strong nucleophiles in water [69]. Electrostatic
contributions are known as primary factors in enzyme catalysis. However, for a long
time there were no models to study this mechanism. Positively charged hosts are able to
attract negatively charged guests (and vice versa) and guest binding affinity, driven by
electrostatic interactions, which can be modulated by different solvents [63]. Remarkable
examples of reactive guest stabilization by confinement in synthetic molecular contain-
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ers has been reported, involving the stabilization and detection of reaction intermediates
through the formation of thermodynamically stable and covalent host–guest complexes
with functionalized resorcin[4]arene cavitins [70]. A discrete nanocage of core−shell design
with a hydrophilic interior and a hydrophobic exterior (Figure 6a) was able stabilize metal
complexes (Figure 6b) with an uncommon oxidation state in organic solvents [71].
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Figure 6. Stabilizing complex (b) with Co(I) oxidation state in a discrete nanocage (a) of core−shell
design (Shen et al., 2014) [71].

Steric groups in the second coordination sphere define a corridor for the approach of
substrates into the active sites. For instance, iron picket-fence porphyrin complexes have
bulky amide substituents positioned in a single facial orientation, thereby constructing a
cavity for small molecules, such as dioxygen [29]. The cavity effects on the catalytic reaction
dynamics under variable nanopore morphologies, including pore length and diameter at
the single-molecule level, were studied and were found to be dependent on the nanopore
morphology [64].

3.2. Preorganization of the M-Catalyst and Reagents, Mutual Orientation and Shaping the
Reaction Start Complex

The conversion of methane to acetic acid on Fe-ZSM-5 with ultrahigh selectivity has
been attributed to the preorganization of the M-catalyst and reagents, the direct coupling
of intermediate methyl radicals (•CH3) and the adsorbed CO* and OH* species on Fe site
to form CH3COOH (Figure 1c) [72]. Combining NMR analyses and molecular modelling
showed significant differences in shape between the different complexes derived from α-,
β- or γ-CD (Figure 7) [73].
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Figure 7. 3D structures of hybrid cyclodextrin–imidazolium M-cavitins: (a) α-ICD, (b) β-ICD and
(c) γ-ICD. Reprinted with permission from (Roland et al., 2018) [74]. Copyright 2018 Wiley.
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In the case of α-ICD a helical shape is apparent, when in the case of γ-ICD a symmet-
rical cavity shape is revealed [74]. The preorganization of a substrate in a higher energy
conformation can accelerate the reaction and promote reactivity. Nanoenvironments allow
(or enforce) the preorganization of substrates through conformational restrictions. Increas-
ing the local concentrations, the mutual convergence and orientation of the catalyst and
substrate enables the formation of the start reaction complex. For example, self-assembled
nanospheres bearing guanidinium binding sites (Figure 8) bind sulfonate-functionalized
ruthenium catalysts increasing the proximity of incoming water to the catalyst. This preor-
ganization increases the reaction rate for electrochemical water oxidation in two-orders of
magnitude comparable to the homogeneous system.
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3.3. Transition State and Intermediate Stabilization

In cavitins the transition state of the target reaction can be stabilized more efficiently in
comparison with bulk solutions. The Ir complex was incorporated into Zr-MOC-NH2 with
the formation IrIII-MOC-NH2. DFT calculations, mass spectrometry and in situ IR showed
that the Ir(III) complex is the catalytic center, and −NH2 in the cavity plays a synergistic
role in the stabilization of the transition state and Ir·CO2 intermediate [75]. The transition
state or intermediate stabilization can not only lower the energy and enthalpy barrier of
the reaction but can also alter the reaction mechanisms. The increased local concentration
of reagents in the hydrophobic cage in the cobalt-catalyzed cyclopropanation of styrene,
which involves radical intermediates and some shielding, reduces the number of unwanted
side reactions of reactive radical intermediates and substantially improves performance [76].
The hexameric resorcinarene capsule (Figure 3a) can host trityl carbocation, which catalyzes
Diels–Alder reactions between dienes and unsaturated aldehydes. The capsule promotes
the formation of trityl carbocation from trityl chloride via the cleavage of the C-X bond
promoted by OH/X H-bonding [77]. The labile imine and hemiaminal intermediates in the
transformation of aldehydes to imines can be stabilized in water by hydrophobic cavitin
containing a primary amine groups anchored in its cavity (Figure 9). The reaction favors
the release of water from the hydrophobic microenvironment [78].
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3.4. Second Sphere and Allosteric Effects

The interfacial interactions between substrate molecules and the cavity, such as the
second sphere effect, can not only modulate the first sphere effect but also change the
mass transport and adsorption–desorption equilibrium, thus significantly influencing the
catalytic reaction activities and selectivities. For example, the electrostatic effects lower the
activation energy of a reaction, and result in a rather large rate acceleration. Controlling the
reactivity with the presence of acid–base residues and H-bonds is also very significant [20].
Among the eight water molecules embedded in the structure (Figure 3a), four feature a
hydrogen atom hanging inside the cavity, which makes them good hydrogen-bond donors
to azido ligands of [Cu(TMPA)N3]ClO4 serving as a reference probe of the second coordina-
tion sphere using IR spectroscopy. The presence of this hydrogen bonding was confirmed
with docking experiments. The allosteric effects of central and peripheral interactions were
extensively investigated. The accumulation of ions or neutral molecules at the periphery
of a cavitin can results in a higher local concentration of substates inside of cavity. These
peripheral interactions may be non-covalent or covalent in nature. The concentration
of externally bound species decreases host flexibility and thus the guest exchange rate.
The peripheral cage substituents control the activity of a caged cobalt-porphyrin-catalyst
in cyclopropanation reactions. It was demonstrated that cage catalysts with non-polar
external groups provided a higher activity compared to the free bulk catalyst and cages
with no or polar exo-functionalization [76]. In some M-enzymes the substrate must diffuse
through tunnel residues before binding to the active site. For example, the structure of
cytochrome P450, which consists of a long hydrophobic tunnel, regulates substrate access
and product release. The authors [76] declared that the cage serves as a mimic of the
active site pocket of an enzyme whereas the periphery of the cage provides a synthetic
equivalent of the substrate binding site tunnel. Mechanistic investigations into the role of
the secondary coordination sphere and beyond on multi-electron electrocatalytic reactions
showed that the introduction of additional interactions through the secondary coordination
sphere beyond the active site, such as hydrogen-bonding or electrostatic interactions, also
enables faster chemical steps in addition to its effects on the rate-limiting steps, examined
earlier [79]. The cavity containing the M-complex confined in an asymmetric environment
permits enantioselective catalytic reactions.

3.5. Changing the Reaction Course and Mechanism

The confinement can change the course of a reaction. The reactivity of the catalyst
[Re(C12Anth-py2)(CO)3Br] was modulated by its encapsulation into a COF. The M-cavitin
catalyzed either reductive etherification, oxidative esterification, or transfer hydrogenation
depending on the local environment in the COF [80]. In conditions of alkyne hydration
by NHC–Au complex the product is formed from intramolecular cyclisation induced
by the confinement of the metal. Variations in product distribution were observed with
(ICyD)AuCl complexes. A gold-catalyzed enyne cycloisomerization with an α-ICyD ligand
gave a cyclopentenic product, while β-ICyD led a to six-membered ring. The outcome of
the reaction depends on the conformation of the carbenic intermediate (Figure 10): inside
the cavity of the α-ICyD conformation a was restricted while b fits better into β-ICyD [74].
Authors of this work have showed also that changing the size and shape of the cavity also
changes the mechanism of reaction.
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3.6. Regioselectivity, Stereoselectivity and Product Selectivity

The chemical reaction rate and product selectivity are often dependent on the mor-
phological properties of the cavity in both enzymes and cavitins. The size and shape of
the cavity determines the selectivity. The use of ICyD ligands in the copper-catalyzed
hydroboration of alkynes leads to an inversion of the regioselectivity that is controlled by a
parallel or anti-parallel approach of the alkyne dependent on CD. While the β-ICyD ligand
gives branched products, the smaller α-ICyD ligand gives linear vinyl boronates. A chiral
second coordination sphere of the M-complex, confined in an asymmetric environment,
permits enantioselective catalytic reactions. Such a scenario was demonstrated in enyne
cycloisomerization for NHC-capped CD gold complexes (ICyD)AuCl encapsulated in CD
in monomeric form. The stereoselectivity depends on the nature of the cyclodextrin and
shows good yields and ee values (up to 80%). The selectivities were rationalized using the
shapes of the cavities determined by NMR and modelling. While γ-ICyD does not afford
enantioselecivity because of its symmetrical shape, α-ICyD and β-ICyD give the enantiomer
for which the approach is the easiest according to their helical shape [73]. COFs are capable
of inducing chiral molecular catalysts via preferential secondary interactions between the
substrate and the framework that induce enantioselectivities not achievable in homoge-
neous systems. They catalyze the asymmetric acetalization of aromatic aldehydes and
2-aminobenzamide to generate products with up to 93% yield and 97% ee [24]. The highly
selective synthesis of terpene compounds was demonstrated by the controlled conversion
of (+)-limonene to terpinolene by kinetic suppression of overisomerization in a confined
space of a porous metal–macrocycle framework in stark contrast to the acid-catalyzed
reaction in bulk solution, which generally gives a complex mixture of thermodynamically
favored isomers [81]. The microenvironment of the {Co4

IIO4} in the Co4@Rux-Eu-MOF
plays an important role in improving the performance and selectivity of CO2 photoreduc-
tion and water splitting in syngas production. The H2 and CO total yield can be improved
by up to 2500 µmol·g−1 with the ratio of CO:H2 ranging from 1:1 to 1:2 via changing the
photosensitizer content in the confined space [82].

Thus, confinement of a metal complex is a promising way to induce their reactivity
modulation and improve selectivity. Many of these effects are familiar from enzymology but
need be studied in chemical models in order to provide deeper insight into the mechanisms
of enzymatic efficiency and selectivity.

4. M-Cavitins as Advanced Chemical Models of Enzymes

Although considerable progress in study of enzyme catalysis has been realized by
directly monitoring the catalytic processes of natural enzymes, the relationships between
the supramolecular structures and the functionality of enzymes are still obscure. Based
on their dynamic nature, supramolecular enzyme models with complex and hierarchical
architectures have attracted considerable attention in the research area of mimicking the
particular features of natural enzymes [83]. The design and development of enzyme
mimics with supramolecular structures can help unravel the mystery features of enzyme
catalysis. The earlier attempts to adequately model enzyme AC included metal complexes
covalently attached to cyclodextrins [84]. Later metal complexes of porphyrin, salen and
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others were encapsulated within molecular cages [53]. In an effort to mimic the structure
and functions of metalloenzymes discrete coordination and covalent metallocavitins were
designed and synthesized either by embedding the active sites in the structures of the
cage [85] or by the encapsulation of catalysts within the cage [53]. Being comparable to the
AS of enzymes, monocavitins have intrinsic advantages as enzyme mimics. Their solubility
in organic solvents permits their study in homogeneous systems [53]. This also facilitates
the growing of single crystals that make it possible to reliably control their structure and
functionality at the atomic level by using single-crystal X-ray diffraction (SCXRD) [30].
Many spectroscopic techniques, such as NMR, UV–Vis, and fluorescence spectroscopy,
have been widely applied to monitor reactions catalyzed by monocavitins.

4.1. Stereoselectivity

Stereoselective binding is an essential feature for enzymatic catalysis. A variety of chi-
ral cavitins have been constructed via covalent bonding or coordination assembly [86]. Over
the past years, C3 symmetrical cages have emerged as an interesting class of supramolecu-
lar hosts that have been reported as efficient scaffolds for chirality dynamics: generation,
control, and transfer [87]. Artificial metalloenzymes having a synthetic metal complex in its
protein scaffold, selectively catalyze non-natural reactions and reactions inspired by nature
in water under mild conditions. For example, the biotin-binding cavity of streptavidin
can accommodate small coordination compounds to form the artificial enzyme for the
enantioselective oxidation of prochiral sulfides, enhancing the activity and selectivity up to
93% ee for the sulfoxidation of methyl-2-naphthylsulfide in the presence of TBHP compared
to the protein-free salt (Figure 11) [13]. Also the highest activity (82% ee with TON 2613) for
the enantioselective dihydroxylation and epoxidation of styrene derivatives was obtained
using a Ru complex linked with bovine serum albumin [62].

Catalysts 2023, 13, x FOR PEER REVIEW 14 of 37 
 

 

 
Figure 11. Vanadium-dependent artificial peroxidase for enantioselective sulfoxidation reactions. 
Reprinted with permission from (Dong et al., 2012) [13]. Copyright 2012 Royal Society of 
Chemistry. 

4.2. Artificial Photosynthesis 
Artificial photosynthesis, including photo-induced water oxidation and CO2 

reduction, has been widely studied in the past few years. Native photosynthesis involves 
three stages: light harvesting, charge separation and redox catalysis, and has special 
preorganization of chromophores and catalysts. Nature has evolved highly complex and 
well-organized supramolecular architectures, which can capture sunlight, and transform 
the solar energy with high efficiency. Cavitins are very suitable for modeling this process 
as follows from the previous sections. They provide a unique platform designing catalysts 
for photo-to-chemical energy conversion. Supramolecular chemistry is a powerful tool to 
achieve larger, more organized molecular structures with an increased level of complexity 
to optimize properties required for artificial photosynthesis. Like natural systems, perfect 
preorganization in cavitins leads to improved energy transfer processes, charge 
separation and redox catalysis. Porphyrins are synthetically accessible and stable 
analogues of nature’s chlorophylls and therefore have been thoroughly studied as 
chromophores. Because of their excellent visible light harvesting ability and high electron 
transfer efficiency, ruthenium bipyridyl complexes are also classic photosensitizers. Thus, 
the active water oxidation catalyst cis-[Ru(bpy)(5,5′-dcbpy)(H2O)2]2+ was incorporated 
into UIO-67 MOF using post-synthetic modification of the framework [88]. XAS, EPR, and 
Raman spectroscopy confirmed the formation of a highly active RuV=O key intermediate 
in M-cavitin [78]. Recently, MOC containing dinuclear and mononuclear Co active sites 
as well as a [Ru(bpy)3]Cl2 photo-sensitizer and a Na2S2O8 electron scavenger was studied 
in photo-driven water oxidation (Figure 12) [89]. 

 
Figure 12. A Co MOC for photo-driven water oxidation. Reprinted with permission from (Chen et 
al., 2021) [89]. Copyright 2021 American Chemical Society. 

Figure 11. Vanadium-dependent artificial peroxidase for enantioselective sulfoxidation reactions.
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4.2. Artificial Photosynthesis

Artificial photosynthesis, including photo-induced water oxidation and CO2 reduc-
tion, has been widely studied in the past few years. Native photosynthesis involves
three stages: light harvesting, charge separation and redox catalysis, and has special pre-
organization of chromophores and catalysts. Nature has evolved highly complex and
well-organized supramolecular architectures, which can capture sunlight, and transform
the solar energy with high efficiency. Cavitins are very suitable for modeling this pro-
cess as follows from the previous sections. They provide a unique platform designing
catalysts for photo-to-chemical energy conversion. Supramolecular chemistry is a pow-
erful tool to achieve larger, more organized molecular structures with an increased level
of complexity to optimize properties required for artificial photosynthesis. Like natural
systems, perfect preorganization in cavitins leads to improved energy transfer processes,
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charge separation and redox catalysis. Porphyrins are synthetically accessible and stable
analogues of nature’s chlorophylls and therefore have been thoroughly studied as chro-
mophores. Because of their excellent visible light harvesting ability and high electron
transfer efficiency, ruthenium bipyridyl complexes are also classic photosensitizers. Thus,
the active water oxidation catalyst cis-[Ru(bpy)(5,5′-dcbpy)(H2O)2]2+ was incorporated
into UIO-67 MOF using post-synthetic modification of the framework [88]. XAS, EPR, and
Raman spectroscopy confirmed the formation of a highly active RuV=O key intermediate
in M-cavitin [78]. Recently, MOC containing dinuclear and mononuclear Co active sites as
well as a [Ru(bpy)3]Cl2 photo-sensitizer and a Na2S2O8 electron scavenger was studied in
photo-driven water oxidation (Figure 12) [89].

Catalysts 2023, 13, x FOR PEER REVIEW 14 of 36 
 

 

separation and redox catalysis. Porphyrins are synthetically accessible and stable ana-
logues of nature’s chlorophylls and therefore have been thoroughly studied as chromo-
phores. Because of their excellent visible light harvesting ability and high electron transfer 
efficiency, ruthenium bipyridyl complexes are also classic photosensitizers. Thus, the ac-
tive water oxidation catalyst cis-[Ru(bpy)(5,5′-dcbpy)(H2O)2]2+ was incorporated into UIO-
67 MOF using post-synthetic modification of the framework [88]. XAS, EPR, and Raman 
spectroscopy confirmed the formation of a highly active RuV=O key intermediate in M-
cavitin [78]. Recently, MOC containing dinuclear and mononuclear Co active sites as well 
as a [Ru(bpy)3]Cl2 photo-sensitizer and a Na2S2O8 electron scavenger was studied in 
photo-driven water oxidation (Figure 12) [89]. 

 
Figure 12. A Co MOC for photo-driven water oxidation. Reprinted with permission from (Chen et 
al., 2021) [89]. Copyright 2021 American Chemical Society. 

This study revealed that photo-induced water oxidation initializes the electron trans-
fer from the excited [Ru(bpy)3]2+* to Na2S2O8, and then, the bis(µ-oxo)dicobalt active sites 
further donate electrons to the oxidized [Ru(bpy)3]3+ to drive water oxidation [89]. Self-
assembled nanospheres bearing guanidinium-binding sites can strongly bind sulfonate-
functionalized ruthenium catalysts. Compared to the homogeneous system, the reaction 
rate for electrochemical water oxidation was enhanced by two-orders of magnitude by the 
preorganization of the ruthenium catalysts (Figure 8) [90]. There are more recent examples 
in Table 1. The study of artificial photosynthesis has great significance for future sustain-
able development, taking into account converting solar energy into chemical energy, in-
cluding the production of H2, water oxidation, carbon dioxide and nitrogen fixation, and 
fine organic syntheses (see next chapters). 

Table 1. Photosynthesis mimics. 

# MC 
Reaction  

+ hν 
Productivity, μmol g−1 

(Time, h−1) Select. % 
Rate, μmol g−1h−1 

(TOF, h−1) References 

1 FDH@Rh-NU-1000 
CO2 + 2e2H+ → 

HCOOH 144 M (24) nd (865) [91] 

2 UiO67-Ir-Cou6 
CO2 → H2 → HCOOH 

26,845 
4808  95.5 nd [92] 

3 MIL-125-Py-Rh CO2 → HCOOH 9.5 mM (24) nd nd [93] 
4 CUST-804 CO2 → CO nd 82.8 2,710 [94] 
5 Rh-MOP CO2 → HCOOH 76 nd (60) [95] 

6 MAF-34-CoRu CO2 + H2O → 
CO 

nd nd 11.2  [96] 

7 PFC-58-30 CO2 + H2O → → HCOOH 
nd nd 29.8  [97] 

8 POMs@INEP-20 CO2 → CO nd 97.1 970 
(2.43) 

[98] 

Figure 12. A Co MOC for photo-driven water oxidation. Reprinted with permission from (Chen et al.,
2021) [89]. Copyright 2021 American Chemical Society.

This study revealed that photo-induced water oxidation initializes the electron transfer
from the excited [Ru(bpy)3]2+* to Na2S2O8, and then, the bis(µ-oxo)dicobalt active sites
further donate electrons to the oxidized [Ru(bpy)3]3+ to drive water oxidation [89]. Self-
assembled nanospheres bearing guanidinium-binding sites can strongly bind sulfonate-
functionalized ruthenium catalysts. Compared to the homogeneous system, the reaction
rate for electrochemical water oxidation was enhanced by two-orders of magnitude by the
preorganization of the ruthenium catalysts (Figure 8) [90]. There are more recent examples
in Table 1. The study of artificial photosynthesis has great significance for future sustainable
development, taking into account converting solar energy into chemical energy, including
the production of H2, water oxidation, carbon dioxide and nitrogen fixation, and fine
organic syntheses (see next chapters).

Table 1. Photosynthesis mimics.

# MC Reaction
+ hν

Productivity, µmol
g−1 (Time, h−1) Select. % Rate, µmol g−1h−1

(TOF, h−1) References

1 FDH@Rh-NU-1000 CO2 + 2e2H+ →
HCOOH 144 M (24) nd (865) [91]

2 UiO67-Ir-Cou6 CO2 → H2
→ HCOOH

26,845
4808 95.5 nd [92]

3 MIL-125-Py-Rh CO2 → HCOOH 9.5 mM (24) nd nd [93]

4 CUST-804 CO2 → CO nd 82.8 2,710 [94]

5 Rh-MOP CO2 → HCOOH 76 nd (60) [95]

6 MAF-34-CoRu CO2 + H2O→ CO nd nd 11.2 [96]

7 PFC-58-30 CO2 + H2O→
HCOOH nd nd 29.8 [97]
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Table 1. Cont.

# MC Reaction
+ hν

Productivity, µmol
g−1 (Time, h−1) Select. % Rate, µmol g−1h−1

(TOF, h−1) References

8 POMs@INEP-20 CO2 → CO nd 97.1 970
(2.43) [98]

9 CABB@M-Ti CO2 → CH4 nd 88.7 32.9 [99]

10 CTF-Bpy-Co CO2 → CO 120 µmol (10) 83.8 nd [100]

11 SAS/Tr-COF CO2 → CO 96.4 980.3 [101]

12 RuCOF-TPB H2O→ H2 160 nd 20,308 [102]

13 CoP@ZnIn2S4 H2O→ H2 nd nd 103 [103]

14 ZIF-67/CdS HS H2O→ H2 nd nd 1721 [104]

15 Ni-Py-COF H2O→ H2 nd nd 626 [105]

16 Co-Tz H2O→ H2 9,320 nd 2,330 [106]

17 PTC-318 H2O→ H2 80 nd nd [107]

18 Ru(Bda)-COF H2O→ O2 nd nd 26,000 [108]

4.3. Models of Redox-Active Enzymes

Hydrogenase enzymes are highly efficient in reducing protons to hydrogen. Both
major classes of hydrogenases, the [FeFe]- and [NiFe]-H2ases, contain a bisthiolate-bridged
dinuclear complex (FeFe or NiFe, respectively) in active site. The charge transport function
of the [4Fe4S]-based enzymatic electron transport chain in redox enzymes is separated from
the Fe2 catalytic function, but both these sites are linked as illustrated in Figure 1a for the
[FeFe]-H2ase. In the PCN-700 MOF mimic of [FeFe]-H2ase the first function is modeled
by an organic redox-active naphthalene diimide-based (NDI) linker, while the Fe2 subsite
is modeled by a structurally related [FeFe](dcbdt)(CO)6 (dcbdt = 1,4-dicarboxylbenzene-
2,3-dithiolate) complex [109]. The two units reside in preorganized positions within the
cavity and the NDI-to-Fe2 distance in the PCN-700/NDI/FeFe is nearly identical in [FeFe]-
H2ase. The simple encapsulation of a structural and functional model complex of [NiFe]-
hydrogenase into the MOF cavities gives the advanced hydrogenase mimic NiFe@PCN-777
(Figure 13) [110].
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The preparation and characterization of a redox-active MOF features both a biomimetic
model of the hydrogenase active site as well as a redox-active linker that acts as an electron
mediator, thereby mimicking the function of [4Fe4S] clusters in the enzyme [109]. MOF-818,
containing trinuclear copper centers mimics the active sites of catechol oxidase, possessing
efficient catechol oxidase activity with good specificity [111]. Other examples of redox-
active enzymes may be found in Table 2.
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Table 2. Models of redox-active enzymes.

# MC Enzyme Reaction Yield, %
(µmol g−1) Select, % Rate, µmolg−1 h−1

(TOF, h−1) Refs

1 Cu3MOF-818 Catechol
oxidase

DTBC + O2 →
DTBQ + H2O2

98 nd nd [111]

2 Cu2MIL-125-Ti Mono
oxygenase

RH + O2 → ROH
→ epoxide

94
92 nd nd [112]

3 Ce-AQ MOF Mono
oxygenase

C6H12 +O2 →
C6H10O 54.2 98.4 nd [113]

4 Ce-UiO-Co MMO CH4 +H2O2 →
CH3OH + H2O (2,166,000) 99 nd [114]

5 Fe/Co-TFT Hydrogenase 2H+ + 2e− � H2 nd nd (11,000) [115]

6 UiO-MOF-Fe2S2 Hydrogenase 2H+ + 2e− � H2 35 nd nd [116]

7 [Pd12(Fe2BB)5
(BBNH+)19]43+ Hydrogenase 2H+ + 2e− � H2 nd nd 10,300

mol−1s−1 [117]

8 Mg3(HiTP)2 Reductase O2 + 2e,2H+→
H2O2

nd 90 nd [118]

9 UiO66(SH)2 Nitrogenase N2 + 6e,6H+→
2NH3

nd nd 32.4 [119]

10 NFCO Nitrogenase N2 + 6e,6H+→
2NH3

17,600 nd 126 [120]

11 MIL-101
(FeII/FeIII) Nitrogenase N2 + 6e,6H+→

2NH3
nd nd 466.8 [121]

4.4. MMO Mimics

The development of the direct low-temperature selective oxidation of methane
to methanol has remained an active area of research over the last 50 years [122–124].
Native enzymes, the copper-containing particulate methane monooxygenase (pMMO)
and the iron-containing soluble methane monooxygenase (sMMO), oxidize methane
in ambient conditions by O2 with two connected metal atoms selectively to methanol:
CH4 + O2 + 2e− + 2H+ → CH3OH + H2O (1), NADH → NAD+ + 2e− + 2H+ (2). The
exceptional MMO selectivity is controlled by a special regulatory mechanisms based
on the AS hydrophobicity, substrate geometric dimensions, small-molecule tunnel, gate-
mechanism and methane quantum tunneling, which together substantially accelerate the
oxidation of methane compared to other substrates [68,125–127]. Catalyst encapsulation
within a chemically stable porous COF provides a hydrophobic microenvironment around
the active site. An anionic macrocyclic catalyst [FeIII(Cl)bTAML]2− inside COF nanospheres
(Figure 14) permits the oxyfunctionalization of hydrocarbons in water with an enhanced
degree of selectivity using the catalyst-immobilized COF nanofilms [128].

It would be interesting to check with this cavitin a fine transformation of some Fe2O2
model complex of the MMO intermediate Q during its interaction with methane or its
homologs taking into account following info. The combined structural and theoretical
investigation of alkane uptake in a flexible MOF demonstrated accommodation of the
C1–C4 alkanes, which are different in size and shape, and reveals that a turn stile mecha-
nism facilitates their transport due to gate-opening [129]. A cavity-tailored MOC containing
inward-facing ethyl groups selectively encapsulated methane, ethane, and ethylene at at-
mospheric pressures in acetonitrile and showed the strongest binding for methane [130].
MOFs bearing Fe(II) sites within Fe3-µ3-oxo nodes were active for the conversion of CH4 +
N2O mixtures via Fe(IV)=O. On the basis of in situ IR spectroscopy and DFT calculations,
it was demonstrated that methanol is protected within the MOF under reaction conditions
as a methoxy group and its was concluded that there are steps beyond the radical-rebound
mechanism to protect the desired CH3OH product [131]. The synthesis of M-cavitin, mod-
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eling the coordination environment of the pMMO CuC site was reported recently. EPR
analysis of the prepared CuII complex revealed striking similarities to the AS of pMMO.
The similar CuI complex readily reacted with dioxygen and was capable of C-H bond
oxidation (Figure 15) [132].
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An artificial binuclear copper monooxygenase Ti8-Cu2 was prepared by metalation
of the SBUs in a Ti MOF. The closely spaced CuI pairs were oxidized by O2 to afford the
CuII

2(µ2-OH)2 cofactor [112]. The SBU provided a precise binding pocket for the installation
of binuclear Cu cofactors to cooperatively activate O2. Ti8-Cu2 showed a turnover frequency
at least 17 times higher than that of mononuclear Ti8-Cu1 [112]. Upon incorporation of
mononuclear FeII tris(2-pyridylmetylamine) (FeTPA) into hemicriptophane, a Fe-cavitin
was obtained which, in contrast to free FeIITPA, was able to oxidize methane by hydrogen
peroxide under 60 ◦C and 30 bar to methanol [133]. The incorporation of the unstable
CuI

3L complex into mesoporous silica gel allows one to obtain a catalyst which selectively
transforms methane to methanol by hydrogen peroxide under room temperature with a
conversion of 17.4% and TON 170 (Figure 16) [134].
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The authors suggest that this effect is associated with the encapsulation of the complex
into the hydrophobic cavity of the silica gel. Unfortunately, the paper does not contain
enough evidence to support this suggestion. Nevertheless, the results are very interesting
and very much encourage the continuation of this research despite the mechanism not
being proven.

Thus, artificial enzymatic systems have been studying to mimic the structures and
functions of their natural counterparts. However, there remains a significant gap between
modeling and catalytic activity in these artificial systems. Unfortunately, the unlimited
possibilities of organic chemistry and supramolecular chemistry have not yet been fully
utilized for the biomimetic study of the complex structure of AS MMO and the mechanism
of its functioning. It would be very useful to model the conformational effects of the
polypeptide scaffold, dynamic changes in the coordination environment of the metal
complex, and the sequential formation of intermediates in the multistage process of oxygen
and methane activation. Of great interest in this connection is the reproduction of the
MMOs catalytic cycle on the base of cavitins and, especially, a deeper penetration into
the fine structure of the active intermediate Q and the peculiarities of its transformation
during the interaction with methane, for example, using more adequate MMO model
complexes [124,135] and advanced enzyme models of types demonstrated in Figures 11–15.

5. M-Cavitins in Fine Organic Synthesis

The primary field of MC application is fine organic synthesis and enantioselective
catalysis.

Cavitins can induce enantioselectivities not achievable in homogeneous systems in-
volving preferential secondary interactions with the included substrate. For example, they
catalyze the asymmetric acetalization of aromatic aldehydes and 2-aminobenzamide with
product yields up to 93% at 97% ee [24]. Additionally, the highest activity for the enan-
tioselective dihydroxylation and epoxidation of styrene derivatives was obtained by using
a Ru complex linked with a natural cavitin, bovine serum albumin Ru3-BSA-HA [62]. It
is well known that special channels in enzymes facilitate the transport of substrates and
products. The mesoporous MOF MnO2@OMUiO-66(Ce), containing artificial substrate
channels and MnO2 attached to Ce-O clusters, was designed as a super-active artificial
catalase [136]. MOF-818, containing trinuclear copper centers that mimic the active sites of
catechol oxidase, shows efficient catechol oxidase activity. This artificial enzyme oxidizes
o-diphenols to o-quinones with good substrate specificity [101]. The direct selective oxi-
dations of the most difficult C-H bonds with O2 are very challenging reactions and play
an important role in fine organic synthesis [137]. Nature has created highly active and
selective binuclear metal-containing monooxygenases working in participation with O2
and a reducing agent to activate the most inert C-H bonds of alkanes involving methane.
Recently the MOF-based artificial binuclear monooxygenase Ti8-Cu2 was prepared via the
metalation of the SBU in a Ti-MOF (see 4.4 [112]). In the presence of coreductants, Ti8-Cu2
demonstrated excellent catalytic activity and selectivity in monooxygenation processes,
including epoxidation, hydroxylation and sulfoxidation, with TOF, which is much higher
than that of mononuclear Ti8-Cu1 (Figure 17) [112].

It would be interesting to check and develop this M-cavitin for alkane hydroxylation
involving methane. While polycavitins are used for the fabrication of advanced heteroge-
neous catalysts, monocavins are more suitable for the modeling and academic study of
enzyme active sites. However, the recent years MOC use in catalysis has also increased.
Some examples are shown above. For the case of N-heterocyclic carbene-capped CD gold
complexes (ICD)AuCl stereoselectivity in the enyne cycloisomerization depends on the
nature of the cyclodextrin: α-ICD and β-ICD give the enantiomer for which the approach
is the easiest according to their helical shape and γ-ICD does not afford enantioselecivity
because of its symmetrical shape (Figure 10) [74]. The incorporation of iron porphyrin and
L- or D-histidine endues chiral COF nanozymes with high activity and selectivity in the
peroxidase oxidation of dopa enantiomers. This artificial peroxidase possesses 21.7 times
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higher activity than natural HRP [136]. The involvement of organic radical reactions in
cavitins helps solve some of the problems connected with the high reactivity and reaction
diversity of radicals via taming the reactivity, improving the selectivity or inducing new
reaction outcomes [138]. Ti(IV)-based M-calixarene nanocage clusters exhibit extraordinary
stability in concentrated acid–alkali solutions and can act as a stable photocatalyst for the
oxidation of amines to imines [139]. Other interesting examples may be found in Table 3.
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Table 3. Catalysts for fine organic synthesis.

# MC Reaction Yield, % Selectivity, % Rate, mmol g−1h−1

(TOF, h−1) References

1 PdNPs/ZIF-8 PhNO2 + H2 → PhNH2 95 nd nd [140]

2 (Cu1Pd1)PCN-
22(Co) 2PhY + CO2 → Ph2CO 90 97 nd [141]

3 Br-PMOF(Ir) PhEtNH + CO2 + PhSiH2
→ PhEtNCHO 82 82 (507) [142]

4 Zn-TACPA XC6H4NHCHCOOEt +
PhCH=CH2 → 3a [143] 91 nd nd [143]

5 Co@Y MeCH=CH2 + O2 →
epoxyde 24.6 57 4.7 [144]

6 CoP@POC 2PhCH2NH2 + O2 →
PhCH2N=CHPh 93 99 (22,989) [145]

7 CuHENU-8 Me2PhSiH + t-BuOOH
→Me2PhSiOH 89 95 132 [146]

8 Ni-SAPO-34 C6H10=O + O2 →
C4H10(COOH)2

30 87 nd [147]

9 Prism1 ArCH2OH + O2 →
ArCHO 99.9 nd nd [148]

10 POM/MOF PhCH=CH2 + H2O2 →
PhCHO 96 99 nd [149]

11 Zr-abtc Carvone + H2O2 →
1,2-epoxide 87 90 nd [150]

12 SNNU-97-InV Me-epoxide + CO2 →
Me-c-carbonate 73.3 99 (24.2) [151]
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Table 3. Cont.

# MC Reaction Yield, % Selectivity, % Rate, mmol g−1h−1

(TOF, h−1) References

13 NUC-45a Ph-epoxide + CO2 →
Ph-carbonate 99 99 (316) [152]

14 NUC-54a PhCHO + CO2 →
Ph-carbonate 98 nd (47) [153]

15 MOF1 1-Et-2Ph-aziridine + CO2 →
oxazolidinone 99 97 nd [139]

16 Ent-1(3b) nerol→ α-terpineol
+limonen 73 70ee nd [154]

17 CuPMO NH2C6H4OH + CH2(COMe)2
→ benzoazole 83 nd nd [155]

18 Ni-Ir@Tp-Bpy R1R2NH + RJ→ R1R2NR 94 nd nd [156]

19 Cu2O@ZIF-8 Me2C(OH)-C≡CH + CO2 →
α-alkylidenecarbonate 97 nd (3.03) [157]

20 (R)-CuTAPBP-
COF EtCHO+PyCH2Br (R)-MPP 98 95ee nd [158]

21 JLU-MOF-112 PhCHO + CH2(CN)2 →
PhCH=C(CN)2

98 nd (198) [159]

22 Cu-1D MOF Pyrazole + PhJ→
1-Ph-1H-pyrazole 95 nd nd [160]

23 PdAg@ZIF-8 CH2=CHC6H4NO2 + H2 →
CH2=CHC6H4NH2

98 97.5 nd [161]

24 JNM-4-Ns R1C6H4-C≡CR2 + B2Pin2 →
R1C6H4-CH=CR2BPin 90 nd (41,734) [162]

25 UiO-66-Gua0.2 CO2 + ECH→ CPC nd nd (110.3) [163]

26 Bi2S3@quasi-Bi-
MOF

4-NO2PhOH + H2 →
4-NH2PhOH nd 97 nd [164]

It is worth to note an excellent reaction rate, high product selectivity and productivity
outperforming most reported photocatalysts for MC #6 in Table 3 [145], in which the single
Co atom organic cage CoP@POC demonstrates prominent photocatalytic efficiency for the
oxidation of amines into imines in visible light.

6. M-Cavitins as Promising Industrial Catalysts

The growth of energy consumption and environmental problems have resulted in the
search of catalysts for industrial energetically challenging processes with participation of
small gas molecules involving innovative reactions, high selective to valuable products.
The development of renewable and efficient energy conversion technologies is becoming
extremely necessary. These technologies must be based on the principles of biomimetic
chemistry and M-cavitin catalysis. For the realization of artificial photosynthesis, it is
necessary to develop the design of fast and durable water oxidation catalysts that can be
incorporated into future sunlight-to-chemical-fuel assemblies. The activation and trans-
formation of small molecules, such as CO2, N2, O2, CH4 and H2, into other products has
always been central to endeavors of chemical science. Among various types of energy
conversion, electrochemical CO2 reduction (CO2R) and water splitting (WS) have also been
proven as promising strategies for their environmental benignancy and high efficiency. For
the small molecules discussed here, the spatial and temporal control of protons and elec-
trons delivery to/from the active site is crucial in maintaining product selectivity in these
transformations [165]. The modern challenges of climate change, energy sustainability, and
resource efficiency make the activation of small molecules more important than ever before.
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6.1. H2O

Water oxidation catalysis is of pivotal importance to progress the field of artificial
photosynthesis. Water is an important renewable energy source and has the potential
to meet the current energy crisis needs via photochemical, electrochemical, and photo-
electrochemical splitting to produce oxygen and hydrogen green fuels. Water splitting is
comprised of two half-cell reactions: an oxygen evolution reaction (OER) and a hydrogen
evolution reaction (HER). The facile synthesis and electrocatalytic HER performance of
SnTPPCOP was demonstrated recently (Figure 18) (Table 4, #16), which exhibited good
HER activity with a low overpotential of 147 mV at 10 mA cm−2 due to its unique structural
properties, ranking among the best new reports.
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Table 4. Activation of small molecules for sustainable development.

# MC Reaction Yield, % (P,
µmol g−1/FE, %)

Selectivity,
%

Rate, µmol
g−1h−1 (TOF h−1)

OP, mV (CD,
mA sm−2) Refs

1 Fe/Ni-MOF H2O→ O2 nd nd (940) 239 (50) [166]

2 CALF20 CO2 → CO (nd/94) nd (1361) (32.8) [167]

3 HNTM-Ir/Pt H2O→ H2 (600) nd 201.9 nd [168]

4 IrIII-Uio-67-NH2 CO2 → CO nd (nd/6.71) 99.5 (120) nd [75]

5 TiO2@ZIF-8 H2O→ H2 51 1 nd 262,000 nd [18]

6 (NiCo)S2/NCNF H2O→ O2
→ H2

nd nd nd 177 (10)
203 (10) [169]

7 ZnO/Fe2O3 PN CH4 →
CH3OH (178.3/nd) 100 nd nd [170]

8 Mn1Co1/CN CO2 → CO nd nd 47 nd [171]

9 ZPMOF CO2 → CH4 nd 70 32 nd [172]

10 T1-2Cu CO2 → CH4 nd 93 3.7 nd [173]

11 NiFe-MOF/FF H2O→ O2 nd 83.8 nd 216 (50) [174]

12 Cu@FCN
MOF/CF H2O→ O2 nd 88.7 nd 290 (10) [175]
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Table 4. Cont.

# MC Reaction Yield, % (P,
µmol g−1/FE, %)

Selectivity,
%

Rate, µmol
g−1h−1 (TOF h−1)

OP, mV (CD,
mA sm−2) Refs

13 Fe3-MOF-BDC-
NH2

H2O→ O2 nd nd nd 280 (10) [176]

14 CoCu-MOF NBs H2O→ O2 nd nd 1084 271 (10) [177]

15 CuNi-NKU-101 H2O→ H2 nd 100 nd 324 (10) [178]

16 SnTPPCOP H2O→ H2 nd nd nd 147 (10) [179]

17 CoP/CNTHPs H2O→ O2
→ H2

nd nd nd 238 (10)
147 (10) [180]

18 Ru/3DMNC H2O→ O2
→ H2

nd nd nd 217 (10)
51 (10) [181]

19 MnZn-MUM-
1/NF H2O→ O2 nd nd (83.3) 253 (10) [182]

20 Co-Fe-P H2O→ O2 nd nd nd 240 (10) [183]

21 Ce-Ni(OH)2
@Ni-MOF H2O→ O2 nd nd (170) 272 (100) [184]

22 FePc-pz N2 → NH3 (nd/31.9) nd 33.6 2 nd [185]

23 Fe1Sx@TiO2 N2 → NH3 (nd/17.3) nd 18.3 2 nd [186]

24 UiO-66-H CH4 →
CH3OOH nd 100 350 nd [187]

1 quant eff; 2 µg µg h−1.

Photo-induced WS into hydrogen and oxygen has been perceived as one of the most
promising pathways for solving the energy crisis and environmental problems. The double-
shelled TiO2@ZIF-8 hollow spheres used for HER under illumination show efficient charge
separation by electron injection from ZIF-8 to TiO2, high photocatalytic quantum efficiency
and a high HER rate, 3.5 times higher than bare TiO2 (Table 4, #5) [18]. Donor–acceptor
type imine-linked COFs can be produced, under visible light irradiation, upon protona-
tion of their imine linkages. A significant redshift in light absorbance, largely improved
charge separation efficiency, and an increase in hydrophilicity triggered by protonation
of the Schiff-base moieties in the imine-linked COF are responsible for the improved pho-
tocatalytic performance [188]. Electrocatalytic WS has been regarded as one of the most
promising approaches for producing hydrogen under mild conditions. Despite many
progresses achieved in electrocatalytic WS, highly active and durable catalysts have to be
developed to overcome the kinetic barriers in the water splitting process, especially for the
OERs [189]. The theoretical basis for the design of new MOF electrocatalysts was recently
elaborated through a study of the relationship between the structure and properties of
trimetallic MOFs for efficient OERs. Fe3-MOF-BDC-NH2 exhibited an enhanced perfor-
mance, superior to other reported catalysts (Table 4, #13) [176]. The multi-shelled hollow
Mn/Fe-hexaiminobenzene MOF (Mn/Fe-HIB-MOF), featuring a conductive skeleton, was
developed as an excellent bifunctional electrocatalyst for oxygen reduction reactions and
OERs. It exhibited high OER performance, outperforming commercial RuO2, Mn-HIB-
MOF and Fe-HIB-MOF catalysts [190]. The FeNi-MOF showed remarkable electrocatalytic
performance with a low overpotential of 266 mV at 100 mA cm−2, and a high TOF value of
0.261 s−1 at an overpotential of 270 mV as well as superb long-term durability with a high
current tolerance for water oxidation [166] (Figure 19).
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Photo-induced water oxidation by an MOF has been widely studied in the past
few years. The active water oxidation catalyst cis-[Ru(bpy)(5,5′-dcbpy)(H2O)2]2+ was
incorporated into a UIO-67 MOF using post-synthetic modification of the framework.
OER was studied using an oxygraph with a Clark electrode at pH = 1. XAS, EPR, and
Raman spectroscopy confirmed the formation of M-cavitin and the highly active RuV=O
key intermediate [88]. MOCs based on cobalt ions and imidazolate ligands were studied on
water photo-oxidation for the first time. These studies revealed that the reactions initialized
via the electron transfer from the excited [Ru(bpy)3]2+* to Na2S2O8, and then, to the bis(µ-
oxo)dicobalt active sites which further donated electrons to the oxidized [Ru(bpy)3]3

+ to
drive water oxidation [89]. Recent advances in research of MOF nanoarchitectures for
efficient electrochemical water splitting have reviewed [191]. Hierarchical bifunctional
catalysts for WS are the most promising catalysts for energy transformation in future.
For example, the bifunctional catalyst CoP/CNTHP, containing non-precious metals for
efficient water splitting, has been shown to have outstanding catalytic activity and stability
for overall WS [180].

6.2. CO2

Because of the highly stacked layers, some COFs adopt semiconductive properties and
exhibit promising catalytic performances in photo-CO2R [192]. 3D flower-like SnS2 with a
sheet structure shows good performances for efficient CO2 photoreduction under visible-
light irradiation [193]. Under visible-light irradiation, the single IrIII-MOC-NH2 cage can
convert CO2 into CO with high selectivity and a TOF which is 3.4 times as much as bulk IrIII-
MOC-NH2 and two orders of magnitude greater than that of the classical MOF counterpart,
IrIII-Uio-67-NH2 [75] (Table 4, #4). The redox active In-MOF, InIII[Ni(C2S2(C6H4COO2)2],
demonstrates the first example of a Ni-based MOF catalyst in electrocatalytic CO2R, which
opens promising prospects for designing novel and efficient non-noble metal-based, redox-
active, biomimetic MOFs [194]. Conductive two-dimensional phthalocyanine-based MOF
(NiPc-NiO4) nanosheets linked by nickel-catecholate, are highly efficient electrocatalysts for
CO2R to CO electroreduction. The obtained NiPc-NiO4 has good conductivity and exhibits
a very high selectivity of 98.4% toward CO production and a large CO partial current
density of 34.5 mA cm−2, outperforming the reported MOF catalysts [195]. The MOF UiO-
66 was used in tandem with its zirconium oxide nodes and incorporated ruthenium PNN
pincer complex to hydrogenate carbon dioxide to methanol giving the highest reported
turnover number (TON) (19,000) and turnover frequency (TOF) (9100 h−1). Moreover, the
reaction was readily recyclable, leading to a cumulative TON of 100,000 after 10 reaction
cycles [196]. The neighboring Zn2+-O-Zr4+ sites obtained by post-synthetic treatment of
Zr6(µ3-O)4(µ3-OH)4 nodes of MOF-808 by ZnEt2 gave the MOF-808-Zn catalyst, which
exhibited a >99% MeOH selectivity in CO2 hydrogenation at 250 ◦C and good stability for
at least 100 h [197] (Figure 20).
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Mechanistic investigations revealed that Zn2+ is responsible for H2 activation and the
Zn2+−O−Zr4+ site is critical for CO2 adsorption and conversion.

Along with WS, the electrochemical reduction of carbon dioxide (CO2R) has also been
proven to be a promising strategy among various types of energy conversion. A desired
electrocatalyst should have a high TON, a high TOF and a small overpotential. In cavitins
the transition state of the target reaction can be stabilized more efficiently in comparison
with bulk solution. The Ir complex was incorporated into Zr-MOC-NH2 with the formation
of IrIII-MOC-NH2. DFT calculations, mass spectrometry and in situ IR showed that the
Ir(III) complex is the catalytic center, and −NH2 in the cavity plays a synergistic role in the
stabilization of the transition state and the Ir·CO2 intermediate (Table 4, #4) [75]. Ni-MOF-
derived catalysts for the light-driven methanation of CO2 under UV–Vis IR irradiation
displayed excellent recyclability without the loss of catalytic activity [198]. The high load
of Zn-porphyrin in an anionic porous Zn-based PMOF has strong kinetic and thermody-
namic advantages demonstrating a good performance in the photocatalytic CO2-to-CH4
conversion due to the atomically dispersed active catalytic sites and fast charge transfer
(Table 4, #9) [172]. In another example, Cu2+ ions were dispersed in the crystal structure of
the MOF matrix. The doping content of the Cu2+ ions and the photocatalytic performance
displayed a volcanic relationship: the medium concentration (1Ti/2Cu) was optimal for
the greatest performance for CH4 and CO (3:1) (Table 4, #10) [173]. The d-UiO-66/MoS2
composite facilitates the photo-catalytic conversion of CO2 and H2O to CH3COOH under
visible light [199]. Multiple Cu centers supported on the Ti-MOF catalyze CO2 hydrogena-
tion to ethylene and presents a new tandem route for CO2-to-C2H4 conversion via CO2
hydrogenation to ethanol followed by its dehydration [200]. Bifunctional MOFs containing
tripyridyl complexes of Fe and Mn convert styrene into styrene carbonate via tandem
epoxydation using O2 and then CO2 insertion. DFT calculations revealed the involvement
of a high-spin FeIV (S = 2) center in the challenging oxidation of the sp3 C-H bond [201]. A
new porous copper−organic framework assembled from 12-nuclear [Cu12] nanocages with
two types of nanotubular channels and a large specific surface area effectively catalyzed
the cycloaddition of CO2 to various epoxides under mild conditions [202]. Electrocatalytic
N2 reduction reactions (NNRs) at ambient conditions is a good way for sustainable NH3
production, because the latter is a valuable raw material in organic synthesis and a signifi-
cant clean energy carrier. The pyrazine-linked iron-phthalocyanine FePc-pz is an efficient
electrocatalyst for simultaneously enhancing NRR activity and selectivity and is the best
among the NNR electrocatalysts (Figure 21) (Table 4, #22) [185]. Inspired by the natural
nitrogenase, the single-atom M-cavitin containing Fe1Sx in mesoporous TiO2 appears as an
excellent catalyst with a high rate and efficiency for NNR ((Table 4, #23) [186].
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6.3. Methane

Compared to WS and CO2 conversion, the effective and selective chemical routes
to valorize the most abundant hydrocarbon on earth with the participation of cavitins
are relatively less studied. Direct methane conversion has been carried out in the gas
phase over Cu- and Fe-containing zeolites in the stepwise cyclical process that firstly
involves interaction of the transition metal with O2 or N2O at 400–500 ◦C, forming an
oxidative intermediate, then the methane reaction with this active intermediate at 200 ◦C,
and finally the product extraction with water steam. However, the rate and productivity
of these processes are still very low. A catalytic process with zeolite Fe-Cu-ZSM-5 with
a selectivity of 20–80% was proposed for the hydroxylation of methane at 50 ◦C using
aqueous H2O2 [203,204]. Such a Cu-Fe (2/0.1)/ZSM-5 catalyst is an efficient catalyst for
the direct conversion of methane into methanol with excellent productivity and a methanol
selectivity of 80% [204]. The mechanism based on the catalytic, spectroscopic and theoretical
results was suggested: [204] the adjacent to the iron acid sites facilitates the formation of
an active Fe(V)=O intermediate via the dehydration of the formed Fe-OOH in aqueous
H2O2 solution, enabling the homolytic cleavage of the primary C-H by a radical-rebound
mechanism to generate •CH3 radicals that are quickly captured by •OH radicals to form
CH3OH. In contrast to Cu- and Fe-containing zeolites, the study of MOF-based MMO
mimics is still in the early stages and suffers from the same problems, low productivity
and rate and low methanol selectivity due to over-oxidation. The significant challenge
for CH4 photooxidation into CH3OH are connected to activation of the inert C-H bond
and inhibition of CH3OH over-oxidation. In this connection several interesting works
have recently appeared. Thus, it was shown that in reaction CH4 + H2O2 = CH3OOH,
catalyzed by UiO-66-H, the high electronic density on Zr-oxo nodes facilitates the formation
of Zr-oxo/•OH intermediates which are competent to activate the methane C-H bond with
100% selectivity (Table 4, #24) [187]. It was suggested then that, due to DFT calculations, the
Zr-oxo/•OH intermediates can quickly react with the •OOH or the dissolved O2 with an
extremely low energy barrier, explaining the formation CH3OOH. The absolute selectivity
is a very unusual result for direct methane oxidation, but its explanation is not convincing
enough. Indeed, if this intermediate is competent in the reaction with methane [187], why
is it not competent with CH3OH [187]? The electron donor–acceptor hybrid RhB/TiO2
demonstrated the photocatalytic oxidation of CH4 to CH3OH with a rate 143 µmol·g−1·h−1

and a selectivity 94% in ambient conditions, utilizing visible light [205]. On one hand, two
metal sites with different electronegativities can modulate the activity of CH4 activation and
inhibit the overoxidation of CH3OH. (Table 4, #7) [170]. The ZnO/Fe2O3 porous nanosheets
efficiently performed CH4 hydroxylation and suppressed CH3OH overoxidation through
strengthening its O−H bond. The experimental results and DFT calculations confirmed
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that the ZnO/Fe2O3 heterojunction results in a higher charge accumulation at the Fe sites
through a charge transfer from the Zn sites, which favors the adsorption of CH4 molecules
and further helps to lower the rate-limiting barrier of CH3OH generation. On the other
hand, these Fe sites endow the O-H bond of CH3OH with a higher polarity through the
transferring of electrons to the O atoms, this inhibits the homolytic cleavage of the O-H
bond to generate highly reactive radicals [170]. Other examples of small molecule activation
may be found in Table 4.

7. Conclusions and Outlooks

Cavities and other holes are ubiquitous in the material word. Enzymes are natural
cavitins. They have evolved over millions of years to provide extremely powerful catalysts
toward a variety of reactions with excellent activities under mild conditions and exquisite
substrate specificity and product selectivity. Our fundamental understanding of enzy-
matic catalysis has inspired scientists to develop and explore smaller synthetic complexes
as enzyme mimics. Chemical cavitins have emerged due to the efforts of synthetic and
supramolecular chemists. They represent an emerging class of molecules and supramolecu-
lar ensembles with intrinsic porosity. In-depth studies of these biomimetic artificial systems
have provided important insights into natural enzymes [206]. However, there remains a
significant gap between the structural modeling and catalytic activity in these artificial
systems [112]. Due to advances in synthetic chemistry a huge diversity of cavitins inspired
by enzymes has appeared during the last decade [8]. The ease of their synthesis has already
provided us with a rich library of architectures. Their further functionalization to afford
multifunctional assemblies is the challenge ahead [207]. Though significant advances have
been achieved in recent years in cavitin chemistry [207], greater insights into the many
subtle factors affecting their shape and size as well as cavity effects on catalysis are still re-
quired [208]. Compared to natural self-assembly, chemical cavitins often lack complexity, a
feature highly desirable for enzyme mimics and advanced bioinspired catalysts [54,209,210].
Confined in a cavity, molecules can fundamentally change their chemical and physical
properties compared to those in bulk solution [211]. Computational methods, advanced
machine learning models, and direct and powerful techniques, such as in situ X-ray diffrac-
tion or single-crystal characterization, could be significant to better understanding cavity
effects [212]. As demonstrated in recent studies, operando XAFS and FTIR techniques have
been used as powerful tools for monitoring the evolution of the reactive centers at the
molecular level. Although tremendous attention has been devoted to the development of
single-atom catalysts [208], only a few reports are related to the construction of dinuclear
and multi-nuclear metal species in cavitins. The exciting results were achieved during the
last decade in the single-electron redox reactions [213]. At present, the greatest challenge to
multielectron and proton photochemical transformations has appeared [214]. M-cavitins
have opened up the possibility for chemistry to use the many principles developed in na-
ture during evolution, expanded the tools of organic chemistry and have proven extremely
important in fine organic synthesis and pharmaceutical chemistry, especially for enantios-
elective reactions. They not only improved the efficiency and selectivity of a number of
reactions, but also allowed them to change their direction to new products. M-cavitins
demonstrate high activities for energetically challenging reactions with the participation of
small gas molecules and high selectivity to valuable products [215]. Great achievements
have already been made in clean photocatalytic and electrochemical energy conversion
using affordable and inexhaustible clean materials, such as water and carbon dioxide,
which can produce valuable fuels and chemicals [216]. Using ubiquitous visible-light
irradiation to reduce CO2 to C-based products is an environmental and economic method
which transforms solar energy in the form of chemical bonds. Looking forward, innovation
efforts are still necessary to help solve the global energy crisis [217–219]. Achievements and
solutions to this problem will be connected primarily with the development of fundamental
scientific research in bioinspired catalysts [207]. These studies will require completely
new approaches for the design and synthesis of a more diverse library of M-cavitins with
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innovative structures, metal ion composition and functionality. Photo- and electrocatalysis
of other abundant resources, such as N2 and methane, are now coming increasingly into
focus. In particular, efforts to decipher the reaction mechanisms and extract fundamental
insights are necessary to develop economically competitive routes using the direct methane
oxidation to methanol [220]. The direct oxidation of methane in a laboratory setup with the
participation of M-cavitins using mild conditions is still a challenging problem [221]. There
is a huge gap between MMO and chemical catalysts based on M-cavitins, not only in activity
and selectivity but also in the mechanism of direct oxidation of methane to methanol [220].
Though there still remains a considerable gap between the academic research and industrial
applications [222], the numerous works covered in this review demonstrate a promising
foundation for the future.
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