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Abstract: This study aimed to investigate the performance of composite photocatalytic membranes
fabricated by incorporating multiple nanoparticles (TiO2, carbon nanotubes, BiVO4) into polyvinyli-
dene fluoride membrane material for real dairy wastewater treatment. The composite photocatalytic
membranes exhibited superior antifouling behavior, lower filtration resistance, better flux, and higher
flux recovery ratio than the pristine membrane. Salinity, pH, and lactose concentration are determi-
nant factors that affect filtration resistance and rejection performance during the ultrafiltration of dairy
wastewater. Generally, higher irreversible and total resistances and slightly lower chemical oxygen
demand (COD) rejections were found at higher salinity (expressed by electric conductivity values
of >4 mS/cm) than lower salinity (<4 mS/cm) levels. The presence of lactose in dairy wastewater
increased irreversible resistance and severely reduced COD rejection during ultrafiltration due to the
ability of lactose to pass through the membranes. It was ascertained that membranes require further
treatment after filtrating such wastewater. Lower resistances and slightly better COD rejections were
observed at pH 7.5 and pH 9.5 compared to those observed at pH 4. Photocatalytic membranes
fouled during the ultrafiltration of real dairy wastewater were regenerated by visible light irradiation.
The membrane containing all constituents (i.e., TiO2, carbon nanotubes, and BiVO4) showed the best
regeneration performance, exceeding that of the pristine membrane by 30%.

Keywords: photocatalytic membranes; antifouling; PVDF; bismuth vanadate; carbon nanotubes;
visible light

1. Introduction

The dairy industry generates huge amounts of highly polluted wastewater globally.
Generally, it produces 1–10 L of effluent for every liter of milk processed. The effluent
contains numerous organic components (such as lactose, casein, fat, and whey protein),
inorganic salts, and nitrogenous compounds. In addition, dairy wastewater also contains
large amounts of detergents and sanitizers used for washing and a considerable amount of
nutrients. These wastewaters can be characterized by high biochemical oxygen demand
(BOD) and chemical oxygen demand (COD) [1,2].

The discharge of untreated or partially treated dairy wastewater results in serious
environmental problems. For example, eutrophication, occurring as a result of high nutrient
content, promotes the growth of algae and bacteria, which depletes oxygen in the aquatic
environment. This can result in the gradual loss of aquatic life. Hence, it is essential to treat
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such effluents before they are discharged into water bodies. Dairy wastewater is generally
treated by physico-chemical and biological methods [1–3]. However, these methods have
their drawbacks, including high costs, the need to use chemicals, inefficient removal of
pollutants, high energy requirement, and various operational difficulties [1,3].

Recently, membrane technologies have become increasingly prominent in wastewater
remediation, offering numerous benefits such as the efficient removal of pollutants, envi-
ronmental friendliness, cost efficiency, clean and easy operation, flexibility during system
design, and compact equipments [4]. Among membrane processes, ultrafiltration (UF) is
widely used for the dairy industry due to its good price and performance [1]. Polyvinyli-
dene fluoride (PVDF) is widely used as a membrane material because of its high mechanical
strength, thermal stability, and chemical resistance [5,6]. It is soluble in organic solvents
and can be used to fabricate porous membranes [7].

Membrane fouling restricts the application of membranes by increasing operating costs
and decreasing their lifetime [1]. Many strategies have been developed to prevent fouling,
such as optimizing operational conditions [8], functionalization with polymers [9,10], and
incorporating nanoparticles [11] and catalysts [8,12–16]. Recently, several catalytic poly-
meric membranes have been reported as possessing antifouling [12,13] and self-cleaning
properties [12,17] and the ability to degrade pollutants [17,18]. Such benefits can be real-
ized by combining filtration and advanced oxidation processes (AOP). During the latter,
reactive oxygen species are generated, such as hydroxyl radicals (•OH), to degrade organic
pollutants into inorganic molecules. These species can be generated through Fenton-type
processes or photocatalysis. Fenton processes include the catalytic decomposition of an
oxidant such as hydrogen peroxide (H2O2) by a ferrous (Fe2+) or ferric (Fe3+) salt in an
acidic medium (pH~3) to form •OH radicals without the application of external energy [19].
Photocatalysis is a process of generating •OH radicals and other reactive oxygen species uti-
lizing light energy and semiconductors such as ZnO, TiO2, WO3, V2O5, ZrO2, or Fe2O3 [19].
Photocatalysis has been widely studied for membrane cleaning to avoid the excessive use
of chemicals and harness the environmentally friendly solar energy [13].

Nowadays, TiO2-based photocatalytic membranes are widely developed and investi-
gated [13]. However, the relatively high e−/h+ recombination rate and low light-utilization
rate of TiO2 restricts their practical application. Numerous attempts have been made to
dope TiO2-based semiconductors to address the problems described above. These attempts
include doping with various metals such as Ag [20,21], Au, Pt [20], and zirconia (ZrO2) [12],
as well as non-metals such as graphene [22] and GO [1]. Carbon nanotubes (CNTs) have
also received considerable attention due to their outstanding properties, such as high stiff-
ness, flexibility, thermal and electrical conductivities, and large specific surface area. They
are broadly used as electron acceptors to reduce the recombination rate of photogenerated
charge carriers [23,24]. As TiO2 has a relatively wide band gap of ~3.15 eV, it can only be
efficiently activated under UV light (λ < 390 nm), while visible light is not utilized [25,26].
To overcome this problem, TiO2 can be combined with semiconductors having narrower
band gaps (such as BiVO4) [27,28], resulting in efficient visible light absorption. Another
plausible strategy is to modify TiO2-containing photocatalysts with good electron acceptors
such as CNTs, which may result in more effective visible light activation [29].

In this work, PVDF-based UF membranes were modified with TiO2, CNT, and BiVO4
nanoparticles according to our previous work [29] via the phase inversion method and
applied for synthetic and real dairy wastewater treatment.

2. Results
2.1. Zeta Potential of Prepared Membranes

Zeta potential analysis was performed based on the linear dependence between
the streaming potential and pressure gradient. Zeta potentials were calculated using
Equation (1). Figure 1a–c illustrates the zeta potentials of unused membranes as a function
of pH. The zeta potentials of all membranes are negative at neutral pH. Both modified
membranes (Figure 1b,c) had more negative charges than the pristine membrane. This
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result is significant considering the pH of dairy wastewater, which is within the range
of 7.2–8.8 [30,31]. At these operating pHs, membranes repel negatively charged feed
constituents more strongly than the pristine membranes; thus, milk proteins (with an
isoelectric point around pH 4.7) are negatively charged in this pH range. This has a
considerable contribution to reducing the fouling of membranes.
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Figure 1. Zeta potentials of unused PVDF, blended PVDF-TiO2/BiVO4 (50–50%) composite (PTB50),
and blended PVDF-TiO2/CNT/BiVO4 (48–2–50%) composite (PTCB50) membranes.

2.2. Application of PTCB Membranes for Synthetic Dairy Wastewater Treatment

The experiment aimed to investigate the effect of pH, salinity, and lactose content
on the filtration performance of PVDF-, B-PTB50-, and B-PTCB50-blended membranes
during the filtration of Bovine serum albumin (BSA) containing synthetic dairy wastewa-
ter (SW-BSA).

2.2.1. Effects of Salinity on Fouling and Retention

The effect of salinity on membrane fouling and rejection is shown in Figure 2. The
irreversible and total resistances of the modified membranes (B-PTB50 and B-PTCB50) at
all salinity levels were lower than those of the pristine PVDF membrane (Figure 2a). This
is important from a fouling mitigation perspective. The COD and turbidity rejections of
pristine PVDF, B-PTB50, and B-PTCB50 membranes were above 91% at all salinity levels
(Figure 2b); however, these membranes show slightly lower COD rejection at the highest
salinity level (EC > 4) than at the medium and lowest salinity levels. This could be due to the
shielding effect of saline ions. The rejection for turbidity was above 98% for all membranes.



Catalysts 2023, 13, 315 4 of 13
Catalysts 2023, 13, x FOR PEER REVIEW 4 of 14 
 

 

 
Figure 2. Effect of salinity on membrane fouling during synthetic dairy wastewater membrane fil-
tration expressed by filtration resistances (where RM is membrane resistance, Rirr is irreversible 
resistance, Rrev is reversible resistance, and RT is total resistance) obtained from Equations (Section 
3.6.2) (a) or COD and turbidity rejections (b). 

2.2.2. Effects of Lactose on Fouling and Retention 
The effects of lactose on membrane fouling and rejection were investigated in the 

next series of experiments. A lactose level of 0.5 g/L increased the irreversible and total 
resistances of all membranes, whereas at 1 g/L, the total resistances decreased (Figure 3a). 
As expected, when the synthetic dairy wastewater contained 1 g/L lactose, the COD rejec-
tion of all membranes was reduced to about 50% (Figure 3b). This is because lactose could 
easily pass through the membranes during filtration. Moreover, in all cases, modifying 
the membranes resulted in a better performance; the fouling resistances decreased. This 
means that the blended membranes had considerable antifouling properties even in the 
presence of lactose.  

 

Figure 2. Effect of salinity on membrane fouling during synthetic dairy wastewater membrane
filtration expressed by filtration resistances (where RM is membrane resistance, Rirr is irreversible re-
sistance, Rrev is reversible resistance, and RT is total resistance) obtained from Equations (Section 3.6.2)
(a) or COD and turbidity rejections (b).

2.2.2. Effects of Lactose on Fouling and Retention

The effects of lactose on membrane fouling and rejection were investigated in the next
series of experiments. A lactose level of 0.5 g/L increased the irreversible and total resis-
tances of all membranes, whereas at 1 g/L, the total resistances decreased (Figure 3a). As
expected, when the synthetic dairy wastewater contained 1 g/L lactose, the COD rejection
of all membranes was reduced to about 50% (Figure 3b). This is because lactose could
easily pass through the membranes during filtration. Moreover, in all cases, modifying the
membranes resulted in a better performance; the fouling resistances decreased. This means
that the blended membranes had considerable antifouling properties even in the presence
of lactose.

Catalysts 2023, 13, x FOR PEER REVIEW 4 of 14 
 

 

 
Figure 2. Effect of salinity on membrane fouling during synthetic dairy wastewater membrane fil-
tration expressed by filtration resistances (where RM is membrane resistance, Rirr is irreversible 
resistance, Rrev is reversible resistance, and RT is total resistance) obtained from Equations (Section 
3.6.2) (a) or COD and turbidity rejections (b). 

2.2.2. Effects of Lactose on Fouling and Retention 
The effects of lactose on membrane fouling and rejection were investigated in the 

next series of experiments. A lactose level of 0.5 g/L increased the irreversible and total 
resistances of all membranes, whereas at 1 g/L, the total resistances decreased (Figure 3a). 
As expected, when the synthetic dairy wastewater contained 1 g/L lactose, the COD rejec-
tion of all membranes was reduced to about 50% (Figure 3b). This is because lactose could 
easily pass through the membranes during filtration. Moreover, in all cases, modifying 
the membranes resulted in a better performance; the fouling resistances decreased. This 
means that the blended membranes had considerable antifouling properties even in the 
presence of lactose.  

 
Figure 3. Effect of lactose on membrane fouling during the membrane filtration of BSA and lactose-
containing synthetic dairy wastewater (SW-BSA-L) (a) and COD and turbidity rejections (b).

2.2.3. Effects of pH on Fouling and Rejection

Three different pH values (4, 7.5, and 9.5) were selected to investigate the effect of
pH on fouling and rejection (Figure 4). Lower resistances were observed for B-PTB50 and
B-PTCB50 at pH 7.5 and pH 9.5, respectively (Figure 4a), compared to the unmodified
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PVDF membrane. This is due to the strong repulsion between the negatively charged
surface of the membranes and the negatively charged protein (BSA, with an isoelectric
point around pH 4.7). At the lower pH (pH 4), higher resistances were observed due to
the attraction (van der Waals) forces between the nearly isoelectric membranes (pristine
PVDF) and BSA. It is worth noting that irreversible fouling is the parameter that was
most efficiently reduced by the membrane modification, which resulted in more negative
membrane surfaces. Figure 4b shows the effect of pH on COD and turbidity rejections. It
was found that the pH only slightly affected COD rejection, while it did not affect turbidity
rejection. Turbidity rejection of all membranes was above 98%, while the COD rejection
was above 90%.
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2.3. Application of PTCB Membranes for Real Dairy Wastewater Treatment

This experiment aimed to evaluate the applicability of PVDF-, PTB50-, and PTCB50-
blended membranes for real dairy wastewater treatment. The filtration and regeneration
performance of PVDF-, B-PTB50-, and B-PTCB50-blended membranes were investigated at
pH 7.09.

2.3.1. Filtration Resistances

Filtration resistances of PVDF, B-PTB50, and B-PTCB50 membranes during real dairy
wastewater filtration are shown in Figure 5. Higher resistances were observed for unfiltered
wastewater (Figure 5a) than for pre-filtered wastewater (Figure 5b). These results indicate
the need for pre-filtration during real dairy wastewater treatment by membranes. However,
in both cases, the total and irreversible resistances of PVDF membranes were higher than
those of the improved (B-PTB50 and B-PTCB50) membranes.

2.3.2. Rejection

The rejection performance of PVDF, B-PTB50, and B-PTCB50 membranes during real
dairy wastewater filtration is shown in Figure 6. During the UF of unfiltered and pre-
filtered real dairy wastewater, the highest and the lowest COD rejections were 60% and
30% for B-PTCB50 (Figure 6a) and pristine PVDF (Figure 6b), respectively. Almost 100%
turbidity rejection was observed in all membranes for unfiltered real dairy wastewater
(Figure 6a). The lower rejection performances of the membranes were due to the ability of
lactose to pass through the membranes (Figure 6b) which require further treatment.
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2.3.3. Membrane Regeneration

The results of the regeneration of fouled PVDF, B-PTB50, and B-PTCB50 membranes
during real dairy wastewater filtration are shown in Figure 7. The regeneration that could
be obtained for the modified membranes under 3 h of visible light exposure during the
filtration of pre-filtered real dairy wastewater (Figure 7b) was twice/half of what could
be achieved during the filtration of unfiltered real dairy wastewater (Figure 7a). Fouled
CNT/BiVO4-containing membranes exhibited a better flux restoration after flushing with
water than BiVO4-containing membranes (Figure 7b). Moreover, the incorporation of
2% CNTs resulted in a slightly better regeneration performance, probably due to their
ability to suppress electron recombination (Figure 7b).
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3. Materials and Methods
3.1. Wastewater Collection and Preparation

Membrane filtration experiments were carried out using synthetic and real dairy
wastewater. The synthetic dairy wastewater was prepared in our laboratory, while the real
dairy wastewater was collected from a nearby milk-processing business.

3.2. Synthetic Dairy Wastewater

Synthetic dairy wastewater was prepared according to the publication of Muniz et al. [3].
It contained bovine serum albumin (BSA) (VWR International KFt, Debrecen, Hungary)
and other chemical compounds (synthetic waste, SW) and was labeled as SW-BSA (Table 1)
(purchased from VWR International, Debrecen, Hungary).Various concentrations of lactose
were added (0, 0.5, and 1 g/L) to the synthetic dairy wastewater to investigate their effect.
The SW-BSA samples containing lactose were labeled as SW-BSA-L. The effect of pH on the
filtration performance of membranes was investigated by adjusting the pH of the synthetic
dairy wastewater with sulfuric acid (1 M) and Na2HPO4 (0.1 M).

Table 1. Composition of synthetic dairy wastewater (SW-BSA).

Number Chemicals Concentration in g/L

1 BSA 1
2 Ammonium chloride (NH4Cl) 0.5833
3 Sodium dihydrogen phosphate (NaH2PO4) 0.9
4 Sodium bicarbonate (NaHCO3) 1.560
5 Magnesium sulfate heptahydrate (MgSO4 × H2O) 0.6
6 Ferrous sulfate heptahydrate (Fe(SO4) × 7H2O) 0.024
7 Manganese sulfate monohydrate (MnSO4 × H2O) 0.024
8 Calcium chloride (CaCl2 without water) 0.036

The characteristics of synthetic dairy wastewater without lactose and with lactose are
presented in Tables 2 and 3, respectively. The absorbance of the model protein solution
was measured at a wavelength of 280 nm with a UV–visible spectrophotometer (Hitachi
Co., U-2000, Chiyoda City, Japan). EC (electrical conductivity), salinity, and total dissolved
solids (TDS) were analyzed with a multi-parameter analyzer (Consort BVBA, Turnhout,
Belgium). Turbidity and pH values were measured with a nephelometer (Hach 2100N) and
a pH meter (Consort), respectively. Chemical oxygen demand (COD) was analyzed by the
potassium dichromate oxidation method. For this purpose, 2 mL of samples was added to
test tubes (0–1500 mg/L; (Merck KGaA, Darmstadt, Germany)) and digested at 150 ◦C for
2 h in a digester (Lovibond ET108; Tintometer, Dortmund, Germany). Last, the values were
obtained using a COD photometer (Lovibond PC-CheckIt; Tintometer, Germany).

Table 2. Characteristics of synthetic dairy wastewater (SW-BSA) with various salinity levels.

Level of Salinity COD Turbidity EC (mS) SAL TDS (g/L) pH

High salinity
(EC > 4) 1154 46.67 4.14 2.2 2.165 7.5

Medium salinity
(2 < EC < 4) 1148 21.83 2.33 1.1 1.25 7.5

Low salinity
(EC < 2) 1155 8.16 1.59 0.8 0.85 7.5

Table 3. Characteristics of SW-BSA and SW-BSA-L.

Level of Lactose (g/L) COD Turbidity EC (mS) SAL TDS (g/L) pH

0 1154 46.67 4.14 2.2 2.165 7.5
0.5 1653 158.67 3.83 2.1 2.07 7.88
1 2316 188.33 3.80 2.1 2.23 7.81
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3.3. Real Dairy Wastewater

Real dairy wastewater was collected from a milk-processing business (Sole-Mizo,
Szeged, Hungary) and kept at 0 ◦C. The Ca, CaCO3, NH4

+, NH3, total N, total P, and
PO4

3– contents were analyzed by spectrophotometry (Spectroquant Nova 60; Merck KGaA,
Darmstadt, Germany). Biological oxygen demand (BOD) was analyzed with a Lovibond
BOD device (Lovibond Oxidirect; Tintometer, Dortmund, Germany). All parameters were
expressed as the average of three measurements. The characteristics of the dairy wastewater
are shown in Table 4.

Table 4. Physico-chemical characteristics of real industrial dairy wastewater.

Parameter Average SD

pH 7.09 0.02
Color milky white

EC (mS) 2.1 0.01
TDS (g/L) 1.11 0.01

BOD (mg/L) 2181 70.71
COD (mg/L) 3770 20.00

Ca (mg/L) 159.67 4.04
CaO (mg/L) 231 1.00

CaCO3 (mg/L) 412.33 2.52
NH4 (mg/L) 56.87 0.31

NH4N (mg/L) 44.15 0.39
NH3 (mg/L) 53.31 0.38
NO3 (mg/L) 10.05 0.83

NO2N (mg/L) 2.2 0.20
TOTAL N (mg/L) 74.33 1.15

PO4
3– (mg/L) 1178.33 3.51

PO4-P (mg/L) 40.43 2.60
P2P5 (mg/L) 89.61 1.65

TOTAL P (mg/L) 39.10 1.68

3.4. Membrane Preparation

In this study, the phase-inversion method was used to prepare both pristine and im-
proved UF PVDF membranes [29,32]. The polymer-to-solvent ratio during the preparation
of UF PVDF membranes was 17.5% to 82.5%. To prepare photocatalytic membranes, we
used a photocatalyst: polymer ratio of 1:99. In the TiO2-BiVO4-based PVDF membrane
(B-PTB50), each photocatalyst accounts for 50% of the total photocatalyst amount in the
polymer. When this membrane was further modified with CNTs (B-PTCB50), the amounts
of TiO2, CNT, and BiVO4 used were 48%, 2%, and 50% of the total photocatalyst amount
in the polymer, respectively. Before membrane preparation, the nanoparticles and PVDF
powder were dried in an oven at 80 ◦C for 4 h. The dried nanoparticles were dissolved
in an N-Methyl-2 pyrrolidone (NMP) solution and ultrasonicated for 1 min. Then, the
powder was added to the solution under continuous magnetic stirring at 50 ◦C for 12 h.
Afterward, the solution was kept in the dark without stirring for another 12 h to remove air
bubbles. For the same purpose, the casting dope solutions were ultrasonicated for 30 min.
Figure 8 shows the scheme of membrane preparation using the phase-inversion method. In
this method, the solution poured on the glass plate was cast by a casting blade (400 µm
thickness) and kept at rest for 30 s for skin layer formation. Then, the glass plates containing
the casted solution were put into a bath containing a 3 g/L surfactant solution (sodium
dodecyl sulfate) at 15 ◦C for 3 h. Last, the system was stored in distilled water overnight.
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3.5. Membrane Characterization
Zeta Potential Analysis

Membranes were already characterized in our earlier work (Sisay et al., 2022). Zeta
potentials of membranes were calculated using the Helmholtz-Smoluchowski equation
(Equation (1)) [33]:

ζ =
∆E
∆P

· η

εrel ε0
· KB (1)

where ζ is the apparent zeta potential; ∆E/∆P is the streaming potential developed as
a result of an applied pressure gradient; η and εrel are the dynamic viscosity and dielec-
tric coefficient of water, respectively; ε0 is the permittivity of vacuum; KB is the electric
conductivity of the aqueous solution.

3.6. Membrane Filtration Experiments
3.6.1. Water Flux and Contaminant Rejection Performance

The filtration performance of the membranes was evaluated using synthetic or real
dairy wastewater. Figure 9 presents a dead-end filtration setup involving a Millipore
dead-end cell (Millipore, XFUF04701,Merck KGaA, Darmstadt, Germany). Prior to the
filtration experiments (compaction), distilled water was allowed to pass through a 0.0035 m2

membrane for 30 min. The volume reduction ratio (VRR) of each filtration experiment
was fixed to be five, and each experiment was performed at 0.1 MPa and 350 rpm with a
built-in magnetic stirrer. The flux and rejection performance of the prepared membranes
was calculated based on Equations (2) and (4):

J =
W
A·t (2)

where J refers to the flux (kg/m2 h); W refers to the weight of permeate (kg); A means the
area of effective membrane (m2); and τ means the time (s).

The VRR was obtained by Equation (3):

VRR =
V0

V0 − Vf
(3)

where V0 stands for the initial volume, while Vf stands for the final volume.
The rejection of contaminants was calculated by Equation (4):

Rejection (%) =
c1 − c2

c1
× 100% (4)

where c1 and c2 are the concentrations of contaminants in the feed and permeate, respectively.
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3.6.2. Fouling Models

Information about membrane fouling was obtained from filtration resistances which
were calculated using the resistances-in-series model [34]. This model estimates individual
and overall resistances (Table 5).

Table 5. Formulas for filtration resistances.

Resistances (m−1) Formula

Membrane resistance RM = ∆P
J0×ηw

Rirrev = ∆P
JW×ηw − RM

Reversible resistance Rrev = ∆P
Jw×ηww − RF − RM

Overall resistance RT = RM + Rirr + Rrev

In Equations (Table 5), ∆p is the change of pressure (Pa), J0 is initial water flux
(Lm−2 h−1), Jw is the flux of the fouled membrane, JW is the water flux after the fouled
membrane is rinsed (L/m2 h), ηW is the viscosity of water (Pas), and ηww is the viscosity
of wastewater.

Antifouling performances of the prepared membranes were examined based on the
same fouling experiment using the flux recovery ratio (FRR) and obtained by the following
equation (Equation (5)):

FRR =
Jc
J0
·100 (5)

where J0 is initial water flux (Lm−2 h−1) and Jc is the water flux of the used membrane after
cleaning (Lm−2 h−1).

Membrane regeneration efficiency was investigated by performing flux recovery
experiments in the photocatalytic membrane reactors. For this purpose, the water fluxes of
the fouled and flushed (with distilled water) membranes were measured after the filtration
of dairy wastewater. The regeneration experiments were performed using the filtration cell
as a photoreactor. This cylindric reactor had a diameter of 7.45 cm and was equipped with
a 1 m long LED strip (5050 SMD, “cool white,” 600 lm/m light intensity). The membrane
was placed at the bottom of the cylinder. The fluxes were measured after 3 h and 21 h of
visible light exposure.
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4. Conclusions

Industrial dairy wastewater treatment using composite photocatalytic PVDF mem-
branes offers promising solutions for many environmental concerns, specifically water
scarcity and pollution. These membranes also provide a golden opportunity to use visible
light for membrane cleaning, reducing the use of environmentally unfriendly chemicals
and costly UV light.

This study aimed to fabricate composite photocatalytic membranes by incorporating
multiple nanoparticles (TiO2, CNT, BiVO4) into PVDF membranes and investigate their
performance for real dairy wastewater treatment. The membranes were prepared by the
phase-inversion method.

The composite photocatalytic membranes exhibited superior antifouling behavior,
lower filtration resistance, better flux, and higher FRR than the pristine membrane. Salinity,
pH, and lactose concentration are determinant factors that affect filtration resistance and
rejection performance. Generally, higher irreversible and total resistances and slightly lower
COD rejection were observed at a higher EC level (>4). Irreversible and total resistances of
the modified (B-PTB50 and B-PTCB50) membranes at various salinity levels were lower
than those of the pristine PVDF membrane, proving that the modification resulted in better
fouling-mitigation properties.

The presence of lactose increased the irreversible resistance and severely reduced
COD rejection.

Negatively charged membranes showed lower resistances and slightly better COD
rejection at pH 7.5 and pH 9.5 as compared to pH 4. The lower resistance at higher pH was
due to the strong repulsion between the negatively charged surface of the membranes and
the negative charge of the protein.

Both B-PTB50 and B-PTCB50 showed lower total resistance and better membrane
cleaning (FRR) properties during the UF of real dairy wastewater than the pristine mem-
brane. However, all the membranes exhibited lower COD rejection due to the ability of
lactose to pass through the membranes, which consequently require further treatment.

Fouled TiO2-CNT-BiVO4-PVDF membrane showed the best regeneration performance,
improving that of the pristine membrane by 30%.
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