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Abstract: In this work, ZnO, SnO2, and their mixed ZnO-SnO2(25%) nanoparticles (NPs) were suc-
cessfully green synthesized in a straightforward manner with a low-cost and environmentally friendly
approach using a banana peel extract. The synthesized nanophotocatalysts were characterized using
various techniques including FTIR, XRD, UV-Vis, TEM, SEM, BET, PL, EDS, and TGA. The character-
ization results showed that the ZnO and SnO2 powders were crystallized in a hexagonal wurtzite
and rutile-type tetragonal structures, respectively, and their mixed ZnO-SnO2(25%) NPs contain
both structures. Also, it was found that the addition of SnO2 into the ZnO structure reduces the PL
intensity of the latter, confirming better separation of electron/hole pairs. The average particle size
of a ZnO-SnO2(25%) NP photocatalyst was found to be 7.23 nm. The cationic dyes methylene blue
(MB) and crystal violet (CV) as well as the anionic dyes naphthol blue black (NBB) and Coomassie
brilliant blue R 250 (CBB) were employed as model dyes to assess the dye removal efficiencies
of the biosynthesized nanophotocatalysts under sunlight. In all cases, the mixed ZnO-SnO2(25%)
NP photocatalyst showed much better photocatalytic activity than individual photocatalysts. The
degradation percent of dyes using ZnO-SnO2(25%) NPs ranged between 92.2% and 98%. The efficient
photocatalytic activity of ZnO-SnO2(25%) NPs is attributed to the effective charge separation and
reduced electron/hole recombination rate. The kinetic study results conformed to a pseudo first-
order reaction rationalized in terms of the Langmuir–Hinshelwood model. Furthermore, the results
showed that the ZnO-SnO2(25%) NP photocatalyst is highly stable and could be recycled several
times without a noticeable reduction in its catalytic activity towards dye removal.

Keywords: zinc oxide; tin oxide; mixed metal oxides; photodegradation; dyes; green synthesis;
banana peel; wastewater treatment

1. Introduction

From ancient times to the nineteenth century, natural dyes extracted from natural
resources such as flowers, vegetables, woods, roots, insect secretions, and minerals were
the only dyes used by people for coloring textiles [1,2]. However, the increasing demands
for and the excessive costs of natural dye extraction engendered the discovery of synthetic
dyes that are manufactured from petrochemicals [3]. Synthetic dyes are easy to synthesize,
soluble in water, act fast in fabric coloration, and have a wide range of color options.
Therefore, textile companies prefer synthetic dyes over natural dyes [4]. In addition to
their use in textiles, synthetic dyes are used in large quantities in various industries. For
example, they are used in leather, paints, printing, paper, tannery, rubber, cosmetics,
plastics, pharmaceutical products, and the food industry [5]. However, the continuous
discharge of synthetic dyes originating from the textile industry and other industrial
activities contributes significantly to water pollution. The adverse effect of the discharge of
untreated aqueous solutions of dyes not only affects water ecosystems but also represents a
serious threat to human, plant, and animal health [6,7]. The various synthetic organic dyes
are main water toxins, and they cause environmental issues with extensive production due
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to their poor biodegradability, aromaticity, chemical stability, toxicity, and carcinogenic
nature [8]. Even at very low concentrations (<1 ppm), dyes are clearly visible in water and
severely deteriorate aquatic environments [9]. Hence, dye removal from wastewater before
it is discharged back into the environment is a subject of great importance [10].

Despite the extensive efforts that have been made in the successful removal of dyes
from wastewater, designing an efficient method for dye removal is still an area requir-
ing a great deal of research [11]. To protect the environment from pollutants, various
strategies have been suggested and adopted by many studies to eliminate or reduce the
amount of dyes in wastewaters to an acceptable concentration before draining [12]. The
methods used for the remediation of dye-containing wastewater are grouped into three cat-
egories, namely the physical, chemical, and biological methods [13]. The physical methods
include adsorption, coagulation–flocculation, reverse osmosis, and membrane filtration
methods [14]. The chemical methods include advanced oxidation processes (AOPs), elec-
trochemical destruction, Fenton reactions, oxidation, ozonation, and photochemical and
ultraviolet irradiation [15]. The biological methods include biosorption and enzymatic
degradation [16]. Despite the intensive use of these conventional methods as solutions
to the problem, none of these methods are adequate for the degradation of all dyes from
water. This is due to each approach having its own set of limitations. Such limitations
include a high cost, an unsatisfactory efficiency, difficulty in recycling, a potential impact
on health, and the production of secondary pollutants [17]. However, in particular, pho-
tocatalysts offered a promising approach as one of the most effective techniques for the
treatment of dye-containing wastewaters owing to their magnificent photocatalytic removal
efficiency, low cost, rapid oxidation process, and non-toxicity [18]. In the past few years,
metal oxide semiconductor (MOS) nanoparticles (NPs) such as ZnO, TiO2, CuO, CdO, NiO,
ZrO2, etc., have received a great deal of attention due to their promising performances
in destroying organic dyes in wastewaters with minimal side pollution [19,20]. However,
the intrinsic properties of a heterogenous photocatalyst such as its light absorption range,
redox potential, charge separation lifetime, photosensitivity, and stability have significantly
influenced its photodegradation efficiency [21]. Therefore, metal oxides exhibit different
catalytic activities toward the degradation of dyes under identical reaction conditions due
to the differences in their inherent properties. For example, ZnO showed greater activity
for the degradation of several organic dyes in water than TiO2 due to the reason that ZnO
absorbs a large fraction of the solar spectrum [21]. The photocatalytic reaction using a
heterogeneous nanophotocatalyst takes place when the photon energy from the light source
is equal to or higher than that of the band gap of the semiconductor. An advanced oxidation
process (AOP) starts when light of sufficient energy reaches the semiconductor and the
electrons residing in the valence band (VB) of atoms of the nanophotocatalyst are excited to
the conduction band (CB). Consequently, the reactive radicals of (OH•−) and superoxide
anions (O•−2 ) are generated when H2O molecules (and/or OH− ions) and the dissolved O2
molecules in the dye solution react with the hole in the VB and with the electrons in the CB
of the semiconductor, respectively. The generated active radicals of (OH•− and O•−2

)
react

with dye molecules, which will be then quickly and efficiently fragmented and converted
into CO2 and H2O [22,23].

Over the years, metal oxides such as SnO2, TiO2, and ZnO have been extensively
applied for the photocatalytic decomposition of organic pollutants in wastewater. The
removal effectiveness of organic pollutants in the presence of a tin semiconductor is not
very promising, despite its many advantages, which limits its employment in comparison to
other semiconductors, whereas TiO2 and ZnO semiconductor nanoparticles are frequently
employed in photocatalytic processes to eliminate organic contaminates. When exposed
to radiation, TiO2 and ZnO function as electron acceptors/donors [24]. ZnO NPs have
become one of the most recognized materials for photodegradation of dye pollutants in
wastewaters due to their environmental compatibility, low cost, strong oxidizing power,
and suitable band gap, and non-toxic nature [24,25]. Unfortunately, the photocatalytic
activities of single-component materials such as ZnO and TiO2 are weakened by their
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high electron–hole pair recombination rate, wide band gap, and the need for UV light for
excitation [25,26]. However, it is known that only 5% of UV radiation is available in the
total solar spectrum while the remaining 95% falls in the visible region [22]. Therefore, the
photocatalytic activities of such systems are enhanced by various approaches such as metal
ion doping, nonmetallic element doping, sensitization with organic dyes, and coupling
with semiconducting metal oxides [27].

This work aims to synthesize ZnO NPs, SnO2 NPs, and their mixed ZnO-SnO2 NPs
(at a molar ratio of Zn:Sn equal to 0.75:0.25) through a green manner using the aqueous
banana peel extract (ABPE) as a medium of synthesis for wastewater treatment application.
The ABPE would be employed to serve as a capping agent as some studies revealed that
flavonoids in BPE are able to chelate metal ions with their carbonyl groups or π-electrons,
which stabilizes the nanoparticles and prevents further growth and agglomeration, which
leads to the formation of nanoparticles with a small average particle size [28]. The structures,
morphologies, optical properties, compositions, and thermal stabilities of the biosynthe-
sized nanophotocatalysts were investigated using FTIR, XRD, UV-Vis, BET, TEM, SEM,
PL, EDS, and TGA techniques. The photocatalytic efficiencies of the green synthesized
nanophotocatalysts toward photodegradation of organic dyes were examined. For this
purpose, the photodegradation efficiency of some model synthetic dyes containing the
cationic dyes methylene blue (MB) and crystal violet (CV) as well as the anionic dyes
naphthol blue black (NBB) and Coomassie brilliant blue R 250 (CBB) (Scheme 1) over the
green synthesized nanophotocatalysts under sunlight irradiation was investigated.
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2. Results and Discussion
2.1. Characterization of Nanophotocatalysts
2.1.1. FTIR Analysis

The composition of a banana peel extract (BPE) includes many carbohydrate com-
pounds such as cellulose, hemicellulose, lignin, as well as pectic polysaccharides (pectin)
and is also found to contain bioactive compounds such as flavonoids, tannins, alkaloids,
glycosides, anthocyanins, and phenols [29–31]. In the current study, the aqueous extract of
a banana peel includes only the water-soluble substances like pectin, tannins, glycosides,
and phenols. Hence, the mechanisms of nanophotocatalyst synthesis are expected to be
influenced by the presence of these components [32]. The FTIR spectra of BPE, ZnO NPs,
SnO2 NPs, and mixed ZnO-SnO2(25%) NPs are shown in Figure 1. Figure 1 (a) identifies
the main functional groups present in the extract. The broad peak observed in the region
between 3300 and 3500 cm−1 is associated with the stretching of O-H groups from pectin.
The absorption peak occurring at 2931 cm−1 is due to C-H vibration modes. The presence of
a high-intensity peak at 1597 cm−1 and 1384 cm−1 is attributed to the vibration of the ionic
COO− group of pectin. The peak at 1054 cm−1 is ascribed to the C-O-C glycosidic bond
vibration. The several peaks in the region between 569 cm−1 and 924 cm−1 are attributed
to the vibrations of carbohydrates [33,34]. The peaks of the FTIR spectrum of BPE are
suggestive that pectin is the main component in the extract [35].
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NPs, and (d) ZnO-SnO2(25%) NPs.

The intense peaks observed at ∼3420 cm−1 in all spectra (b–d) were assigned to the
O-H stretching bond vibrations, which indicates the presence of water adsorption on the
surface of ZnO NPs, SnO2 NPs, and ZnO-SnO2(25%) NPs [36]. In Figure 1 (b), the strong
peak observed at 429 cm−1 and the peak at 517 cm−1 correspond to the vibration of the
Zn-O bond [37,38]. In Figure 1 (c), the absorption peak at around 508 cm−1 and 641 cm−1 is
attributed to Sn-O stretching vibration and O-Sn-O bending vibration, respectively [39–41].
In Figure 1 (d), the characteristic peaks of ZnO NPs and SnO2 NPs are present. The existence
of these characteristic bands in FTIR spectra confirms the successful formation of ZnO NPs,
SnO2 NPs, as well as the ZnO-SnO2(25%) NPs [42,43].

2.1.2. XRD Analysis

The crystalline natures of biosynthesized ZnO NPs, SnO2 NPs, and ZnO-SnO2(25%)
NPs were analyzed via their XRD patterns.
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The XRD spectrum of ZnO NPs (Figure 2 (a)) exhibits distinct peaks at 2θ values of
31.68◦, 34.33◦, 36.16◦, 47.45◦, 56.53◦, 62.78◦, 66.32◦, 67.89◦, 69.02◦, 72.47◦, and 76.91◦, which
are assigned to the indices (100), (002), (101), (102), (110), (103), (200), (112), (201), (004),
and (202) crystal planes, respectively. They can be indexed as a hexagonal wurtzite crystal
structure by matching with the Joint Committee on Powder Diffraction Standard (JCPDS)
card number 01-080-0075 [44]. The XRD patterns of ZnO NPs agreed with previously
reported studies [45–48]. The XRD diffraction of SnO2 NPs is depicted in Figure 2 (b).
The distinct diffraction peaks at 2θ = 26.57◦, 33.87◦, 37.93◦, 51.80◦, 54.73◦, 57.90◦, 61.92◦,
64.77◦, 65.95◦, 71.32◦, and 78.74◦ correspond to the crystalline planes (110), (101), (200),
(211), (220), (002), (310), (112), (301), (202), and (321), respectively. These results are in good
agreement with that of pure SnO2 crystalline phases according to the JCPDS card number
01-077-0451; therefore, the SnO2 NPs have a rutile-type tetragonal crystal structure [49–52].
The presence of ZnO and SnO2 crystal phases in the XRD patterns of the ZnO-SnO2(25%)
nanocomposite shown in Figure 2 (c) is evidence of the coexistence of both hexagonal ZnO
and tetragonal SnO2 crystal structures in the composite. The XRD analysis revealed that all
of the characteristic peaks in these three spectra were of ZnO NPs and SnO2 NPs and no
other patterns of possible impurities were observed, which indicated that the samples are
of high purities. The sharp and narrow peaks in all spectra implied that the nanoparticles
have high crystallinity degrees. These XRD spectra indicated that the nanomaterials were
successfully green synthesized using ABPE as a medium of synthesis.

Catalysts 2023, 12, x FOR PEER REVIEW 5 of 21 
 

 

The XRD spectrum of ZnO NPs (Figure 2 (a)) exhibits distinct peaks at 2θ values of 
31.68°, 34.33°, 36.16°, 47.45°, 56.53°, 62.78°, 66.32°, 67.89°, 69.02°, 72.47°, and 76.91°, which 
are assigned to the indices (100), (002), (101), (102), (110), (103), (200), (112), (201), (004), 
and (202) crystal planes, respectively. They can be indexed as a hexagonal wurtzite crystal 
structure by matching with the Joint Committee on Powder Diffraction Standard (JCPDS) 
card number 01-080-0075 [44]. The XRD patterns of ZnO NPs agreed with previously re-
ported studies [45–48]. The XRD diffraction of SnO2 NPs is depicted in Figure 2 (b). The 
distinct diffraction peaks at 2θ = 26.57°, 33.87°, 37.93°, 51.80°, 54.73°, 57.90°, 61.92°, 64.77°, 
65.95°, 71.32°, and 78.74° correspond to the crystalline planes (110), (101), (200), (211), 
(220), (002), (310), (112), (301), (202), and (321), respectively. These results are in good 
agreement with that of pure SnO2 crystalline phases according to the JCPDS card number 
01-077-0451; therefore, the SnO2 NPs have a rutile-type tetragonal crystal structure [49–
52]. The presence of ZnO and SnO2 crystal phases in the XRD patterns of the ZnO-
SnO2(25%) nanocomposite shown in Figure 2 (c) is evidence of the coexistence of both 
hexagonal ZnO and tetragonal SnO2 crystal structures in the composite. The XRD analysis 
revealed that all of the characteristic peaks in these three spectra were of ZnO NPs and 
SnO2 NPs and no other patterns of possible impurities were observed, which indicated 
that the samples are of high purities. The sharp and narrow peaks in all spectra implied 
that the nanoparticles have high crystallinity degrees. These XRD spectra indicated that 
the nanomaterials were successfully green synthesized using ABPE as a medium of syn-
thesis.  

 
Figure 2. Diffractograms of the biosynthesized (a) ZnO NPs, (b) SnO2 NPs, and (c) ZnO-SnO2(25%) 
NPs. 

2.1.3. Optical Analysis—Band Gap Determination 
The optical band gap (Eg) is an essential characteristic of semiconductor materials 

that can be influenced by the material compositions and particle sizes. To confirm the for-
mation of ZnO NPs, SnO2 NPs, and ZnO-SnO2 NPs synthesized in the ABPE and to eval-
uate their band gap values (Eg), the optical properties of these three nanomaterials were 
analyzed through the UV–Vis spectroscopy technique at a wavelength ranging from 250 
to 800 nm. The obtained results of this analysis are displayed in Figure 3. The band gap 
energies of the nanomaterials were found by means of the Tauc equation: 

(αhν)1/n = A(hν − Eg) (1) 

where the symbols h, ν, α, and Eg represent Planck’s constant, frequency, absorption coef-
ficient, and band gap energy, respectively. The symbol A is the proportionality constant 

Figure 2. Diffractograms of the biosynthesized (a) ZnO NPs, (b) SnO2 NPs, and (c) ZnO-SnO2(25%) NPs.

2.1.3. Optical Analysis—Band Gap Determination

The optical band gap (Eg) is an essential characteristic of semiconductor materials that
can be influenced by the material compositions and particle sizes. To confirm the formation
of ZnO NPs, SnO2 NPs, and ZnO-SnO2 NPs synthesized in the ABPE and to evaluate their
band gap values (Eg), the optical properties of these three nanomaterials were analyzed
through the UV–Vis spectroscopy technique at a wavelength ranging from 250 to 800 nm.
The obtained results of this analysis are displayed in Figure 3. The band gap energies of the
nanomaterials were found by means of the Tauc equation:

(αhν)1/n = A(hν − Eg) (1)

where the symbols h, ν, α, and Eg represent Planck’s constant, frequency, absorption
coefficient, and band gap energy, respectively. The symbol A is the proportionality constant
and n denotes the type of electronic transition and it has the value of 1/2 for permitted
transition, which is the case for all of the NPs discussed in this study. By plotting the curve
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(αhν)2 versus energy, the band gap (Eg) values for all of the prepared nanomaterials were
readily determined by extrapolating the linear section of the curve (αhν)2 to the x-axis
(energy axis) as illustrated in Figure 3. The band gap (Eg) energies for ZnO NPs and SnO2
NPs were found to be 3.21 and 3.55 eV, respectively. The energy band gap energy (Eg)
of ZnO-SnO2(25%) NPs was found to be 3.18 eV. The obtained values of band gap (Eg)
energies are comparable to their reported values [53,54].
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2.1.4. Photoluminescence (PL) Measurements

The influence of the addition of SnO2 NPs into the lattice of ZnO NPs on the photolu-
minescence (PL) emission of the latter was investigated. The PL emission spectra of pure
ZnO NPs, pure SnO2 NPs, and ZnO-SnO2(25%) NPs were measured using ultraviolet light
with a wavelength of 330 nm as an excitation source. The PL spectra of ZnO NPs, SnO2
NPs, and ZnO-SnO2(25%) NPs are displayed in Figure 4.
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The distinctive peaks appearing around 396 nm are ascribed to the recombination of
an electron–hole pair in the metal vacancy [19,55]. By comparing the intensities of peaks



Catalysts 2023, 13, 1509 7 of 20

at 396 nm, it was found that the intensity of this peak in the spectrum of ZnO-SnO2(25%)
NPs is lower than that of pure ZnO NPs’ spectrum. The decrease in the peak intensity in
the ZnO-SnO2(25%) NPs implies that the inserted SnO2 NPs in the ZnO NPs’ lattice act as
an electron collector and decrease the recombination rate of the electron–hole pair in the
Zn vacancy.

2.1.5. Morphology Analysis

The particle sizes, shape, and morphology of the crystallites of the biosynthesized
ZnO-SnO2(25%) NPs were examined by transmission electron microscopy (TEM). The
TEM image and the corresponding particle size distributions of the ZnO-SnO2(25%) NPs
are given in Figure 5a,b. As observed in the TEM image, the ZnO-SnO2(25%) NPs are
composed of aggregated ZnO and SnO2 NPs and the shapes of ZnO NPs and SnO2 NPs are
almost spherical. The average particle size of the ZnO-SnO2(25%) NPs as estimated from
the TEM analysis is found to be 7.28 nm.
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The SEM image of ZnO–SnO2(25%) NPs deciphered that the nanocomposite is com-
posed of aggregates of particles. As shown in Figure 5c, the SEM image revealed the
presence of two morphologies. In a close inspection of the SEM image, one can observe
a large number of particles that appeared to seemingly be of a hexagonal shape, which
are ascribed to be the ZnO NPs and other particles of a sphere-like morphology, which
are thought to be the SnO2 NPs. The nanocrystallites of both phases are tightly bound
in nanoclusters.

2.1.6. BET/BJH Analyses

The BET/BJH analyses were carried out to study the textural properties of the
biosynthesized ZnO NPs, SnO2 NPs, and ZnO-SnO2(25%) NPs. The nitrogen adsorption–
desorption isotherms are shown in Figure 6. The results indicate that according to the
IUPAC classification of adsorption isotherms [56], the N2 isotherm exhibits a type IV
isotherm with a hysteresis loop of type H3 in the case of ZnO NPs and ZnO-SnO2(25%)
NPs. These isotherms indicate the mesoporous nature of the samples [57,58]. On the other
hand, the N2 isotherm of SnO2 NPs exhibits a type III isotherm and H3 hysteresis loop,
which indicates that the sample has a mesoporous texture [59,60]. The BET surface areas as
well as the average pore volumes and the average pore diameters for the three samples as
revealed by the BJH method are shown in Table 1.
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Figure 6. Nitrogen adsorption–desorption isotherms of the biosynthesized ZnO NPs, SnO2 NPs, and
ZnO-SnO2(25%) NPs.

Table 1. BET surface areas and the BJH porosities’ results of the biosynthesized ZnO NPs, SnO2 NPs,
and ZnO-SnO2(25%) NPs.

Nanophotocatalyst Total Surface
Area (m2/g)

Average Pore
Volume (cm3/g)

Average Pore
Diameter (nm)

ZnO 27.8 0.12 15.9
SnO2 13.3 0.07 23.2
ZnO-SnO2(25%) 28.2 0.15 19.7
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2.1.7. EDS Analysis

The elemental compositions of the biosynthesized ZnO NPs, SnO2 NPs, and ZnO-
SnO2(25%) NPs were investigated using the EDS method. The EDS spectra of the prepared
nanomaterials are presented in Figure 7. This analysis revealed the presence of zinc (Zn)
and oxygen (O) peaks in the EDS spectrum of ZnO NPs (Figure 7a), the presence of tin
(Sn) and oxygen (O) peaks in the EDS spectrum of SnO2 NPs (Figure 7b), and the presence
of zinc (Zn), tin (Sn), and oxygen (O) peaks in the EDS spectrum of ZnO-SnO2(25%)
NPs (Figure 7c). The absence of peaks from other elements in the EDS spectra indicates
the purity of samples. Moreover, the molar ratio of Zn:Sn in the ZnO-SnO2(25%) NPs
is calculated from the EDS spectrum and was found to be 0.76:0.24, demonstrating an
excellent agreement with the intended molar ratio, which is Zn:Sn = 0.75:0.
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2.1.8. TGA Analysis

The thermal stability of the biosynthesized ZnO NPs, SnO2 NPs, and ZnO-SnO2(25%)
NPs was assessed using the TGA technique and the results are shown in Figure 8. The TGA
thermograms show that ZnO NPs and ZnO-SnO2(25%) NPs have good thermal stabilities
up to 700 ◦C whereas SnO2 NPs are thermally stable up to 600 ◦C. The total weight loss as
temperature increased from room temperature to 700 ◦C is 2.1% and 4.9% for ZnO NPs and
ZnO-SnO2(25%) NPs, respectively. In the case of SnO2 NPs, there was a total weight loss of
3.9% as the temperature is changed from room temperature to 600 ◦C. As the temperature
exceeds 600 ◦C, a sudden reduction in the weight of SnO2 NPs is observed. In the case
of SnO2 NPs and ZnO-SnO2(25%) NP samples, there is a weight loss of about 1% below
125 ◦C, which is assigned to the removal of adsorbed water molecules from the surfaces of
biosynthesized nanomaterials.
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2.2. Photocatalytic Activities
2.2.1. Comparative Analysis

The photocatalytic activities of the biosynthesized ZnO NPs, SnO2 NPs, and
ZnO-SnO2(25%) NPs toward sunlight-assisted degradation of crystal violet (CV), Coomassie
brilliant blue R 250 (CBB), methylene blue (MB), and naphthol blue black (NBB) were eval-
uated. The performances of these nanophotocatalysts were compared by measuring the
degradation percent of CV, CBB, MB, and NBB when their catalyzed aqueous solutions are
subjected to sunlight for 60, 30, 45, and 20 min, respectively. The analyses were performed
by monitoring the reduction in the absorbance of dye aqueous solutions at λmax for each
dye. Equation (11) was used to evaluate photocatalytic activities of the nanophotocata-
lysts. The results of these analyses are shown in Figure 9 and given in Table 2. It was
found that the ZnO-SnO2(25%) NP photocatalysts showed higher photocatalytic activity
than that of the pure ZnO and SnO2 nanophotocatalysts for the degradation of all dyes
under sunlight. These findings revealed that the inadequate sunlight absorbance capacity
of the ZnO nanophotocatalyst is greatly enhanced by insertion of SnO2 NPs into ZnO
NPs’ lattice. Therefore, the heterojunction nanophotocatalyst ZnO-SnO2(25%) exhibited
higher photocatalytic activities for the removal of all dyes considered in this study under
sunlight radiation. The ZnO-SnO2(25%) NPs’ nanophotocatalyst achieves its superior
photocatalytic activities by means of decreasing or even suppressing the recombination
process of electron–hole pairs, which consequently elongates the lifetime of charge carriers,
allowing light absorption at higher wavelengths. This in turn led to the better perfor-
mance of the ZnO-SnO2(25%) nanophotocatalyst compared with the single-component
nanophotocatalysts (i.e., ZnO and SnO2).

Table 2. Performance of the biosynthesized ZnO NPs, SnO2 NPs, and ZnO-SnO2(25%) NPs toward
degradation of organic dyes.

Degradation (%)

Nanophotocatalyst CV
(in 60 min)

CBB
(in 30 min)

MB
(in 45 min)

NBB
(in 20 min)

ZnO-SnO2(25%) 94.1 92.2 98.0 93.8
ZnO 67.4 45.2 66.6 62.0
SnO2 36.0 7.6 17.8 9.5
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2.2.2. Effect of Irradiation Time

Figure 10 displays the effect of the contact time on the CV, CBB, MB, and NBB degra-
dation over ZnO-SnO2(25%) NPs’ photocatalyst. The results show that by increasing the
contact time of the catalyzed aqueous solutions of dyes with the direct sunlight, the degra-
dation extents of all dyes increase. These findings proved that the practically complete
decompositions of all dyes considered in this work are attained by using ZnO-SnO2(25%)
NPs as the photocatalyst. A degradation percent of 92.2% of CV, 94.1% of CBB, 98.0% of MB,
and 93.8% of NBB is achieved after 60, 30, 30, and 20 min of solar radiation, respectively.
The remarkable performance of ZnO-SnO2(25%) NPs is evidence of their efficiency as
potent photocatalysts for CV, CBB, MB, and NBB photodegradation.

2.2.3. Mechanism of Photocatalytic Degradation

The energy diagram shown in Figure 11 helps in understanding the outstanding
photocatalytic performance of ZnO-SnO2(25%) NPs toward dye photodegradation. The
position of the conduction band (CB) and valence band (VB) edges of ZnO and SnO2 versus
a normal hydrogen electrode was calculated using the following equations:

ECB = χ − Ee − 0.5Eg (2)

EVB = χ − Ee + 0.5Eg (3)
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where χ is the absolute electronegativity of the semiconductor, which is reported for ZnO
and SnO2 to be 5.79 eV and 6.25 eV, respectively; Ee is the energy of a free electron on the
hydrogen scale, which is equal to 4.5 eV, and Eg is the band gap of the semiconductor [61].
Using Equation (2), the EZnO

CB and ESnO2
CB were found to be−0.30 eV and 0.03 eV, respectively.

Likewise, by using Equation (3), it was found that the EZnO
VB and ESnO2

VB are 2.88 eV and
3.47 eV, respectively. Since the conduction band of ZnO is more negative than that of SnO2
and the valence band of ZnO is less positive than that of SnO2, ZnO-SnO2(25%) forms
a heterostructure with a type II band alignment [62]. According to type II alignment in
heterojunctions, the electrons and holes are separated in two semiconductors, leading to a
better separation of charge carriers.
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Therefore, the mechanism of action in the ZnO-SnO2(25%) heterostructure takes place
in the following steps [63]:

(i) The electron transfer from ZnO to SnO2 and the hole traders from SnO2 to ZnO until
a stable equilibrium state is achieved.

ZnO-SnO2h(25%) + hν −→ ZnO
(
h+

VB
)
+ SnO2

(
e−CB

)
(4)

(ii) The hole at VB of ZnO2 is trapped by physically adsorbed water molecules or hydroxyl
groups (OH−) at the ZnO surface, and hydroxyl radicals (OH•−) are generated,
whereas the electron at the CB band of SnO2 is captured by dissolved O2 molecules,
and superoxide ions (O•−2 ) are produced.

ZnO(h+
VB

)
+ H2O −→ OH•− + H+ (5)
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SnO2
(
e−CB

)
+ O2 −→ SnO2 + O•−2 (6)

(iii) The reactive hydroxyl radicals (OH•−) and superoxide ions (O•−2 ) degrade organic
contaminants (dyes) in the aqueous media due to their potent oxidizing and reduc-
ing ability.

Contaminant (dye) + OH•−/O•−2 −→ CO2 + H2O (7)

Therefore, the ZnO-SnO2(25%) NPs’ photocatalyst performance surpassed that of both
ZnO NPs and SnO2 NPs’ photocatalysts due to the effective separation of charge carriers.
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2.2.4. Photocatalytic Kinetics

The photodegradation reactions of CV, CBB, MB, and NBB catalyzed by nanocompos-
ite ZnO-SnO2(25%) proceed via two general successive steps. In the first step, the pollutant
dyes are adsorbed on the surface of the photocatalyst. In the second step, the photocat-
alyzed oxidation reaction is prompted by means of the reactive hydroxyl ion (OH•−) and
superoxide ion (O•−2 ) radicals generated upon the exposure of the aqueous solutions of
dyes containing a nanophotocatalyst to the sunlight.

In general, the kinetics of heterogeneous catalytic degradation of most organic wastew-
aters are represented by a pseudo first-order reaction rationalized in terms of the Langmuir–
Hinshelwood (L-H) model [64]. In the L-H kinetic model, the rate of degradation takes the
following form [65]:

rdeg= −
dC
dt

=
kappC
1+KC

(8)

where kapp is the apparent rate constant (which is equal to the intrinsic rate constant multi-
plied by the adsorption equilibrium constant), K is the adsorption equilibrium constant,
and C is the concentration of dye at time t.

When the concentration C of the substrate (dye) is small (less than 10−3 mol L−1), the
term KC will have a small value (i.e., KC� 1). Therefore, the L-H model (Equation (8)) is
simplified to a pseudo first-order equation as follows:

−dC
dt

= kappC (9)

To determine the rate constant of the photodegradation process, Equation (9) is inte-
grated from C0 at t = 0 to Ct at the interval time t, which gives the expression
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ln
C0

Ct
= kappt (10)

The curves ln(C0/Ct) representing the photodegradation with time of all dyes consid-
ered in this study over ZnO-SnO2(25%) NPs under sunlight irradiation are summarized in
Table 3. It was found that the pseudo first-order kinetic model highly fits the photodegrada-
tion reactions of all dyes. The slopes correspond to the apparent pseudo first-order reaction
rate constants. These findings emphasize the excellent efficiency of ZnO-SnO2(25%) NPs
toward CV, CBB, MB, and NBB degradation.

Table 3. The pseudo first-order rate constants using the Langmuir–Hinshelwood model for CV,
CBB, MB, and NBB degradation over the biosynthesized ZnO-SnO2(25%) nanophotocatalyst under
sunlight irradiation.

Organic Pollutant Initial Concentration (M) Rate Constant,
k (min−1)

Correlation
Coefficient (R2)

Degradation (%)
(in ×Minute)

CV 2.45 × 10−3 0.0481 0.9985 92.2% (in 60 min)
CBB 1.21 × 10−3 0.0856 0.9781 94.1% (in 30 min)
MB 3.13 × 10−3 0.1119 0.9925 96.2% (in 30 min)
NBB 1.62 × 10−3 0.131 0.9832 93.8% (in 20 min)

2.2.5. Reusability of ZnO-SnO2(25%) Nanophotocatalyst

An important aspect of every catalytic process is the ability to recover and reuse
the catalyst for further reaction rounds without any considerable decrease in its catalytic
activity. The reusability of a catalyst is a key factor from an environmental and economic
standpoint. Solid heterogenous catalysts can easily be recovered through simple approaches
such as filtration and centrifugation, magnetic separation, etc. The ease of separation of
heterogenous catalysts from the reaction mixture facilitates their recycling.

In this work, the recycled experiments for the catalyzed photodegradation of CV,
CBB, MB, and NBB under sunlight irradiation were carried out to evaluate photostability
of the biosynthesized ZnO-SnO2(25%) nanophotocatalyst. Recycling experiments of the
photocatalyst for dye degradation were performed at the same conditions of the first
photocatalytic experiment. After each experiment, the photocatalyst was separated from
the aqueous solution of the dye via centrifugation. Then, the recovered catalyst was then
washed three times with an ethanol–acetone solution of a 1:1 volume ratio and then put in
an oven set to 80 ◦C overnight. The recovered photocatalyst was reused four times. The
results of the recycling experiments are given in Table 4.

Table 4. Recycling efficiency of the biosynthesized ZnO-SnO2(25%) nanophotocatalyst in degradation
of MB, CV, NBB, and CBB organic pollutants under sunlight irradiation.

Dye First Use Second Use Third Use Fourth Use Lost Activity (%) after Four Uses

MB 96.2 94.2 91.4 89.2 7.3
CV 94.2 93.5 92.9 91.1 3.3

NBB 93.8 91.1 90.3 88.4 5.8
CBB 92.2 91.7 88.6 88.3 4.2

The obtained results evidently demonstrated that the biosynthesized ZnO-SnO2(25%)
nanophotocatalyst degraded all dyes efficiently even after four rounds of use. By comparing
the degradation percent in the first cycle and the fourth cycle for all dyes, it was found that
the ZnO-SnO2(25%) nanophotocatalyst retained 92.7%, 96.7%, 94.2, and 95.8% of its catalyst
efficiency toward sunlight-assisted degradation of MB, CV, NBB, and CBB, respectively.
The slight reductions in the degradation extents of dyes with the repeating use of the
nanophotocatalysts were expected and similar findings were observed in many studies that
photocatalysts lose some of their activities after being reused [66,67]. These outcomes of this
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analysis clearly demonstrated that the nanocomposite ZnO-SnO2(25%) has a remarkable
photostability toward the degradation of dyes under sunlight irradiation and could be
efficiently reutilized for dye degradations in several cycles.

The crystalline nature of both the fresh and the recovered ZnO-SnO2(25%) was analyzed
using an XRD analysis and is compared in Figure 12a. The peaks’ locations and intensity of the
recycled catalyst are the same as that of the fresh catalyst, indicating that the biosynthesized
nanophotocatalyst possesses a high photostability. Furthermore, the FTIR spectrum of the
recycled ZnO-SnO2(25%) nanophotocatalyst (Figure 12b) was very similar to that of the fresh
one, confirming that the ZnO-SnO2(25%) nanophotocatalyst is highly stable.
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3. Materials and Methods
3.1. Materials

Zinc nitrate hexahydrate and sodium hydroxide, methylene blue (MB), and crystal
violet (CV) are from BHD. Tin (IV) chloride pentahydrate is from Sigma Aldrich, Burlington,
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MA, USA. Coomassie brilliant blue R 250 (CBB) is from fluka AG chemie, Buchs, Switzer-
land and naphthol blue black (NBB) is from Riedel-de Haën, Hanover, Germany. All the
chemicals were used without any further purification.

3.2. Preparation of Aqueous Banana Peel Extract (ABPE)

The collected fresh and healthy banana peel was washed with deionized water,
shadow-dried for 3 weeks, and then powdered using a mixer grinder. The ABPE so-
lution was then prepared by mixing 10 g of the dried banana peel powder with 100 mL of
deionized water. The mixture was kept under constant stirring and was heated to 60 ◦C
and then kept at this temperature for 15 min for an effective extraction of the water-soluble
components in the banana peel. After cooling, the ABPE solution was filtered using filter
paper and stored at 4 ◦C for further use.

3.3. Synthesis of Nanophotocatalysts
3.3.1. Synthesis of Zinc Oxide Nanoparticles (ZnO NPs)

Zinc oxide nanoparticles (ZnO NPs) were prepared by dissolving 5.0 g of Zn(NO3)2·6H2O
in 30 mL of the ABPE in an Erlenmeyer flask. This step was followed by adding 17.0 mL
of a 2 M NaOH solution to the previous mixture under constant stirring. The Erlenmeyer
flask containing the resulting mixture was loosely sealed with a glass sheet and then heated
to 75 ◦C. The mixture was maintained at 75 ◦C and was kept under constant stirring for 5 h.
The formed precipitate was then separated from the solution via filtration and was washed
several times with an aqueous solution of ethanol with a volume ratio of water/ethanol
equal to 3/1. The obtained nanoparticles were dried in an oven at 60 ◦C overnight and
then calcinated in a tube furnace under atmospheric air at 500 ◦C for 3 h.

3.3.2. Synthesis of Tin Oxide Nanoparticles (SnO2 NPs)

In a similar manner to the steps followed in the preparation of ZnO NPs, the SnO2
nanoparticles (SnO2 NPs) were prepared by replacing Zn(NO3)2·6H2O by SnCl4·5H2O and
using an amount of 30 mL of the 2 M NaOH solution instead of 17.0 mL. The remaining
steps were exactly the same.

3.3.3. Synthesis of Mixed ZnO-SnO2(25%) Nanoparticles

The ZnO-SnO2 NPs (in a molar ratio of ZnO/SnO2 equal to 0.75/0.25) were prepared
by dissolving 3.5 g of Zn(NO3)2·6H2O and 1.37 g of SnCl4·5H2O in 30 mL of the aqueous
solution of the banana peel extract in an Erlenmeyer flask. Upon dissolving, an amount
of 20.0 mL of a 2 M NaOH solution was added to the mixture. The remaining steps were
exactly the same as those mentioned in the preparation of ZnO NPs.

3.4. Photocatalysis

The photodegradation of methylene blue (MB), crystal violet (CV), Coomassie brilliant
blue R 250 (CBB), and naphthol blue black (NBB) was carried out under solar irradiation at
atmospheric pressure. The experiments were conducted on a clear sunny day of June with
an outside temperature of 41 ◦C in Riyadh (24.7136◦ N, 46.6753◦ E). The average radiation
of sunlight was 0.787 kW/m2. At first, 10 mg of a biosynthesized nanophotocatalyst was
added gradually under continuous stirring to a closed bottle containing 10 mL of a dye
aqueous solution (10 ppm). Under magnetic stirring, the mixture was kept in the dark for
30 min to equilibrate adsorption–desorption processes. A control solution was prepared
and subjected to the same conditions to see if there was a degradation in the aqueous dye
solution. Upon exposure to the sunlight, the photodegradation of dyes was monitored at
given time intervals. At predetermined time intervals, the sunlight-exposed dye solutions
were taken and centrifuged at 7000 rpm for 10 min. The absorbances of the dye solutions
were measured using a UV-Vis spectrometer (SHIMADZU UV-2600 spectrophotometer,
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Tokyo, Japan). The extents of dye degradation using the prepared nanophotocatalysts were
evaluated as a degradation percent using the following Equation:

Degradation% =
A0 −At

A0
× 100% (11)

where A0 is the initial absorbance of the aqueous solution of dye before sunlight irradiation
and At is the absorbance of the aqueous solution of dye at time t of irradiation.

3.5. Characterization

Various analytical techniques were employed to explore structures, morphologies,
optical properties, compositions, and thermal stabilities of the biosynthesized nanopho-
tocatalysts. Fourier transform infrared (FTIR) spectra were measured on a wavenumber
ranging from 400 to 4000 cm−1 with a Perkin Elmer spectrum BX spectrometer (Perkin
Elmer, Waltham, MA, USA) using KBr pellets. The X-ray diffraction (XRD) patterns of
the prepared nanophotocatalysts were identified using a Rigaku XtaLAB mini II benchtop
X-Ray 110 crystallography system (The Woodlands, TX, USA), with incident copper Kα

radiation of the wavelength λ = 1.5418 Å. Data were collected at room temperature and
diffraction patterns were recorded over a 2θ ranging from 10◦ to 80◦ at a scanning rate of
3◦/min. The optical band gaps of the photocatalysts were estimated using a SHIMADZU
UV-2600 spectrophotometer, Tokyo, Japan. The morphologies and particle size distributions
of the prepared nanophotocatalysts were inspected using TEM and SEM techniques. The
TEM analysis was performed using a JEM-1400 Plus (JEOL, Tokyo, Japan) with an accelera-
tion voltage of 100 kV at a magnification factor of 300,000×. The average size of particles
was deduced from the TEM image using ImageJ software based on the scale associated
with the TEM image. For this purpose, a drop of diluted NPs’ suspension in ethanol was
deposited on a lacey-carbon copper grid. The SEM analysis was carried out on a JEOL
JSM-6060LV scanning electron microscope, SEM (JEOL, Tokyo, Japan), at 15.0 kV and a
magnification power of 35,000×. For SEM imagining, the sample was platinum-coated and
then mounted on aluminum stubs. The total surface areas, pore volumes, and average pore
diameters of the prepared nanophotocatalysts were calculated by the Brunauer–Emmett–
Teller (BET) isotherm method using a Micromeritics Tristar II 3020 surface area and porosity
analyzer (Micromeritics Instrument Corporation, Norcross, GA, USA). The surface area
and the pore size distributions were calculated using the Barrett–Joyner–Halenda (BJH)
method. To probe the elemental compositions of the prepared nanomaterials, the dis-
persive X-ray spectrometry (EDS) spectra were obtained using an X-MaxN system from
Oxford instruments (Abingdon, UK). Thermogravimetric analyses (TGAs) of the prepared
nanophotocatalysts were examined using a Mettler Toledo TGA/DSC Star system (Colum-
bus, OH, USA). Thermographs were obtained under nitrogen gas from 25 to 700 ◦C at a
heating rate of 10 ◦C/min.

4. Conclusions

In this work, the ABPE was utilized as a medium to synthesize ZnO, SnO2, and
their mixed ZnO-SnO2(25%) NPs by an eco-friendly green method. Here, the ABPE was
employed to serve as a capping agent to prevent further growth and agglomeration of
the nascent NPs. The XRD analysis indicated the coexistence of crystal structures of ZnO
and SnO2 in ZnO-SnO2(25%) NPs. The TEM analysis showed that the biosynthesized
ZnO-SnO2(25%) nanophotocatalyst has particles with an average size of 7.28 nm. The
photocatalytic activity of the biosynthesized ZnO-SnO2(25%) NPs was examined for degra-
dation of four model organic pollutants (namely MB, CV, CBB, and NBB) under sunlight.
The excellent catalytic efficiency of ZnO-SnO2(25%) NPs toward dye degradation is at-
tributed to the formation of a heterostructure of ZnO and SnO2 with a lowered or retarded
recombination process of electron–hole pairs. The recycled experiments for the photodegra-
dation of dyes over ZnO-SnO2(25%) NPs under sunlight irradiation revealed that the
nanophotocatalyst is highly photostable and can be recycled several times without any
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appreciable loss of its photocatalytic efficiency. Overall, the biosynthesized ZnO-SnO2(25%)
NPs effectively destroyed synthetic dyes under sunlight irradiation and showed stable
photocatalytic efficiency even after being reused four times. It is clear, therefore, that the
eco-friendly green process adopted in this work successfully provided an efficient feasible
way to prepare ZnO-SnO2(25%) NPs for dye-containing effluents’ treatment application.
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