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Abstract: A prepared FeZnNa@SiO2-C catalyst with graphitized carbon (C)-modified mesoporous
SiO2 supports metal nanoparticles with the sol–gel method. The effect of adding metal Na and Zn
promoters as a dispersion on the CO2 hydrogenation to low olefins was systematically studied. The
results showed that Zn–Na, as a combination, could promote the absorption of CO2 and improved the
conversion rate of CO2. Na as an alkaline substance can improve the absorption of more acidic CO2,
which could increase the conversion rate of CO2 to 59.03%. Meanwhile, the addition of secondary
metal Zn to Fe-based catalysts to form a surface alloy could alter the adsorption of CO2 and the
activation of C-O bonds, inhibit the subsequent hydrogenation of olefins to paraffins, and facilitate
the reduction of Fe2O3 and the formation of active Fe5C2 species. The formation of active Fe5C2

species was found in TEM and XRD, and the selectivity of the target product was 41.07%. The deep
hydrogenation of olefins was inhibited, and the space–time yield (STY) of low olefins was raised
again by inhibiting their deep hydrogenations, up to 0.0436. However, the corresponding STY did
not increase infinitely with the increase of Na doping, and higher catalytic performance for CO2

hydrogenation could be exhibited when the Na doping reached 6.4%. Compared with Fe@SiO2-C
catalyst, Na- and Zn-promoted Fe-based catalysts, prepared by the modified sol-gel method, can be
used directly for highly efficient CO2 hydrogenation to low olefins and thus has a more promising
application prospect in the future.

Keywords: FeZnNa@SiO2-C; promoters effects; low olefins; CO2 hydrogenation

1. Introduction

Increasing carbon dioxide emissions (CO2) have a significant impact on climate change.
CO2 capture and utilization has received much attention as a viable pathway towards a
low carbon economy [1–4]. CO2 hydrogenation is a promising route to convert CO2 into
value-added C2+ hydrocarbons, such as olefins, aromatics, and gasoline, and has attracted
industry and academic research worldwide [4–10]. Among them, the process of CO2
hydrogenation to olefins should be divided into two steps. Firstly, CO intermediates
are formed by the Reverse Water Gas Shift (RWGS) reaction and then hydrogenated to
hydrocarbons by the Fischer–Tropsch Synthesis (FTS) reaction [11].

Compared to other catalysts [12–14], iron-based catalysts remain a promising system
for the hydrogenation of CO2 to low olefins due to their high reverse water–gas shift activity,
flexible operating conditions and low cost [15]. However, the competitive carburization
of a single iron phase in the catalyst and the evolvement into active phase Fe5C2 are not
efficient. Therefore, the addition of other promoters could improve the structural evolution
of the iron phase to increase the selectivity of olefin and long-chain hydrocarbons, and
the study of the effect of promoters on the dynamic transformation of the iron phase is
important for the development of efficient catalysts.

To date, alkaline species (AMs, M = Na [16–19] and K [20–22]) and transition metals
(TMs, M = Ni, Co, Cr and Mn) [23–25] have been commonly introduced into Fe-based
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catalysts to compete carburizing and the evolution into active phase Fe5C2 for improving
the selectivity of olefins. In particular, the addition of Na promotes the ability of Fe5C2 for-
mation as the interaction between Na and Fe species inhibited the hydrogenation of olefins
by increasing the electron density of the active sites, leading to a higher CO2 conversion
rate and improved olefin selectivity [26,27]. Yao [18] and Zhang [11] reconfirmed that the
low olefins/paraffins (O/P) and CO2 conversion rate were significantly increased by the
addition of the adjuvant Na doping. More recently, co-modification with TMs and AMs is
gaining high popularity as an emerging strategy to accelerate CO2 dissociative adsorption
and improve iron carbide phase formation for favor olefin synthesis [28]. However, the
effects of secondary metal and Na promoters on catalyst structures and performances of
CO2 hydrogenation remain ambiguous. For instance, the Zn promoter is usually considered
as the structure promoter, but it has also been proposed as an electronic promoter or the
active phase in the form of ZnO for RWGS. Furthermore, the studies on the synergistic
effects of Zn and Na promoters were seldom in the previous literature.

Combined with our previous work [29,30], GC-modified mesoporous silica-encapsulated
metal nanoparticles can effectively improve reducibility and electron conductivity properties
similar to those of expensive noble metals (Pt [31] and Ru [32]). In this study, FeZnNa@SiO2-C
catalysts were prepared by the sol–gel method via regulating the amount of Na loading.
The role of these Zn and Na promoters was rigorously analyzed by decoupling the rates
of the RWGS and FTS steps and considering the proximity to the reaction equilibrium. In
addition, a combination of quasi in situ structural characterization measurements, including
X-ray photoelectron spectroscopy and Transmission Electron Microscope (TEM), etc., were
used to establish a clear structure–property relationship for CO2 hydrogenation on Fe-based
catalysts. During this process, synergetic promoting effects by Zn and Na are elucidated,
which were responsible for the concurrently enhanced CO2 conversion rates and olefin
selectivity. These results would contribute to the rational regulation of catalytic performance
by multiple additives, especially for complex reaction systems that are generally encountered
in heterogeneous catalysis.

2. Results and Discussion
2.1. Characterization of the Fe-Based Catalysts
2.1.1. Textural Property, Structure and Morphology

As shown in Figure 1a,b, the calcined SiO2-C, Zn@SiO2-C, Na@SiO2-C, Fe@SiO2-C
and FeNa@SiO2-C catalysts exhibit the characteristic diffraction patterns of the Fe2O3
phase (JCPDS No. 39-1346) and SiO2 phase (JCPDS No. 39-1425), while the Zn@SiO2-C
and FeZnNax@SiO2-C catalysts provide diffraction peaks mainly assigned to ZnFe2O4
spinel phases (JCPDS No. 22-1012), in addition to the weak signals for the ZnO (JCPDS
No. 36-1451) phase. The specific results are shown in Figure 1a,b and Table 1. The
particle size of Fe2O3 in FeZn@SiO2-C catalysts, evaluated by the Scherrer equation
(D = K × γ/(B × cos θ) formula [33], means that K, B, θ, γ are the Scherrer constant, the
half peak width or integral width of the measured sample diffraction peak, and the Prague
angle, which was ~15 nm, respectively, much smaller than those of the Fe@SiO2-C (~23 nm),
FeNa@SiO2-C (~33 nm) and FeZnNax@SiO2-C (~20 nm). These results indicate that the
Zn promoter significantly decreases the size of Fe species over Fe catalysts [11]. However,
the addition of Na changed the particle size of the phase in the FeZnNax@SiO2-C catalysts.
The particle size of Fe2O3 generally showed a trend of first increasing and then decreasing
with the increase in Na doping. Xiong [34] reported that the introduction of alkali metals
promoted the agglomeration of iron particles, thereby increasing the size of iron oxide
particles. The presence of alkali metals appears to promote the agglomeration of the iron
precursor, thus enlarging the crystallite size of the iron oxide. In conjunction with Figure 1b,
no Na2O (JCPDS No. 03-1074) phase was found in FeNax@SiO2-C and FeZnNax@SiO2-C
samples, which is mainly due to the low Na doping [11]. Moreover, it is also possible that
there are no XRD patterns associated with the Na2O/Na phase, which suggests a high
dispersion of Na2O/Na in these catalysts [18]. Figure 1b shows that the diffraction peaks
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of ZnO (36.25◦ and 34.42◦) are more obvious when the Na doping in FeNax@SiO2-C and
FeZnNax@SiO2-C samples reached 6.4%. It can be found that the specific surface area (SSA)
of FeZnNax@SiO2-C catalysts increased from 9.261 m2/g to 20.572 m2/g as the particle
size of Fe2O3 decreases. Combined with the larger specific surface area of the remaining
catalysts and the final actual CO2 conversion rate, it can be found that although the remain-
ing catalysts have a larger specific surface area, the actual CO2 conversion rate is lower
than that of any of FeZnNax@SiO2-C catalysts, which shows that Zn and Na as promoters
can overcome the disadvantage of its own smaller specific surface area and obtain a more
practical advantage of higher CO2 conversion rate. If we only consider alkaline Na as a
promoter of the absorption of acidic CO2, it can be found that there is still a clear difference
between their CO2 conversion rate by comparing FeZnNax@SiO2-C catalysts. Therefore,
the increase in CO2 conversion rate was still attributed to the bifunctional effect of Zn
and Na.
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Figure 1. XRD pattern of (a) SiO2-C, Zn@SiO2-C, Na@SiO2-C, Fe@SiO2-C, FeNa@SiO2-C and 

FeZn@SiO2-C catalysts, (b) FeZnNax@SiO2-C catalysts with different Na doping. 
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Figure 1. XRD pattern of (a) SiO2-C, Zn@SiO2-C, Na@SiO2-C, Fe@SiO2-C, FeNa@SiO2-C and
FeZn@SiO2-C catalysts, (b) FeZnNax@SiO2-C catalysts with different Na doping.

Table 1. Physicochemical characteristics of the Fe@SiO2-C, FeNa@SiO2-C and FeZnNax@SiO2-C catalysts.

Catalyst Fe Loading
(wt%) a

Na Loading
(wt%) a

Total CO
Chemisorbed

(µmol/g) b

% Fe
Dispersion b

Fe2O3 Size
(nm) c

SSA
(m2/g) d

PV
(cm3/g) d

APS
(nm) d

Fe@SiO2-C 25.4 0 472 5.2 23 75.5 0.087 3.19
FeNa@SiO2-C 24.2 1.5 570 6.6 33 78.4 0.111 4.18
FeZn@SiO2-C 25.3 0 551 6.1 15 48.5 0.144 4.19

FeZnNa1.5@SiO2-C 23.7 1.5 576 6.8 21 9.2 0.035 4.46
FeZnNa3.1@SiO2-C 23.5 3.1 596 7.1 23 16.4 0.035 2.95
FeZnNa6.4@SiO2-C 22.1 6.4 576 7.3 16 20.5 0.047 2.95
FeZnNa7.6@SiO2-C 23.4 7.6 568 6.8 18 14.6 0.035 2.95

a Measured by XRF; b Based on total CO chemisorbed (corrected), nCO/nFe = 0.5, % dispersion
= 2 × ntotal CO chemisorbed/ntotal number of Fe atoms; c Measured with the Scherrer equation by XRD; d Measured
by N2 physical adsorption.

Figure 2 shows the TEM images and high-resolution TEM images of FeZnNax@SiO2-C;
it can be determined that the FeZnNax@SiO2-C series catalysts have a mesoporous structure
with a large number of particles distributed. The nanoparticles are not easy to produce
carbon deposits with critical particle size. The small particle size is attributed to the fact
that P123 is rich in hydroxyl groups (-OH), which are able to bind tightly with TEOS
molecules to form micelles. The C overlay produced by polymer carbonation inhibits the
sintering of metal nanoparticles and metal, and support interaction is enhanced during
high-temperature treatment. The well-dispersed Fe2O3 nanoparticles, with an average
diameter of 15–21 nm on Fe2O3, can be clearly observed, as shown in Figure 2. The lattice
spacing of the Fe2O3 particle on SiO2 is 0.26 nm, which can be attributed to the (400)
planes, suggesting that the catalyst exists in the form of Fe2O3 and retains good crystallinity,
consistent with the XRD results. Figure 2f,h shows that there are two different oxides,
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Fe2O3 and ZnO. These metal particles have a very small particle size and are dispersed
on mesoporous SiO2, including Fe2O3 and ZnO or Na2O/Na. In the reduction step, these
metal oxides are reduced to Fe2O3/ZnO at a temperature of 673 K. In the catalytic process,
more active Fe5C2 particles are generated to improve the selectivity of the target product.

1 
 

 
Figure 2. TEM images and High-resolution TEM images of (a,b) FeZnNa1.5@SiO2-C,
(c,d) FeZnNa3.1@SiO2-C, (e,f) FeZnNa6.4@SiO2-C, (g,h) FeZnNa7.6@SiO2-C.

Apparently, in Figure 3, the FeZnNax@SiO2-C nanoparticles give a type-IV isotherm
with a long hysteresis loop at relative pressure (P/P0) of 0.4–1.0, which is characteristic
of mesoporous materials according to the classification of International Union of Pure
and Applied Chemistry (IUPAC). As shown in Table 1, the specific surface area generally
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shows a trend of first increasing and then decreasing with the increase in Na doping;
FeZnNa6.4@SiO2-C had the highest specific surface area compared with other catalysts
at 20.572 m2/g. Liang [35] found that when the Na doping was 0.1%, 0.5% and 5%,
respectively, the specific surface area also increased first and then decreased, which were 31,
45, 28 m2/g. Although the specific surface area of the other three catalysts was higher than
that of FeZnNa6.4@SiO2-C catalysts, the actual CO2 conversion rate was lower than that
of FeZnNa6.4@SiO2-C catalysts, which indicated that ZnNa can significantly improve the
CO2 conversion rate. Herein, the change in conversion rate is also consistent with Liang’s
study [35] that alkaline additives can promote the adsorption and conversion of CO2.
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Figure 3. N2 adsorption–desorption curves of the FeZnNax@SiO2-C catalysts with the different
Na doping.

The results are consistent with the related reports that an Na promoter will increase
the CO2 adsorption and adsorption strength. Therefore, the adsorption of CO2 on the
surface of the FeZnNax@SiO2-C catalyst is stronger than other catalysts, and it is easier
to activate CO2, which is conducive to the subsequent conversion. The pore volume of
FeZnNa6.4@SiO2-C also reached the maximum value of 0.047 cm3/g. The average pore
size reached a maximum at 1.5%, and the remaining three groups of catalysts did not differ
much, and still achieved the maximum value of 2.956 nm at 6.4%, and the pore volume
decreased from 0.047 cm3/g at 6.4%Na to 0.035 cm3/g at 7.6% Na. However, the change
in pore volume was very small, which showed that the excessive increase in Na doping
did not have much effect on the volume of the pore. However, the pores of the catalyst do
got clogged by excess Na. When the Na doping were 1.5%, 3.1 and 6.4%, which was not
excessive, the pores were not clogged. Therefore, the decrease in surface area is suggested
to be due to crystallite size growth rather than pore clogging [34].

2.1.2. XPS Results

The valence states of components in catalysts were investigated by XPS, the FeZn@SiO2-
C catalyst delivered a Fe 2p3/2 peak at the binding energy of 711.23 eV and a satellite
peak around 719.07 eV, which was slightly higher than the corresponding peak of the
standard Fe2O3 sample, which confirmed the existence of the Fe species in a form of Fe3+

species. The Fe 2p3/2 binding energy of the FeZnNa1.5@SiO2-C catalyst in Figure 4a
was reduced by about ~0.18 eV compared to that of the FeZn@SiO2-C catalyst, which
indicates that the introduction of Na promoter reduced the Fe 2p3/2 binding energy of the
FeZnNa1.5@SiO2-C catalyst. The decrease in binding energy suggests the charge transfer
from Na ions to the vacant d orbits of Fe species [11]. Among them, the existence of C-O
bonds indicates that there may be close interactions between C-Fe2O3-SiO2 in the form of
C-O-Fe/Fe-C-O or C-O-Si (Figure 4b). The O/Si ratio is higher than that of 2.0 for SiO2,
indicating that it may be due to the enhanced interaction between C and Fe nanoparticles
and SiO2. The satellite peak is approximately 718.81 eV, it is consistent with standard Fe2O3
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samples, which confirms the existence of the Fe species in a form of Fe3+ species [16]. The
catalyst has part of ZnFe2O4, so there is Fe2+ inside (Figure 1), and in Figure 4a, the binding
energy peak (B.E.P.) at 711.05, 714.82, 718.81 and 724.49 eV are associated with Fe2+ and
Fe3+ species.
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Figure 4. (a) Fe 2p and (b) C 1s XPS spectra of the FeZnNax@SiO2-C catalyst.

2.1.3. Reduction Behavior

H2-TPR experiments (Figure 5) showed that with Na doping in the FeZnNa1.5@SiO2-C,
the peaks ascribed to H2 consumption rose up to 550 ◦C, related to the reduction of the Fe2O3
to Fe3O4 and/or to FeO, and Fe2O3 to FeO and/or to Fe0 shifted to a lower temperature,
which suggests that the Na promoter concentration favored the initial reduction of the iron
species [20]. On the contrary, the reduction peaks displaced towards high temperature for the
FeZnNa1.5@SiO2-C, FeZnNa3.1@SiO2-C, FeZnNa6.4@SiO2-C and FeZnNa7.6@SiO2-C catalysts
as the Na concentration increased. This displacement could be attributed to the closer contact
between the iron oxides and potassium, as discussed in the previous XPS section. As for the
peaks located at the high-temperature region (>550 ◦C), which were related to the reduction of
Fe3+ species to Fe0. The noticed shift to high temperature and the increase in their intensities
in FeZnNax@SiO2-C catalysts could be attributed to a stronger interaction between the iron
oxides and the SiO2-C support, as suggested by the XPS results. Combined with TEM image
(Figure 2), it can be found that the variation trend of Fe2O3 particle sizes in FeZnNax@SiO2-C
is almost the same as that of the H2 reduction temperature.
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2.1.4. Chemisorption Behavior

The CO2 adsorption properties of FeZnNax@SiO2-C with different Na doping were
further investigated by CO2 temperature-programmed desorption (CO2-TPD). As shown
in Figure 6, three distinct peaks were observed for all the samples. The lower temperature
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peak around 130 ◦C (α peak) was ascribed to the desorption of CO2 weakly adsorbed in the
bulk phase. The peaks in the temperature range of 300–400 ◦C (β peak) and 500–700 ◦C (γ
peak) were due to the decomposition of SiO2 or the desorption of CO2, interacting strongly
with the surface basic sites [36], which shift gradually to higher temperatures with increasing
Na content. The increased Na loading also enhances the amount of CO2 uptake at strong
basic sites (Table 2) with the increased Na doping as well. The amounts of desorbed CO2
for β peak listed in Table 2 follow the sequence: FeZnNa6.4@SiO2-C > FeZnNa3.1@SiO2-C >
FeZnNa1.5@SiO2-C > FeZnNa7.6@SiO2-C, which was consistent with the variation pattern of
CO2 conversion in Table 3. Considering that FeZnNa1.5@SiO2-C has a weaker CO2 adsorption
in the early stage, the FeZnNa6.4@SiO2-C catalyst has better CO2 adsorption and support
structure than other catalysts (Figure 2e), which may be related to the SSA enhancement and
particle size reduction of the catalyst. The advantage of specific surface area also proved the
adsorption of CO2 was better, and the two characterizations could support each other.
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Table 2. CO2 uptake feature of the FeZnNax@SiO2-C catalysts with different Na doping.

Catalysts
The Amount of CO2 Desorbed (µmol/g)

α Peak β Peak γ Peak Total

FeZnNa1.5@SiO2-C 58.5 60.4 396.4 515.3
FeZnNa3.1@SiO2-C 36.6 91.3 446.0 573.9
FeZnNa6.4@SiO2-C 51.4 128.6 576.7 756.6
FeZnNa7.6@SiO2-C 295.4 43.1 621.7 960.2

Table 3. Comparison of CO2 hydrogenation Catalytic Performances: STY, selectivity of CH4, C2-C4

olefins (C=
2 − C=

4 ), C2-C4 paraffins (C0
2 − C0

4) and C5+.

Catalyst
CO2

Con (%)
Selectivity a (%)

O/P b TOF c

(10−3 s−1)
STY

(g/gcat·h)CH4 C=
2−C=

4 C=
2−C=

4 C+
5

Fe@SiO2-C 52.17 83.06 5.93 5.59 5.45 1.06 0.56 0.0057
FeZn@SiO2-C 53.78 64.32 1.54 30.87 3.29 0.05 0.12 0.0015
FeNa@SiO2-C 52.26 66.56 6.48 20.23 8.33 0.32 0.53 0.0090

FeZnNa1.5@SiO2-C 58.41 22.89 29.15 14.50 33.42 2.01 2.53 0.0315
FeZnNa3.1@SiO2-C 59.03 33.00 29.40 13.67 23.83 2.15 2.49 0.0321
FeZnNa6.4@SiO2-C 58.32 18.30 40.40 9.60 31.69 4.21 3.50 0.0436
FeZnNa7.6@SiO2-C 58.4 18.63 41.07 8.68 31.72 4.73 3.61 0.0400

Reaction condition: T = 300 ◦C, P = 2.5 MPa, H2/CO2 = 3, GHSV = 1500 mL/g·h, TOS = 100 h; Reduced in 5% H2/Ar
for 16 h at 400 ◦C before CO2 hydrogenation. a Hydrocarbon selectivity was normalized with the exception of CO.
b O/P is the molar ratio of olefin (C=

2 −C=
4 ) to paraffin (C0

2 −C0
4). c TOF: turnover frequencies for CO2 conversion,

i.e., the number of CO2 molecules converted per surface catalytic site per second at present CO2 hydrogenation.
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2.2. Catalytic Performances for CO2 Hydrogenation

Table 3 shows the catalytic performance of this series of catalysts for CO2 hydrogena-
tion reaction. The ultimate goal of this series of catalysts is to improve the selectivity of
olefin, so this section needs to focus on STY (space–time yield) of C=

2 − C=
4 . The catalysts

discussed were divided into seven types, each of which was an average of multiple sam-
ples. Among them, the maximum value of STY was 0.0436 when the Na doping was 6.4%,
and the observation of FeZnNa7.6@SiO2-C revealed that although the corresponding Na
doping exceeded that of FeZnNa6.4@SiO2-C, the STY was relatively low, which shows
that this series of catalysts are the best-quality catalyst when Na doping is less than 7.6%.
The results of four catalysts with different Na doping (1.5–7.6%) were analyzed, and it
was found that a further increase in Na doping did not improve the conversion rate of
CO2 any further, but rather suppressed the methane selectivity, improved the selectivity
of C2+, and significantly increased the value of low-carbon olefin STY. Compared with
FeZnNa1.5@SiO2-C, FeZnNa3.1@SiO2-C and FeZnNa7.6@SiO2-C, FeZnNa6.4@SiO2-C ex-
hibited higher CO2 conversion, which probably had appropriate particle sizes and surface
areas, providing more active sites and thereby increasing the CO2 hydrogenation catalytic
activity. Moreover, it is noteworthy in Table 3 that turnover frequencies of CO2 conver-
sion (TOF) for the FeZnNax@SiO2-C catalyst (3.61 × 10−3 s−1) is lower than that of FeSb
(3.6 × 10−5 mol/g·s), and FeBi (3.2 × 10−5 mol/g·s) [37]. Although a high TOF value of
3.6 × 10−5 mol/g·s was reported for FeSb, it should be noted that this value was obtained
by the addition of the promoter Sb. All of these indicate that the catalysts (addition of
promoters such as Na, Sb and Bi) can obviously promote TOF and STY, but Na was the
lowest cost in all the above promoters.

2.3. Effect of Different Na Doping on Final Catalytic Performance

Figure 7 shows the effects of different Na-doping levels on the selectivity, CO2 conver-
sion rate and STY of CO, CH4, C=

2 − C=
4 , C0

2 − C0
4 and C5+ in the same series of catalysts.

The CO2 conversion has increased from about 54% to about 59% with the addition of Na,
but the subsequent increase in Na doping has not increased significantly. With the increase
in Na doping in the catalyst, the selectivity of the target product C=

2 − C=
4 raised from

1.54% to 41.07%. STY achieved the maximum value when Na doping was 6.4%, which
showed that although Na increased the activity of the catalyst, it inhibited the activity of
the catalyst when the Na doping was too high. From above catalytic characterization, it
can be found that FeZnNa6.4@SiO2-C had the most excellent performance with excellent
mesoporous structure, highly dispersed metal nanoparticles, and the active component
Fe5C2 (labeled as “•”, Figure 8a) particles were also more obvious, and the metal and
support had a strong interaction, which shows the advantages of accelerating the electron
transport, improving the hydrothermal stability and catalytic activity, and the results of the
characterization are consistent with the convincing experimental results. Furthermore, the
synergistic effect of Na and Zn promoters not only increased the CO2 adsorption amount,
thereby promoting the complete transformation of Fe species into Fe5C2, but also reduced
the Fe5C2 size and exposed more active sites, which was conducive to the FTO to consume
CO and accelerated the conversion of CO2. Therefore, the FeZnNax@SiO2-C catalyst gave a
higher CO2 hydrogenation rate and C=

2 − C=
4 formation rate.



Catalysts 2023, 13, 1508 9 of 14Catalysts 2023, 13, x FOR PEER REVIEW 9 of 14 
 

 

0

20

40

60

80

100

P
ro

d
u

ct
s 

S
el

. 
&

 C
O

2
 C

o
n

v
er

si
o

n
（

%
）

Na content（%）

 CH4  C2
=-C4  C2

0-C4
0  C5+ 

0 1.5 3.1 6.4 7.6
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

S
T

Y
(g

·g
-1 ca

t·
h

-1
 )

 STY CO2

 

Figure 7. Effect of different Na doping on final catalytic performance. 

 

Figure 8. (a) XRD pattern and (b) TEM images of the spent sample-FeZnNa6.4@SiO2-C. 

Figure 8b shows the TEM images of the spent sample; the metal particles had a slight 

enlargement, but did not congregate uncontrollably, which showed that graphitized car-

bon played a certain role, and when combined with the 100 h working condition diagram 

of Figure 9, it can be concluded that the catalyst has good structural stability. 

 

Figure 9. Change in (a) CO2 conversion and (b) CH4 selectivity with time on-stream for the FeZ-

nNax@SiO2-C catalysts. 

XRD showed that iron-based catalysts containing Fe2O3 and ZnO components were 

successfully prepared. The approximate metal particle size (Fe2O3, ZnO) was calculated 

by the corresponding formula. The presence of Na and the proportion of components of 

each element were confirmed by XPS testing. From BET and TEM, it can be concluded that 

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

 FeZnNa1.5@SiO2-C

 FeZnNa3.1@SiO2-C

 FeZnNa6.4@SiO2-C

 FeZnNa7.6@SiO2-C

C
O

2
 C

o
n

. 
(%

)

TOS (h)

(a)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

C
H

4
 S

e
le

. 
(%

)

TOS (h）

 FeZnNa1.5@SiO2-C

 FeZnNa3.1@SiO2-C

 FeZnNa6.4@SiO2-C

 FeZnNa7.6@SiO2-C

 (b）

20 30 40 50 60 70 80
θ degree (°)

In
te

n
si

ty
 (

a
.u

.)

Fe5C2 PDF#89-6158

Quartz powder

FeZnNa
6.4

@SiO
2
-C (Spent)

 (a)

●

Figure 7. Effect of different Na doping on final catalytic performance.
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Figure 8. (a) XRD pattern and (b) TEM images of the spent sample-FeZnNa6.4@SiO2-C.

Figure 8b shows the TEM images of the spent sample; the metal particles had a slight
enlargement, but did not congregate uncontrollably, which showed that graphitized carbon
played a certain role, and when combined with the 100 h working condition diagram of
Figure 9, it can be concluded that the catalyst has good structural stability.
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Figure 9. Change in (a) CO2 conversion and (b) CH4 selectivity with time on-stream for the
FeZnNax@SiO2-C catalysts.

XRD showed that iron-based catalysts containing Fe2O3 and ZnO components were
successfully prepared. The approximate metal particle size (Fe2O3, ZnO) was calculated
by the corresponding formula. The presence of Na and the proportion of components of
each element were confirmed by XPS testing. From BET and TEM, it can be concluded
that the FeZnNax@SiO2-C catalysts were indeed mesoporous in structure. The pore size,
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pore volume, specific surface area and precise metal particle size were also obtained; the
high-resolution TEM diagram displayed the carbon layer wrapped on the surface of the
catalyst and the highly dispersed metal nanoparticles. From the H2-TPR test, the increase in
Na doping significantly changed the reduction temperature of Fe2O3 species. The lowest re-
duction temperatures were observed for FeZnNa6.4@SiO2-C: 580 ◦C (Fe2O3→FeO), 741 ◦C
(FeO→αFe). The initially prepared Fe2O3 phase was reduced to Fe3O4 at about 400 ◦C [11].
CO2-TPD showed that more basic sites were provided for adsorption of more acidic CO2 in
the early stage due to the introduction of Na, which once again proved that the introduction
of Na enhanced the CO2 adsorption. In the later stage, support was decomposed with the
increase in temperature. Compared with other catalysts, FeZnNa6.4@SiO2-C has a more
stable support structure and CO2 adsorption. Combining the above analyses, it is found
that the reduction temperature, specific surface area, pore volume, average pore size and
CO2 adsorption are closely related to the particle size of Fe2O3. The reason for the change
in particle size is due to the addition of alkaline elements (Na), Fe particle promotion, and
the increase in metal particle size [34]. When Na reached a certain amount, Na acted as a
dispersant and inhibited the aggregation of Fe particles, thereby reducing the particle size
of Fe2O3. But as the Na doping increased again, the amount that acted as a dispersant was
broken, and then the pore was blocked. Fe particles with a slightly larger particle size do
not have extra positions to enter, and therefore the agglomeration phenomenon is produced
again, and the particle size of Fe particles increases again. Therefore, the phenomenon of
particle size change in Fe2O3 was first increasing, then reducing, and finally increasing.
The reduction temperature, specific surface area, pore volume and average pore size are all
affected by the Fe2O3 particle size and change accordingly. The specific internal connection
is referred to above.

3. Experimental
3.1. Catalyst Preparation

FeZnNa1.5@SiO2-C was prepared by dissolving Fe(NO3)3·9H2O, Zn(NO3)2·6H2O,
NaNO3 and P123 in a mixed solvent formed by ethanol and deionized water and vigorously
stirring for two hours to form a homogeneous solution. The mass of P123, Fe(NO3)3·9H2O,
Zn(NO3)2·6H2O and NaNO3 were 2.5 g, 6.87 g, 4.36 g, 0.21 g, respectively. The volume
ratio of ethanol deionized water in 40 mL mixed solvent was 1:1, and 4.46 mL of tetraethyl
orthosilicate was added dropwise into the solution hydrolyzed in the previous step, and a
homogeneous solution was formed by stirring for 1 h. After the end of the reaction, the
solution was put into a reaction dish and placed in a fume hood for ventilation for 12–24 h,
with the purpose of removing the surface ethanol and deionized water. The sample with
the surface solvent removed were placed in an oven for heating and holding at 80 ◦C for
12 h. The sample was taken out and placed in a tubular furnace for calcination at 600 ◦C in
air for 4 h at a rate of 2 ◦C/min to obtain the final catalyst material.

Two groups of catalysts were prepared according to the different Zn doping, namely
Fe@SiO2-C and FeZn@SiO2-C; Fe accounted for 25% of the entire catalyst mass. Four
groups of catalysts were prepared with Na doping as variables, with loading of 1.5%, 3.1%,
6.4% and 7.6%, respectively. Both Fe and Zn accounted each for 25% of the mass of the
entire catalyst, named FeZnNa1.5@SiO2-C FeZnNa3.1@SiO2-C, FeZnNa6.4@SiO2-C and
FeZnNa7.6@SiO2-C. Among them, the FeNa catalyst was additionally produced, named
FeNa@SiO2-C; Fe accounted for 25% of the mass of the entire catalyst, and Na accounted
for 6.4% of the mass of the entire catalyst.

3.2. Nanocomposite Characterization

TEM images were obtained on a JEM-2010 electron microscope (JEOL (BEIJING) CO.,
Ltd., Beijing, China) with an acceleration voltage of 200 kV. XRD patterns were recorded on
a Rigaku D/Max-2rB-II XRD meter (Cu Kα radiation, λ = 1.5406 Å, Rigaku, Tokyo, Japan),
with 2θ = 10◦ to 90◦ scanned at 8◦·min−1. The texture properties of the nanocomposites
were determined by N2 adsorption/desorption isotherms on a Micromeritics ASAP 2010
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apparatus (Micromeritics instrument (Shanghai) Ltd., Shanghai, China). The pore size
distribution, pore volume and specific surface area were determined by the multipoint
Brunauer–Emmett–Teller (BET) method. The concentration of surface metal atoms was de-
termined using CO chemisorption in a Micromeritics ASAP 2010 (Micromeritics instrument
(Shanghai) Ltd., Shanghai, China) automated system. A 0.1 g sample of a freshly calcined
catalyst was first evacuated to 10−6 mm Hg at 100 ◦C for 30 min and then reduced under
flowing H2 by ramping at 2 ◦C/min to 280 ◦C and holding there for 12 h. The catalyst
was then evacuated at 280 ◦C for 60 min to desorb H2. CO chemisorption was carried
out at 35 ◦C. X-ray photoelectron spectroscopy (XPS, Shimadzu (Shanghai) Experimental
Equipment Co., Ltd., Shanghai, China) characterization was carried out in an UHV cham-
ber equipped with a monochromatized Al Kα X-ray source and a Sphere 2 analyzer. All
the binding energies were calibrated by the adventitious C1s line at 284.8 eV. Hydrogen
temperature-programmed reduction (H2-TPR, BSD Instrument Technology (Beijing) Co.,
Ltd., Beijing, China) experiments were conducted on homemade apparatus equipped with
a thermal conductivity detector (CO2-TCD, BSD Instrument Technology (Beijing) Co., Ltd.,
Beijing, China). The reactor was loaded with 50 mg of sample at a time and heated to
1073 K at 10 K/min with a gas of 10% H2/Ar.

3.3. Catalytic Reaction

It was used as a catalyst for the hydrogenation reaction of carbon dioxide in order to
evaluate its catalytic performance. Firstly, the catalyst was placed in a mesh screen with
the help of a grinding rod to obtain an experimental catalyst of about 0.5 g (40–50 mesh).
Prior to CO2 hydrogenation, 300 mg of catalyst was diluted with 600 mg of quartz powder
(60–80 mesh) and reduced on site in flowing 5 vol % H2/Ar (gas hourly space velocity
(GHSV) = 2500 mL/g·h) at 400 ◦C for 18 h with a heating rate of 2 ◦C·min−1. Catalytic
testing was performed under industrially relevant operation conditions of 300 ◦C, 2.5 MPa,
and a H2/CO2/N2 ratio of 23/69/8 by volume (GHSV = 1500 mL/g·h) in a tubular fixed-
bed reactor with an inner diameter of 10 mm. N2 was used as the internal standard during
gas-phase product analysis. All tubing and connections were wrapped with heating tape
and heated at 150 ◦C to avoid condensation. The effluent of the reactor was analyzed
on-stream by using a gas chromatograph (GC, Agilent 7890B, Agilent Technologies, Inc.,
Santa Clara, California, United States) equipped with a thermal conductivity detector (TCD,
GC-2014AT, SHIMADZU, a TDX-01 column) and a flame ionization detector (FID, Agilent,
a capillary column of PONA type). H2, N2, CO, CH4 and CO2 were detected by the TCD,
hydrocarbons (CnHm), and the FID. To reduce the uncertainty in the product analysis, we
collected the liquid products during every 12 h for one sample. The calculated carbon
balance for all catalytic performance tests were between 95% and 105%. All listed data
were obtained at 100 h on-stream when achieving the steady state.

The conversion of CO2 (CO2 conv.) and the selectivity of hydrocarbons (CnHm sel.),
CO (CO sel.) and C=

2 − C=
4 (C=

2 − C=
4 sel.) were calculated via the following equations:

CO2 conv.(%) = CO2in−CO2out
CO2in

× 100

CO sel.(%) = COout
CO2in−CO2out

× 100

CnHm sel.(%) = CnHm×n
∑n

1 CnHm×n × 100

C=
2 − C=

4 sel.(%) = ∑4
2 CnH2n×n

∑n
1 CnHm×n × 100

Carbon balance(%) =
COout+∑n

1 CnHm×n+CO2out
CO2in

× 100



Catalysts 2023, 13, 1508 12 of 14

where CO2in and CO2out expressed the mole of CO2, the inlet and the outlet of the re-
actor, respectively. COout was the mole of CO in the outlet. CnHm was the mole of the
hydrocarbon product with carbon number n.

STYC=
2 −C=

4
= ∑4

2 CnH2n × n × MC=
2 −C=

4

TOF = CO2in−CO2out
ωFe×DFe÷MFe

where STYC=
2 −C=

4
is the time–space yield of C=

2 − C=
4 based on unit mass catalyst

(g · g−1
cat · h−1). TOF is the conversion frequency of catalyst (h−1). ωFe is the mass fraction

of Fe (%). MFe is the relative atomic mass of Fe (56 g·mol−1), and DFe is the dispersion
of Fe (%), which was based on total CO2 chemisorbed, CO2/Fes = 0.5, nCO/nFe = 0.5,
DFe (%) = 2 × ntotal CO chemisorbed/ntotal number of Fe atoms.

4. Conclusions

The iron-based catalysts containing sodium and zinc additives have a stable meso-
porous structure with graphitized carbon on the surface of the active component and are
highly selective for the production of high-value olefins by CO2 hydrogenation. In this
paper, the CO2 conversion of the FeZnNa catalyst was stable at about 59%, and the CH4
selectivity was significantly inhibited compared with other catalysts, and its STY value was
the highest 0.0436. The results showed that the presence of Na and Zn additives favored
the carburizing of Fe species to generate smaller active Fe5C2 particles, improved the
adsorption of carbon dioxide, and inhibited the deep hydrogenation of olefins, which is the
key to the conversion of carbon dioxide into olefins. Catalysts with a sinter resistance and
mesoporous resistance to collapse have more stable and long-lasting catalytic performance
than other catalysts. The catalyst in this paper has sinter resistance and mesoporous col-
lapse resistance, so it has a more stable structure than other catalysts. However, during the
above reaction, the generated water inhibits the RWGS step, which reduces the conversion
rate of CO2 and hinders the formation of olefins in the FTO process, affecting the final
catalytic performance. Therefore, the development of catalysts with hydrophobic surfaces
to ensure the stability and durability of the catalytic performance is a difficult point for
further development.
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