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Abstract: Disulfides, as fundamental scaffolds, are widely present in peptides, natural products, and
pharmaceutical molecules. However, traditional synthesis of disulfides often involves the utilization
of toxic reagents or environmentally unfriendly reaction conditions. In this work, a green and
efficient method was developed for synthesizing pyrrole disulfides using β-ketothioamides and
ethyl cyanoacetate as substrates, with lipase serving as a catalyst. Under the optimal conditions
(β-Ketothioamides (1 mmol), ethyl cyanoacetate (1 mmol), PPL (200 U), and EtOH (5 mL)), lipase
leads to the formation of pyrrole disulfides in yields of up to 88% at 40 ◦C. The related mechanism is
also speculated in this paper. This approach not only presents a new application of lipase in enzyme
catalytic promiscuity, but also offers a significant advancement in the synthetic pathway for pyrrole
disulfides and aligns with the current mainstream research direction of green chemistry, contributing
to the further development of environmentally friendly biocatalytic processes.

Keywords: lipase; catalytic promiscuity; pyrrole disulfide; β-ketothioamides; cyanoacetate

1. Introduction

β-Ketothioamides (KTAs) are versatile intermediates in organic synthesis possessing
carbonyl and thioamide functional groups. These functionalities make them intriguing and
valuable for various synthesis transformations. On the one hand, the carbonyl group in
KTAs renders them susceptible to nucleophilic attack, allowing them to act as substrates
for nucleophilic addition and leading to the formation of many heterocyclic compounds [1].
On the other hand, the thioamide functional group in KTAs undergoes isomerization to
generate thiol [2], allowing KTAs to participate in synthesis. Multiple heterocycles, such as
thiazoles [3,4], piperidines [5], pyran [6] and fused heterocycles [7,8], have been efficiently
constructed. Such heterocycles form the core structures of numerous bioactive molecules
and pharmaceutical formulations [9,10].

Pyrrole disulfides represent a fusion between pyrrole (a pentagonal heterocyclic or-
ganic compound) and disulfide functional groups and have relevance across various dis-
ciplines, such as organic synthesis [11], material science [12,13], and biochemistry [14,15].
The typical synthesis of pyrrole disulfides often involves the use of malodorous and toxic
hydrogen sulfide gas or environmentally unfriendly reaction conditions. In 2020, Hussein’s
group reported a method to synthesize an unreported pyrrole disulfide using Lawesson’s
reagent and tetracyanide at 40 ◦C, achieving a yield of over 92% (Scheme 1a) [16]. In
2022, El-Remaily and co-workers synthesized pyrrole disulfides by reacting hydrogen
sulfide with 2-(2-oxo-2-phenylethyl) malononitrile in ethanol (Scheme 1b) [17]. In the
same year, Li et al. designed an environmentally friendly synthesis method using KTAs

Catalysts 2023, 13, 1493. https://doi.org/10.3390/catal13121493 https://www.mdpi.com/journal/catalysts

https://doi.org/10.3390/catal13121493
https://doi.org/10.3390/catal13121493
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com
https://orcid.org/0000-0002-3232-4267
https://doi.org/10.3390/catal13121493
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com/article/10.3390/catal13121493?type=check_update&version=1


Catalysts 2023, 13, 1493 2 of 12

and ethyl cyanoacetates as substrates, sodium carbonate as the base (1.5 equiv.), and ace-
tonitrile as the reaction solvent to generate the target product via an umpolung reaction
(Scheme 1c) [18]. Despite these advancements, the synthesis routes for pyrrole disulfides
are yet to be fully developed. Additional sustainable and environmentally benign strategies
need to be devised.
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Scheme 1. Previous works and lipase-catalyzed synthesis of pyrrole disulfides (Reprinted/adapted
with permission from Refs. [16–18]). (a): Hussein’s work, Modather F. Hussein, 2020 [16], (b): El-
Remaily’s work, Mahmoud Abd El Aleem Ali Ali El-Remaily [17], 2022, (c): Li’s work, Ming Li,
2022 [18]).

Enzymes are large biological molecules capable of catalyzing chemical reactions within
living organisms. Their presence and activity ensure the normal functioning of life. En-
zymes display a high degree of specificity toward the reactions they catalyze, a characteristic
termed as “specificity”. However, when studied outside their natural context, some en-
zymes can catalyze a variety of different chemical reactions or act on multiple substrates,
such as hemoproteins [19,20], Baeyer–Villiger monooxygenase [21], transaminases [22]
and laccase [23]. This phenomenon is referred to as “catalytic promiscuity”. The ability
of enzymes to catalyze unnatural reactions is undeniably a substantial discovery for the
advancement of organic catalytic synthesis. Lipases are a class of enzymes ubiquitously
found in nature with a vast reservoir of resources and types, making them one of the most
extensively studied hydrolases. Their broad substrate compatibility, high stability under
extreme conditions, excellent enantioselectivity, and environmentally benign characteris-
tics have garnered widespread attention from scholars. In addition to catalyzing natural
reactions such as hydrolysis, lipases possess exceptional abilities to catalyze nonnative re-
actions [24–26]. Lipases have successfully catalyzed chemical reactions such as the Michael
addition [27], Knoevenagel reaction [28], Aldol reaction [29], Mannich reaction [30], and
oxidation reactions [31]. Our group conducted a number of studies on lipase-catalyzed
unnatural reactions in various solvents, including organic solvents [32], ionic liquids [33],
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and supercritical carbon dioxide [34]. The results fully illustrated the feasibility and strong
potential of lipase-catalyzed organic synthesis.

Compared with traditional chemical synthesis, the enzymatic strategy exhibits more
potent catalytic capabilities and aligns significantly with the principles of green chemistry.
Building upon the achievements from previous works and motivated by our interest in the
high-performance capabilities of KTAs, our group investigated the lipase-catalyzed syn-
thesis of pyrrole disulfides under mild conditions using KTAs (1a) and ethyl cyanoacetate
(2) as substrates. (Scheme 1d). To the best of our knowledge, this study provides the first
example of the biocatalytic synthesis of pyrrole disulfides.

2. Results and Discussion
2.1. Effect of Lipase Source

In the initial stages, we chose KTA (1a) and ethyl cyanoacetate (2) as template sub-
strates to screen for the optimal reaction conditions. We also evaluated the catalytic abilities
of lipases from various sources. As depicted in Table 1, all the selected lipases could afford
the desired product 3a (entries 1–6). Among them, PPL demonstrated the most superior
catalytic performance with a yield of 88%. The other lipases exhibited markedly different
catalytic effects, which could be attributed to the variations in their protein structure. Con-
trol experiments were also conducted by employing inactivated PPLs and bovine serum
albumin (entries 7–9) as catalysts, and no product formation was observed. Consistent
results were also found when the catalyst was absent in the reaction (entry 10). These
findings highlighted the crucial role of the active site of lipase in catalyzing this reaction.
Compared with PPL, the use of sodium carbonate as the catalyst resulted in a moderate
yield of the desired product 3a (entry 11). Compared to previous study, when PPL was
employed as the catalyst, higher yields were achieved under lower temperature, undoubt-
edly demonstrating the catalytic potential of lipase [18]. This finding indicated that the
enzymatic method is efficient for the synthesis of pyrrole disulfides.

Table 1. Lipase-catalyzed synthesis of pyrrole disulfide (3a) a.
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Entry Enzyme b Yield (%)

1 PPL 88
2 Cal-B 68
3 Novozym 435 77
4 CSL 40
5 CRL 48
6 MML 55
7 BSA c N.D. d

8 PPL e N.D.
9 PPL f N.D.
10 None N.D.
11 Na2CO3

g 80
a Reaction conditions: 1a (1 mmol), 2 (1 mmol), EtOH (5 mL), lipase (200 U), 40 ◦C, 24 h. b PPL (Porcine
pancreatic lipase); Cal-B (C. antarctica lipase B); Novozym 435 (a commercial immobilized Cal-B); CSL (Candida
sp. lipase); CRL (C. rugosa lipase); MML (Mucor miehei Lipase). c BSA (Bovine serum albumin). d No detected.
e PPL was denatured by heating it to 100 ◦C for 24 h in water. f PPL was denatured by treating PPL with
phenylmethanesulfonyl fluoride (PMSF). g Na2CO3 (1.5 mmol).

2.2. Effect of Solvents

In enzymatic reactions, the reaction solvent and temperature are two crucial factors
that significantly influence the outcome [35,36]. As shown in Table 2, the reaction sol-
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vent can influence the reaction extent by affecting the enzyme’s conformation and the
substrates’ solubility. Compared with nonpolar solvents, polar solvents generally exhibit
better catalytic effects. High yields could be obtained (entry 1–6) when polar solvents such
as acetonitrile, ethanol, and N, N-dimethylformamide were utilized as reaction mediums.
Conversely, solvents such as dichloromethane, toluene, and hexane resulted in yields
lower than expected (entry 7–9). These observations demonstrated the importance of polar
solvents in maintaining the catalytic efficiency of enzymes. However, even though water
is a polar solvent, the yield of the desired product was relatively low due to the limited
solubility of the substrates in water (entry 1). Therefore, water cannot be considered as
the optimal solvent. Considering that ethanol aligns more closely with green chemistry
principles than acetonitrile [37], we adopted ethanol as the optimal solvent in this reaction.

Table 2. Effect of solvents on the enzymatic synthesis of pyrrole disulfide (3a) a
.

Entry Solvent Yield (%)

1 Water 73
2 N, N-dimethylformamide 68
3 Dimethyl sulfoxide 57
4 Ethanol 88
5 Acetonitrile 89
6 Ethyl Acetate 80
7 Dichloromethane 37
8 Toluene 36
9 n-Hexane 27

a Reaction conditions: 1a (1 mmol), 2 (1 mmol), solvent (5 mL), PPL (200 U), 40 ◦C, 24 h.

2.3. Effect of Temperature

The effect of temperature on this reaction was investigated. In general, increasing the
temperature enhances the likelihood of collisions between substrate molecules and the
enzyme. However, excessive temperature can lead to enzyme deactivation, thereby ham-
pering the catalytic process [38]. Considering the thermostability and catalytic efficiency of
lipase, we assessed its catalytic activity across a temperature range from 20 ◦C to 80 ◦C to
understand the effect of temperature on this reaction (Figure 1). The results were consistent
with our expectations. Below 40 ◦C, the catalytic efficiency increased with the temperature.
The yield increased slightly with the increase in temperature from 40 ◦C to 60 ◦C. However,
beyond 60 ◦C, the yield declined due to lipase inactivation. Based on the above results, we
determined that the optimal reaction temperature is 40 ◦C.
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2.4. Effect of Lipase Dosage

The dosage of the biocatalyst has a significant impact on the reaction. Considering
the economy and efficiency of this enzymatic method, we investigated the effect of various
amounts of PPL from 0 to 350 U (Figure 2). The change was most noticeable when the
enzyme dosage was in the range of 0–150 U. When the enzyme dosage surpassed 150 U,
the change rate of yield diminished with the increase in enzyme dosage. The highest yield
was achieved at a dosage of 200 U; further increase in enzyme dosage did not result in any
significant improvement in yield. Given the cost of lipase, the dosage of 200 U is sufficient
for the reaction.
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2.5. Substrate Scope

After determining the optimal reaction conditions, we investigated the substrate scope
of the reaction. As depicted in Table 3, the reaction showed good compatibility with
various substituents (R1) on the phenyl ring, regardless of whether they were electron-
withdrawing (3b–3d) or electron-donating (3e–3g) groups. The corresponding pyrrole
disulfides were obtained with satisfactory yields ranging from 70% to 90%. Similarly,
favorable results were obtained with various substituents (R2) on the other phenyl ring
(3h–3n), and the corresponding yields ranged from 72% to 87%. Even when the phenyl
ring was replaced with a methyl group, a yield of 75% was still achieved (3o). We further
explored the substrates with substituents at the R1 and R2 positions (3p–3t), and the results
remained commendable. Whether the functional groups on R1 and R2 were electron-
withdrawing or electron-donating, lipase-catalyzed product yields manifested varying
degrees of superiority compared to those obtained through the chemical method [18].
These findings demonstrated the broad substrate applicability of PPL in catalyzing the
synthesis of pyrrole disulfides, with satisfactory yields for products containing various
types of functional group substitutions. To demonstrate the practical feasibility of the lipase-
catalyzed synthesis of pyrrole disulfides from KTAs and ethyl cyanoacetates, we designed a
corresponding decagram-scale reaction. In a 200 mL round-bottom flask containing 50 mL
of ethanol, 2.55 g of substrate 1a and 1.13 g of ethyl cyanoacetate were added. PPL was
employed as the catalytic agent (2000 U), and the reaction proceeded at 40 ◦C for 24 h.
After the completion of the reaction was confirmed through TLC, purification was carried
out, resulting in a product yield of 2.95 g corresponding to an 81% yield. This value is
higher than that reported for chemical synthesis (70% yield). These findings motivated
us to improve the catalytic performance of lipase by enzyme engineering and directed
evolution techniques. Immobilization is an efficient strategy that leads to a significant
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enhancement in enzyme stability, catalytic efficiency, and recyclability. Currently, we are
also investigating methods for immobilizing PPL to further enhance the efficiency of this
enzymatic system and will continue to report our findings in due course [39,40].

Table 3. Synthesis of pyrrole disulfides 3 catalyzed by lipase.
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2.6. Mechanistic Speculation

Based on our initial findings and previous literature, we proposed a possible mecha-
nism for this enzymatic reaction (Scheme 2) [21,41,42]. First, a thioenol is formed from KTA
1a via tautomerization and then oxidized by the dissolved molecular oxygen to produce a
dimeric intermediate I. Similarly, substrate 2 is deprotonated by lipase, generating an anion.
This anion rapidly reacts with intermediate I, undergoing C-C bond modification to form
intermediate II. The secondary amine in intermediate II undergoes N-cyclization with the
cyano carbon, producing intermediate III. Intermediate III then undergoes isomerization,
resulting in a fully substituted pyrrole IV. Finally, product 3a is formed after oxidation
and dimerization.
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3. Materials and Methods
3.1. Materials

Novozym 435 (a commercial immobilized C. antarctica lipase B, 15,000 U/g, U: one
unit of the enzyme activity was defined as the amount of enzyme required to hydrolyze
1 µmol of ethyl cyanoacetate per minute at 30 ◦C) was purchased from Sigma-Aldrich China
Co. (Beijing, China). PPL (porcine pancreas lipase, 5600 U/g), Cal-B (C. antarctica lipase B,
10,000 U/mL), and CSL (Candida sp. lipase, 6400 U/g) were purchased from Shanghai Yuan
Ye Biological Technology Company (Shanghai, China), and MML (Mucor miehei lipase,
7300 U/g) was purchased from Sigma-Aldrich China Co. (Beijing, China). All the other
chemical reagents were purchased from commercial suppliers (Bide Pharmatech, Aladdin,
Energy Chemical, Beijing, China). HRMS were obtained on an Ultima Global spectrometer
with an ESI source. NMR spectra were recorded on Bruker 400 MHz spectrometers (see
Figure S1–S20 in the Supplementary Materials). Chemical shifts are in ppm with CDCl3
as the internal standard. NMR data are presented as follows: chemical shift (δ ppm),
multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), and
coupling constant in Hertz (Hz), integration. The experiments were performed triplicate,
and all data were obtained based on the average values.

3.2. General Procedure for Synthesis of 1

Compounds 1 were synthesized according to the procedure reported in the litera-
ture [43]. A mixture of NaH (10 mmol), acetophenone (10 mmol) and 1,4-dioxane (8 mL)
was stirred at room temperature. Isothiocyanatobenzene (10 mmol) was added dropwise,
and stirring was continued at room temperature for 2 h. The solids were collected using
filtration and washed with 1,4-dioxane (10 mL). The solids were dissolved with water and
then slowly neutralized via stirring with HCl. After filtration, the filter cake was dried. The
obtained substance does not require further purification and can be directly utilized in the
subsequent steps.
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3.3. General Procedure for Lipase-Catalyzed Synthesis of 3

PPL (200 U) was added to a stirred solution of thioamides 1 (1 mmol) and ethyl
cyanoacetate 2 (1 mmol) in ethanol (5 mL); the reaction mixture was stirred at 40 ◦C for
24 h. After completion of the reaction as monitored with TLC, the solvent was concentrated
under vacuum and the residue was purified using flash column chromatography on silica
gel with petroleum ether/ethyl acetate (3:1, v/v) as the eluent to yield the desired product 3.

3.4. Data of Products

1a 3-oxo-N,3-diphenylpropanethioamide
Isolated yield: 50%, yellow solid, mp 99–100 ◦C (lit. (25) 102–103 ◦C).
HRMS (ESI-TOF, [M + Na]+): calcd for C16H15NNaOS 292.0772, found 292.0768
1H NMR (400 MHz, CDCl3, δ, ppm) 10.93 (s, 1H), 7.08 (d, J = 7.6 Hz, 2H), 7.55–7.51 (m,

1H), 7.47–7.40 (m, 4H), 7.22–7.20 (m, 2H), 4.65 (s, 2H), 2.37 (s, 3H);
13C NMR (100 MHz, CDCl3, δ, ppm) 197.1, 191.0, 137.0, 134.5, 129.5, 129.0, 128.8, 128.6,

123.6, 54.0, 21.2;
3a diethyl 5,5′-disulfanediylbis (2-amino-4-benzoyl-1-phenyl-1H-pyrrole-

3-carboxylate)
Isolated yield: 88% (321 mg), yellow solid, mp: 198–200 ◦C.
HRMS (ESI–TOF, [M + H]+): calcd for C40H35N4O6S2, 731.1993; found, 731.1992.
1H NMR (400 MHz, CDCl3) δ 7.98 (d, J = 7.6 Hz, 2H), 7.49 (t, J = 7.6 Hz, 1H), 7.42 (s,

3H), 7.33 (s, 1H), 7.25–7.16 (m, 2H), 5.19 (s, 2H), 3.97 (d, J = 7.2 Hz, 2H), 0.78 (t, J = 7.2 Hz,
3H).

3b diethyl 5,5′-disulfanediylbis (2-amino-4-(4-chlorobenzoyl)-1-phenyl-1H-pyrrole-
3-carboxylate)

Isolated yield: 79% (316 mg), yellow solid, mp: 154–156 ◦C.
HRMS (ESI-TOF, [M + Na]+): calcd for C40H32N4O6NaS2Cl2, 821.1033; found, 821.1038.
1H NMR (400 MHz, CDCl3) δ 7.93 (d, J = 8.0 Hz, 2H), 7.44 (tt, J = 6.8, 3.2 Hz, 4H),

7.37–7.29 (m, 2H), 7.20 (s, 1H), 5.22 (s, 2H), 4.01 (q, J = 7.2 Hz, 2H), 0.85 (t, J = 7.2 Hz, 3H).
3c diethyl 5,5′-disulfanediylbis (2-amino-4-(4-bromobenzoyl)-1-phenyl-1H-pyrrole-

3-carboxylate)
Isolated yield: 90% (399 mg), yellow solid, mp: 154–156 ◦C.
HRMS (ESI-TOF, [M + Na]+): calcd for C40H32N4O6NaS2Br2, 909.0028; found, 909.0037.
1H NMR (400 MHz, CDCl3) δ 7.86 (d, J = 8.0 Hz, 2H), 7.49 (d, J = 8.2 Hz, 5H), 7.20 (s,

1H), 5.22 (s, 2H), 4.02 (q, J = 7.2 Hz, 2H), 0.86 (t, J = 7.2 Hz, 3H).
3d diethyl 5,5′-disulfanediylbis(2-amino-4-(3-bromobenzoyl)-1-phenyl-1H-pyrrole-

3-carboxylate)
Isolated yield: 75% (333 mg), yellow solid, mp: 180–182 ◦C.
HRMS (ESI-TOF, [M + Na]+): calcd for C40H32N4O6NaS2Br2, 909.0028; found, 909.0037.
1H NMR (400 MHz, CDCl3) δ 8.16 (s, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.71–7.50 (m, 1H),

7.45 (s, 3H), 7.26–7.13 (m, 2H), 5.25 (s, 2H), 4.00 (q, J = 7.2 Hz, 2H), 0.84 (t, J = 7.2 Hz, 3H).
3e diethyl 5,5′-disulfanediylbis (2-amino-4-(2-bromobenzoyl)-1-phenyl-1H-pyrrole-

3-carboxylate)
Isolated yield: 70% (311 mg), yellow solid, mp: 180–182 ◦C.
HRMS (ESI-TOF, [M + Na]+): calcd for C40H32N4O6NaS2Br2, 909.0028; found, 909.0037.
1H NMR (400 MHz, CDCl3) δ 8.16 (s, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.45 (s, 3H), 7.18 (d,

J = 8.4 Hz, 2H), 5.25 (s, 2H), 4.00 (q, J = 7.2 Hz, 2H), 0.84 (t, J = 7.2 Hz, 3H).
3f diethyl 5,5′-disulfanediylbis (2-amino-4-(4-methylbenzoyl)-1-phenyl-1H-pyrrole-

3-carboxylate)
Isolated yield: 82% (311 mg), yellow solid, mp: 172–174 ◦C.
HRMS (ESI-TOF, [M + Na]+): calcd for C42H38N4O6NaS2, 781.2130; found, 781.2135.
1H NMR (400 MHz, CDCl3) δ 7.88 (d, J = 7.6 Hz, 2H), 7.41 (s, 3H), 7.16 (d, J = 23.8 Hz,

4H), 5.18 (s, 2H), 4.00 (q, J = 7.2 Hz, 2H), 2.40 (s, 3H), 0.83 (t, J = 7.2 Hz, 3H).
3g diethyl 5,5′-disulfanediylbis (2-amino-4-(4-(tert-butyl)benzoyl)-1-phenyl-1H-

pyrrole-3-carboxylate)
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Isolated yield: 71% (299 mg), yellow solid, mp: 188–190 ◦C.
HRMS (ESI-TOF, [M + Na]+): calcd for C48H50N4O6NaS2, 865.309; found, 865.314.
1H NMR (400 MHz, CDCl3) δ 7.92 (d, J = 8.0 Hz, 2H), 7.48–7.32 (m, 5H), 7.18 (s, 1H),

5.21 (s, 2H), 3.97 (d, J = 7.6 Hz, 2H), 1.37–1.23 (m, 9H), 0.72 (s, 3H).
3h diethyl 5,5′-disulfanediylbis (2-amino-4-benzoyl-1-(4-fluorophenyl)-1H-pyrrole-

3-carboxylate)
Isolated yield: 85% (326 mg), yellow solid, mp: 179–181 ◦C.
HRMS (ESI-TOF, [M + Na]+): calcd for C40H32N4O6F2NaS2, 789.1629; found, 789.1637.
1H NMR (400 MHz, CDCl3) δ 7.96 (d, J = 7.6 Hz, 2H), 7.51 (t, J = 7.6 Hz, 1H), 7.38–7.28

(m, 1H), 7.25–7.07 (m, 4H), 5.16 (s, 2H), 3.95 (q, J = 7.2 Hz, 2H), 0.76 (t, J = 7.2 Hz, 3H).
3i diethyl 5,5′-disulfanediylbis (2-amino-4-benzoyl-1-(4-chlorophenyl)-1H-pyrrole-

3-carboxylate)
Isolated yield: 87% (348 mg), yellow solid, mp: 182–184 ◦C.
HRMS (ESI-TOF, [M + Na]+): calcd for C40H32N4O6NaS2Cl2, 821.1033; found, 821.1038.
1H NMR (400 MHz, CDCl3) δ 7.95 (d, J = 7.6 Hz, 2H), 7.51 (t, J = 7.2 Hz, 1H), 7.43–7.39

(m, 2H), 7.35 (d, J = 7.2 Hz, 2H), 7.26–7.09 (m, 2H), 5.19 (s, 2H), 3.95 (d, J = 7.2 Hz, 2H), 0.76
(d, J = 7.2 Hz, 3H).

3j diethyl 5,5′-disulfanediylbis (2-amino-4-benzoyl-1-(4-bromophenyl)-1H-pyrrole-
3-carboxylate)

Isolated yield: 84% (373 mg), yellow solid, mp: 238–240 ◦C.
HRMS (ESI-TOF, [M + Na]+): calcd for C40H32N4O6NaS2Br2, 909.0028; found, 909.0037.
1H NMR (400 MHz, CDCl3) δ 7.99–7.91 (m, 2H), 7.61–7.46 (m, 3H), 7.38–7.31 (m, 2H),

7.12 (s, 2H), 5.19 (s, 2H), 3.95 (q, J = 7.2 Hz, 2H), 0.85–0.72 (m, 3H).
3k diethyl 5,5′-disulfanediylbis (2-amino-4-benzoyl-1-(p-tolyl)-1H-pyrrole-

3-carboxylate)
Isolated yield: 80% (303 mg), yellow solid, mp: 210–212 ◦C.
HRMS (ESI-TOF, [M + Na]+): calcd for C42H38N4O6NaS2, 781.2130; found, 781.2135.
1H NMR (400 MHz, CDCl3) δ 7.98 (d, J = 7.6 Hz, 2H), 7.55–7.42 (m, 1H), 7.34 (dd,

J = 10.8, 3.6 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 7.07 (s, 2H), 5.17 (s, 2H), 3.96 (q, J = 7.2 Hz, 2H),
2.39 (s, 3H), 0.77 (t, J = 7.2 Hz, 2H).

3l diethyl 5,5′-disulfanediylbis (2-amino-4-benzoyl-1-(4-isopropylphenyl)-1H-
pyrrole-3-carboxylate)

Isolated yield: 76% (310 mg), yellow solid, mp: 220–222 ◦C.
HRMS (ESI-TOF, [M + Na]+): calcd for C46H46N4O6NaS2, 837.277; found, 837.282.
1H NMR (400 MHz, CDCl3) δ 7.81 (d, J = 7.6 Hz, 2H), 7.45 (t, J = 7.2 Hz, 1H), 7.29 (d,

J = 12.4 Hz, 2H), 5.37 (d, J = 22.8 Hz,2H), 3.87 (d, J = 7.6 Hz, 2H), 1.45 (d, J = 6.8 Hz, 6H),
0.66 (t, J = 7.2 Hz, 3H).

3m diethyl 5,5′-disulfanediylbis (2-amino-4-benzoyl-1-(m-tolyl)-1H-pyrrole-
3-carboxylate)

Isolated yield: 72% (273 mg), yellow solid, mp: 212–214 ◦C.
HRMS (ESI-TOF, [M + Na]+): calcd for C42H38N4O6NaS2, 781.2130; found, 781.2135.
1H NMR (400 MHz, CDCl3) δ 8.02–7.95 (m, 2H), 7.52–7.30 (m, 4H), 7.22 (d, J = 8.8 Hz,

1H), 6.99 (s, 2H), 5.20 (s, 2H), 3.97 (q, J = 7.2 Hz, 2H), 2.33 (s, 3H), 0.78 (t, J = 7.2 Hz, 3H).
3n diethyl 5,5′-disulfanediylbis (2-amino-4-benzoyl-1-(o-tolyl)-1H-pyrrole-

3-carboxylate)
Isolated yield: 77% (292 mg), yellow solid, mp: 210–212 ◦C.
HRMS (ESI-TOF, [M + Na]+): calcd for C42H38N4O6NaS2, 781.2130; found, 781.2135.
1H NMR (400 MHz, CDCl3) δ 7.79–7.72 (m, 2H), 7.57 (tt, J = 15.2, 7.2 Hz, 3H), 7.43–7.33

(m, 4H), 5.58 (s, 2H), 4.34 (q, J = 7.2 Hz, 2H), 2.21 (s, 3H), 0.85 (t, J = 7.2 Hz, 3H).
3o diethyl 5,5′-disulfanediylbis (2-amino-4-benzoyl-1-methyl-1H-pyrrole-

3-carboxylate)
Isolated yield: 75% (227 mg), yellow solid, mp: 190–192 ◦C.
HRMS (ESI-TOF, [M + Na]+): calcd for C30H30N4O6NaS2, 629.1970; found, 629.2135.
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1H NMR (400 MHz, CDCl3) δ 7.49 (d, J = 7.2 Hz, 3H), 7.35–7.29 (m, 3H), 5.10 (d,
J = 13.6 Hz, 2H), 3.89 (dq, J = 9.2, 7.2 Hz, 2H), 3.33 (s, 3H), 0.71 (q, J = 7.6 Hz, 3H).

3p diethyl 5,5′-disulfanediylbis (2-amino-4-(4-methylbenzoyl)-1-(p-tolyl)-1H-
pyrrole-3-carboxylate)

Isolated yield: 73% (287 mg), yellow solid, mp: 160–162 ◦C.
HRMS (ESI-TOF, [M + Na]+): calcd for C44H42N4O6NaS2, 809.2450; found, 809.2455.
1H NMR (400 MHz, CDCl3) δ 7.86 (d, J = 7.6 Hz, 2H), 7.19 (s, 6H), 5.15 (s, 2H), 3.98 (q,

J = 7.2 Hz, 2H), 2.39 (d, J = 3.6 Hz, 6H), 0.82 (d, J = 7.2 Hz, 3H).
3q diethyl 5,5′-disulfanediylbis (2-amino-4-(4-chlorobenzoyl)-1-(p-tolyl)-1H-

pyrrole-3-carboxylate)
Isolated yield: 77% (319 mg), yellow solid, mp: 134–136 ◦C.
HRMS (ESI-TOF, [M + Na]+): calcd for C42H36N4O6Cl2NaS2, 849.1351; found, 849.1345.
1H NMR (400 MHz, CDCl3) δ 8.07 (s, 1H), 7.58 (s, 1H), 7.46 (t, J = 10.4 Hz, 2H), 7.36

(t, J = 7.2 Hz, 2H), 6.90 (s, 2H), 5.03 (s, 2H), 3.95 (q, J = 7.2 Hz, 2H), 2.28 (s, 3H), 0.80 (t,
J = 7.2 Hz, 3H).

3r diethyl 5,5′-disulfanediylbis (2-amino-1-(4-chlorophenyl)-4-(4-methylbenzoyl)-
1H-pyrrole-3-carboxylate)

Isolated yield: 80% (331 mg), yellow solid, mp: 134–136 ◦C.
HRMS (ESI-TOF, [M + Na]+): calcd for C42H36N4O6Cl2NaS2, 849.1351; found, 849.1345.
1H NMR (400 MHz, CDCl3) δ 7.86 (d, J = 7.6 Hz, 2H), 7.26–7.05 (m, 6H), 5.16 (s, 2H),

3.98 (q, J = 7.2 Hz, 2H), 2.41 (s, 3H), 0.81 (d, J = 8.4 Hz, 3H).
(3s) diethyl 5,5′-disulfanediylbis (2-amino-4-(4-bromobenzoyl)-1-(4-bromophenyl)-

1H-pyrrole-3-carboxylate)
Isolated yield: 81% (423 mg), yellow solid, mp: 188–190 ◦C.
HRMS (ESI-TOF, [M + Na]+): calcd for C40H30N4O6NaS2Br4, 1068.8299; found,

1068.8304.
1H NMR (400 MHz, CDCl3) δ 7.81 (d, J = 8.0 Hz, 2H), 7.48 (d, J = 8.0 Hz, 2H), 7.10 (s,

2H), 5.23 (s, 2H), 3.98 (dd, J = 17.2, 8.0 Hz, 2H), 0.84 (t, J = 7.2 Hz, 3H).
(3t) diethyl 5,5′-disulfanediylbis (2-amino-4-(4-bromobenzoyl)-1-(o-tolyl)-1H-

pyrrole-3-carboxylate)
Isolated yield: 79% (362 mg), yellow solid, mp: 181–183 ◦C.
HRMS (ESI-TOF, [M + Na]+): calcd for C42H36N4O6NaS2Br2, 937.0044; found, 937.0049.
1H NMR (400 MHz, CDCl3) δ 7.84 (d, J = 8.0 Hz, 2H), 7.47 (d, J = 8.0 Hz, 2H), 7.31–7.20

(m, 2H), 6.98 (s, 2H), 5.23 (s, 2H), 4.01 (q, J = 7.2 Hz, 2H), 2.33 (s, 3H), 0.86 (t, J = 7.2 Hz, 3H).

4. Conclusions

We successfully developed a lipase-catalyzed method for the synthesis of pyrrole
disulfides using KTAs and ethyl cyanoacetate as substrates. As the biocatalyst, PPL offers
several advantages such as being environmentally friendly and achieving high yields. This
enzymatic method utilized various substrates, and the transformation was completed in
ethanol at 40 ◦C, with yields ranging from 70% to 90%. Moreover, it achieved a promising
yield (70%) in a scale-up experiment. Simultaneously, based on control experiments, we
identified the crucial role of the active center of lipase in catalyzing this reaction and
speculated the reaction mechanism for the synthesis of pyrrole disulfides.
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1H NMR of 3f. Figure S7. 1H NMR of 3g. Figure S8. 1H NMR of 3h. Figure S9. 1H NMR of 3i. Figure
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