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Abstract: Catalytic ozonation, with enhanced efficiency and reduced byproduct formation at lower
temperatures, proved to be efficient in ethyl acetate (EA) degradation. In this work, MMn2O4

(M = Cu, Co, Ni, Mg) catalysts were prepared via a redox-precipitation method to explore the
catalytic ozonation mechanism of EA. Among all the catalysts, CuMn exhibited superior catalytic
activity at 120 ◦C, achieving nearly 100% EA conversion and above 90% CO2 selectivity with an
O3/EA molar ratio of 10. Many characterizations were conducted, such as SEM, BET and XPS, for
revealing the properties of the catalysts. Plentiful active sites, abundant oxygen vacancies, more acid
sites and higher reduction ability contributed to the excellent performance of CuMn. Moreover, the
addition of NO induced a degree of inhibition to EA conversion due to its competition for ozone.
H2O had little effect on the catalytic ozonation of CuMn, as the conversion of EA could reach a
stable platform at ~89% even with 5.0 vol.% of H2O. The presence of SO2 usually caused catalyst
deactivation. However, the conversion could gradually recover once SO2 was discontinued due to
the reactivation of ozone. A detailed reaction mechanism for catalytic ozonation was proposed via in
situ DRIFTS measurements and DFT calculations.

Keywords: ethyl acetate; low temperature; catalytic ozonation; MnOx; reaction mechanism

1. Introduction

As major contributors to air pollution, volatile organic compounds (VOCs) pose
significant threats to both ecological systems and the human body. VOCs are mainly emitted
from many industry process, like chemical processes, petroleum refineries, transportation
and so on. VOCs are also considered important precursors of ground-level ozone, PM2.5
and photochemical smog [1–3]. Moreover, long-term exposure to VOCs may result in
serious diseases like lung cancer, leukemia, memory loss, etc. [4]. On account of rapid
urbanization and industrialization, the emissions of VOCs exhibit an upward trend [1].
Presently, many countries have released strict environmental legislations to regulate VOC
emissions. Thus, developing an effective method for VOC “green” elimination can have
no delay.

Compared to other treatment methods, i.e., physical adsorption [5], biological degra-
dation [6], photocatalytic degradation [7], etc., catalytic oxidation is recognized as one of
the most effective techniques for the direct destruction of VOC molecules and less sec-
ondary pollution generation [8]. However, its higher reaction temperature and incomplete
oxidation result in higher energy consumption and toxic intermediate by-product forma-
tion [9]. The catalytic ozonation method proved to be more attractive in VOC degradation,
especially at low temperatures. The introduction of ozone to catalytic reactions can achieve
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higher efficiency at lower temperatures and suppress the generation of by-products due to
its strong oxidability [10]. Moreover, the participation of catalysts could lower the activa-
tion energy and accelerate the reaction rate [11]. In this way, the performance of catalytic
ozonation is significantly influenced by the activity of catalysts. Although noble metal
catalysts perform well in VOC removal, their high price, catalyst poisoning and sintering
effects limit their practical application. By contrast, transition metal catalysts (Mn, Cu, Co,
Ni, etc.) with higher electronic mobility, better oxidation capacity and favorable stability
have more potential for the catalytic ozonation of VOCs [12].

Among them, MnOx has been well explored due to its abundant oxygen species,
superior redox properties and multiple valence states. Li et al. [13] prepared different
crystal phases of MnO2 (α-, β-, γ- and δ-) and analyzed the relationship between their
chemical properties and catalytic activity. This revealed that a larger specific surface area,
more oxygen vacancies and better redox ability contributed to the better performance of
MnO2. Besides morphology regulation, doping active metals is an efficient method to
improve the performance of catalysts under different reaction conditions. Xiang et al. [14]
doped Cu on hollow urchin-like MnO2, and the catalyst attained a steady 100% DCM
(dichloromethane) conversion at 120 ◦C with the promotion of ozone (O3/DCM molar
ratio of about 10). A higher Oads content and weak acidity, enhanced low temperature
reducibility and abundant oxygen vacancies contributed to its excellent performance.

The exhaust gas from industrial kilns usually contains multi-species VOCs, and ethyl
acetate (EA) is a typical species which is difficult to oxidize completely. Commonly used
in the coating, printing, pharmaceutical and chemical industries, it may lead to pollution
of the environment and pose chronic toxicity to human beings [1]. Konsolakis et al. [15]
synthesized Ce-Co bimetallic catalysts and applied them to EA catalytic oxidation. The
catalysts containing 20 wt.% of Co had the best catalytic activity, achieving nearly a complete
conversion of EA at 260 ◦C. Zhu et al. [16] prepared an effective MnCu catalyst to oxidize
EA with O2. At around 210 ◦C, the conversion of EA reached nearly 100% for the activation
of abundant oxygen vacancies. Moreover, it has been discovered that the synergistic effects
of composite oxides contribute to the significant enhancement of catalytic activities, such
as Cu–Mn–O [17], Co–Mn–O [18], Ni–Mn–O [19] and Mg–Mn–O [20]. Due to its lower
working temperature and higher selectivity to CO2, catalytic ozonation has become one of
the popular methods for VOC degradation in recent years. Unfortunately, the research on
EA catalytic ozonation is still very limited.

Herein, a series of MMn2O4 (M = Cu, Co, Ni and Mg) catalysts with spinel structures
were prepared through the redox-precipitation method to study the catalytic ozonation
effect for the degradation of EA. During the activity tests, the EA conversion efficiency and
COx selectivity of catalysts were evaluated. Furthermore, the physicochemical properties
(textual properties, oxygen species, acidity, element valance, etc.) were determined by
various characterization methods, such as SEM, XRD, BET, XPS and TPD/TPR. As a typical
pollutant, NOx usually coexists with EA in the surface coating industry, so the effect of NO
was also evaluated in this work. The sulfur and water vapor resistance were also tested for
the prepared catalyst, as SO2 and H2O usually co-exist in flue gas. Additionally, for further
research on intermediates’ formation and the reaction mechanism during the catalytic
ozonation process, an analysis of in situ DRIFTs combined with the DFT calculation was
carried out as well.

2. Results and Discussion
2.1. Catalytic Ozonation of EA

The EA conversion and CO2/CO selectivity are shown in Figure 1 with ozone and
CuMn, CoMn, NiMn and MgMn catalysts. The reaction temperature ranged from 40 to
140 ◦C, and the O3/EA molar ratio was set to 10 according to the complete oxidation of EA
according to Equation (1).
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Figure 1. Catalytic ozonation of EA over prepared catalysts (initial concentration of O3: 500 ppm;
EA: 50 ppm). (a) EA conversion; (b) CO/CO2 selectivity.

In the whole range of temperatures, CuMn exhibited the best catalytic performance,
achieving 99% EA conversion at 120 ◦C. Above 80 ◦C, the EA conversion of CuMn was
kept over 90%, as shown in Figure 1a. Moreover, it also had the highest CO2 selectivity and
the lowest CO selectivity, demonstrating its better capability for deep oxidation, as shown
in Figure 1b. Slightly more than NiMn, the EA conversion of MgMn could reach around
98% at 120 ◦C. However, the CO2 selectivity of NiMn was relatively higher, and its CO
selectivity was lower than MgMn, indicating the incomplete oxidation of MgMn. However,
CoMn shows the lowest catalytic activity, with only 89% EA conversion achieved at 120 ◦C,
generating much more CO and less CO2 at the same time.

C4H8O2 + (10 − x)O3 → xCO + (4 − x)CO2 + (10 − x)O2 + 4H2O (1)

Overall, T90 (the temperature of 90% EA conversion) increased in the following order:
CuMn (70 ◦C) < MgMn (76 ◦C) < NiMn (80 ◦C) < CoMn (135 ◦C). T50 increased in the
following order: CuMn (40 ◦C) < MgMn (43 ◦C) < NiMn (45 ◦C) < CoMn (47 ◦C). With
the temperature increasing, the EA conversion and selectivity of CO2 were all improved,
while the formation of CO was suppressed. However, the conversion of EA exhibited
little increase above 120 ◦C, due to the acceleration of ozone decomposition at higher
temperatures [21].

2.2. Catalyst Characterization
2.2.1. Crystalline Structures

The XRD patterns of the CuMn, CoMn, NiMn and MgMn catalysts are depicted in
Figure 2, and the catalysts show characteristic diffraction peaks of α-MnO2 (PDF#44-0141)
at 12.8, 28.8◦, 37.5◦ and 39.0◦, corresponding to the planes of (1 1 0), (3 1 0), (2 1 1), and
(3 3 0), respectively [22]. CuMn demonstrated several well-dispersive diffraction peaks
at 18.5◦, 35.8◦ and 37.5◦, which could be linked to the (1 1 1), (3 1 1) and (2 2 2) planes of
spinel-type-structured CuMn2O4 (PDF#76-2296) [23]. The characteristic peaks of CoMn
appearing at 18.2◦ and 36.8◦ were identified as the (1 0 1) and (2 0 2) lattice planes of a body-
centered tetragonal CoMn2O4 spinel (PDF#77-0471) [24]. Meanwhile, the peaks at 18.3◦

and 37.3◦ were ascribed to the (1 1 1) and (2 2 2) planes of cubic NiMn2O4 (PDF#01-1110),
while the peaks at 18.2◦, 36.3◦ and 38.8◦ should be linked to the (1 0 1), (2 1 1) and (0 0 4)
planes of MgMn2O4 (PDF#72-1336), respectively [25,26]. In contrast, CoMn exhibited a
higher intensity of diffraction peaks, indicating the strengthening of crystallinity and an
increasing particle size, which were not conducive to the enhancement of catalytic activity.
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Figure 2. XRD patterns of prepared catalysts.

To reveal the catalysts’ morphologies, SEM images were acquired, and the pictures
are shown in Figure 3. Apparently, CuMn, CoMn and MgMn presented similar bulk-like
structures, while NiMn consisted of numerous spherical particles. However, the porous
structure facilitated the surface defect formation of CuMn, providing a larger contact area
for reactants for deep oxidation [27]. An EDS analysis was carried out to prove the elements’
distribution (Figure S2). The images revealed that the Mn, Cu, Co, Ni and Mg elements
were uniformly dispersed in their corresponding catalysts, which was favorable for active
site exposure and defect formation [28].
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Figure 3. SEM images of (a1,a2) CuMn, (b1,b2) CoMn, (c1,c2) NiMn and (d1,d2) MgMn.

2.2.2. Textual Properties

The N2 adsorption–desorption isotherms and the pore size distribution curves are
illustrated in Figure S3. Without a saturated adsorption platform, the isotherms of the
catalysts showed the characteristics of a typical type IV isotherm with a type H3 hysteresis
loop, indicating the irregular pore structures with abundant mesopores of catalysts [29].
And the corresponding specific surface area, pore volume and average pore diameter are
calculated and shown in Table 1. According to the literature, a higher specific surface area
would facilitate the formation of more defects, which was conductive to the generation of
active sites [14]. In the meantime, more active sites applied for adsorption and ozonation
ultimately enhance catalytic performance [30]. Clearly, CuMn exhibited the largest surface
area (126.6 m2·g−1) and pore volume (0.52 cm3·g−1), while the surface area (59.3 m2·g−1)
and pore volume (0.20 cm3·g−1) of CoMn were fairly lower, in accordance with their best
and worst catalytic performance.
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Table 1. Textual properties of prepared catalysts.

Catalyst BET Surface Area
/m2·g−1

Pore Volume a

/cm3·g−1
Average Pore

Diameter b/nm

CuMn 126.6 0.52 17.6
CoMn 59.3 0.20 15.7
NiMn 116.6 0.26 8.2
MgMn 100.2 0.25 6.9

a BJH desorption cumulative volume of pores. b BJH desorption average pore diameter.

2.2.3. Surface Properties

To characterize the valance states and the distribution of surface elemental species,
an XPS analysis was conducted, and the results are shown in Figure 4. The proportion of
each species was determined by the deconvolution of XPS curves and tabulated in Table 2.
As depicted in Figure 4a, the Mn 2p3/2 spectrum consisted of two characteristic peaks at
~642.0 eV and 643.7 eV, corresponding to Mn3+ and Mn4+ species, respectively. For all the
catalysts, Mn3+ was the main Mn species, and the content of Mn3+ decreased in the order
CuMn (65.8%) > MgMn (65.5%) > NiMn (64.0%) > CoMn (63.1%), consistent with the trends
of catalytic activity. It is reported that Mn3+ can trigger the Jahn–Teller distortion, and to
sustain charge balance, oxygen vacancies are created (Equation (2), Vo refers to oxygen
vacancy) [31]. Additionally, oxygen vacancies could promote the decomposition of ozone
into more active oxygen species, which is favorable for EA catalytic ozonation [32,33].

4 Mn4+ + O2− → 4 Mn4+ + 1/2 O2 + 2e/Vo → 2 Mn4+ + 2 Mn3+ + 1/2 O2 + Vo (2)

Catalysts 2023, 13, 1491 5 of 16 
 

 

Table 1. Textual properties of prepared catalysts. 

Catalyst 
BET Surface Area 

/m2·g−1 

Pore Volume a 

/cm3·g−1 

Average Pore  

Diameter b/nm 

CuMn 126.6 0.52 17.6 

CoMn 59.3 0.20 15.7 

NiMn 116.6 0.26 8.2 

MgMn 100.2 0.25 6.9 
a BJH desorption cumulative volume of pores. b BJH desorption average pore diameter. 

2.2.3. Surface Properties 

To characterize the valance states and the distribution of surface elemental species, 

an XPS analysis was conducted, and the results are shown in Figure 4. The proportion of 

each species was determined by the deconvolution of XPS curves and tabulated in Table 

2. As depicted in Figure 4a, the Mn 2p3/2 spectrum consisted of two characteristic peaks at 

~642.0 eV and 643.7 eV, corresponding to Mn3+ and Mn4+ species, respectively. For all the 

catalysts, Mn3+ was the main Mn species, and the content of Mn3+ decreased in the order 

CuMn (65.8%) > MgMn (65.5%) > NiMn (64.0%) > CoMn (63.1%), consistent with the 

trends of catalytic activity. It is reported that Mn3+ can trigger the Jahn–Teller distortion, 

and to sustain charge balance, oxygen vacancies are created (Equation (2), Vo refers to 

oxygen vacancy) [31]. Additionally, oxygen vacancies could promote the decomposition 

of ozone into more active oxygen species, which is favorable for EA catalytic ozonation 

[32,33]. 

4 Mn4+ + O2− → 4 Mn4+ + 1/2 O2 + 2e/Vo → 2 Mn4+ + 2 Mn3+ + 1/2 O2 + Vo (2) 

 

 

Figure 4. XPS spectra of (a) Mn 2p, (b) Mn 3s and (c) O 1s for synthesized catalysts. 

Table 2. Distribution of Mn ions and O species of prepared catalysts based on XPS results. 

Catalysts 
Mn 2p3/2 O 1s 

AOS Mn3+/Mn4+ Oad/Ola 
Mn4+ (%) Mn3+ (%) Ola (%) Oad (%) 

CuMn 34.2 65.8 44.6 55.4 3.49 1.92 1.24 

CoMn 36.9 63.1 51.4 48.6 3.80 1.72 0.95 

NiMn 36.0 64.0 49.4 50.6 3.71 1.78 1.02 

MgMn 34.5 65.5 47.7 52.3 3.61 1.90 1.10 

 

Figure 4b presents the XPS spectra and the binding energy of the doublet splitting 

(ΔEs) of Mn 3s. The average oxidation state (AOS) of Mn species could be calculated 

through Equation (3) [34], and the AOS value increased in the following sequence: CuMn 

(3.49) < MgMn (3.61) < NiMn (3.71) < CoMn (3.80). A lower AOS value demonstrates the 

660 655 650 645 640 635

Mn 2p3/2

CuMn

(a) Mn 2p

CoMn

Mn
3+

Mn
4+Mn 2p1/2

NiMn

MgMn

Binding Energy (eV)

In
te

n
si

ty
 (

a
.u

.)

94 92 90 88 86 84 82

CuMn

(b) Mn 3s
Es=4.85

Es=4.58

CoMn

In
te

n
si

ty
 (

a
.u

.)

Es=4.66

NiMn

Es=4.75

MgMn

Binding Energy (eV)
536 534 532 530 528 526

(c) O 1s OlaOad

CuMn

CoMn

In
te

n
si

ty
 (

a
.u

.)

NiMn

MgMn

Binding Energy (eV)

Figure 4. XPS spectra of (a) Mn 2p, (b) Mn 3s and (c) O 1s for synthesized catalysts.

Table 2. Distribution of Mn ions and O species of prepared catalysts based on XPS results.

Catalysts
Mn 2p3/2 O 1s

AOS Mn3+/Mn4+ Oad/OlaMn4+ (%) Mn3+ (%) Ola (%) Oad (%)

CuMn 34.2 65.8 44.6 55.4 3.49 1.92 1.24
CoMn 36.9 63.1 51.4 48.6 3.80 1.72 0.95
NiMn 36.0 64.0 49.4 50.6 3.71 1.78 1.02
MgMn 34.5 65.5 47.7 52.3 3.61 1.90 1.10

Figure 4b presents the XPS spectra and the binding energy of the doublet splitting
(∆Es) of Mn 3s. The average oxidation state (AOS) of Mn species could be calculated
through Equation (3) [34], and the AOS value increased in the following sequence: CuMn
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(3.49) < MgMn (3.61) < NiMn (3.71) < CoMn (3.80). A lower AOS value demonstrates the
generation of more oxygen vacancies, which are advantageous for the activation of ozone
and the oxidation of EA [35,36]. Among the catalysts tested, CuMn exhibited the lowest
AOS value, corresponding to its highest content of Mn3+ and best catalytic performance.

AOS = 8.956 − 1.126∆Es (3)

The curves of the O 1s spectra had two distinct peaks upon deconvolution (Figure 4c),
and the peak at ~529.8 eV was attributed to lattice oxygen species (Ola), while the peak
at ~530.9 was related to surface-adsorbed oxygen species (Oad), respectively [37]. As
depicted in Table 2, the proportion of Oad decreased as follows: CuMn (55.4%) > MgMn
(52.3%) > NiMn (50.6%) > CoMn (48.6%). Abundant surface-adsorbed oxygen species
(Oad) accelerate the formation of oxygen vacancies, which could create more active sites
for ozone decomposition, reactive oxygen species adsorption, and EA degradation [38,39].
For CoMn, its ratio of Oad/Ola was relatively lower, resulting in its poor performance in
catalytic activity tests.

Overall, the results of the XPS analysis were consistent with the performance of the
catalysts to some extent. Among all the catalysts, CuMn possessed the highest Mn3+ and
Oad contents and a relatively lower AOS value, which promoted the generation of oxygen
vacancies and active sites, consequently accelerating the progress of the catalytic reaction.

2.2.4. Temperature-Programmed Studies

As shown in Figure 5a, the reducibility of the prepared catalysts was evaluated through
H2-TPR profiles. The successive reduction of Cu2+ → Cu+ → Cu0 formed two peaks at
156 and 245 ◦C for the CuMn catalyst, while the peak at around 416 ◦C was ascribed
to the reduction of Co2+ to Co0 for CoMn [40,41]. As for the NiMn catalyst, the broad
peak centered at 383 ◦C resulted from the reduction of Ni2+ to Ni [42]. And the peaks
at 270~360 ◦C were assigned to the successive reduction process of MnO2 → Mn2O3 →
Mn3O4 →MnO from Mn4+ to Mn2+ [43]. Moreover, the reduction temperature of CuMn
was relatively lower than that of the other three catalysts, contributing to more active oxygen
species and its better performance at low temperatures [31,44]. As tabulated in Table 3, the
H2 uptake amount increased in the following order: MgMn (8.25 mmol·gcat

−1) < NiMn
(9.29 mmol·gcat

−1) < CuMn (9.35 mmol·gcat
−1) < CoMn (10.2 mmol·gcat

−1). Nevertheless,
the order did not accord with the activity tests, suggesting that there is no direct correlation
between H2 uptake amount and catalytic activity.
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Table 3. Amount of O2, NH3 desorption and H2 uptake over synthesized catalysts.

Catalyst H2 Uptake
/(mmol·gcat−1)

NH3 Desorption
/(mmol·gcat−1)

O2 Desorption
/(a.u.·gcat−1)

CuMn 9.27 3.86 5.98
CoMn 10.2 3.69 3.94
NiMn 9.29 3.84 4.18
MgMn 8.25 3.81 5.45

To investigate the catalysts’ surface acidity, NH3-TPD experiments were conducted,
and the profiles are shown in Figure 5b. With different strengths, the acid sites could be
divided into weak acidity (100~280 ◦C), moderate acidity (280~450 ◦C) and strong acidity
(450~600 ◦C), respectively [45]. Apparently, all the catalysts exhibited both weak and strong
active sites, assigned to Lewis and Brönsted acid sites, respectively. In general, Lewis
acid sites promote the cleavage of C–C bonds and the deep oxidation of VOCs at low
temperatures due to the generation of active oxygen species, while Brönsted acid sites
are highly related to VOC adsorption [46,47]. Thus, surface acidity was closely linked
to the ozonation process of EA, including EA adsorption, ozone activation and complete
degradation. The total acid site amount of CuMn was the highest, ca. 3.86 mmol·gcat

−1,
fitting with its excellent catalytic activity. With the lowest total acid sites (3.69 mmol·gcat

−1),
CoMn did not perform well in the EA ozonation. Hence, creating more surface acidity
could be a possible way to optimize catalyst design to remove VOCs.

O2-TPD profiles are researched and shown in Figure 5c to further reveal the properties
of oxygen species. Usually, oxygen species are divided into physically adsorbed oxygen
(<250 ◦C), surface lattice oxygen (250~650 ◦C) and bulk lattice oxygen (>650 ◦C) [48]. The
total O2 desorption amounts of catalysts are tabulated in Table 3 and decreased in the
sequence CuMn (5.98 mmol·gcat

−1) > NiMn (5.45 mmol·gcat
−1) > MgMn (4.18 mmol·gcat

−1)
> CoMn (3.94 mmol·gcat

−1), consistent with the order of activity tests. With the highest EA
conversion, CuMn exhibited better oxygen adsorption ability and higher oxygen species
mobility, confirming that more active oxygen species were beneficial for the degradation of
EA [49].

2.3. Effect of NO

As a common pollutant which usually co-exists with EA in surface coating industries,
NO can also be deeply oxidized by O3. To evaluate the effect of the presence of NO on
EA ozonation, 100 ppm NO was added to the flue gas, and the results are illustrated in
Figure 6. According to the stoichiometric reaction (Equation (4)), the theoretical molar ratio
of O3/NO for complete oxidation is 1.5. As presented in Figure 6a, the addition of NO
induced a degree of inhibition in EA conversion. In comparison, CuMn still achieved the
best catalytic activity, reaching 87% EA conversion at 140 ◦C. However, compared with the
individual ozonation of EA (Figure 1a), the efficiencies of the catalysts were all reduced.
The order of T50 was consistent with the individual ozonation and increased as follows:
CuMn (43 ◦C) < MgMn (49 ◦C) < NiMn (52 ◦C) < CoMn (56 ◦C). This showed that T50
shifted to higher temperatures as well. Meanwhile, the selectivity of CO2 also exhibited
a certain decline, while the selectivity of CO increased (Figure 6b), indicating that the
addition of NO exacerbated the incomplete oxidation of EA to some extent.

2NO + 3O3 = N2O5 + 3O2 (4)

The NO conversion and NO2 selectivity are shown in Figures 6c and 6d, respectively.
All the catalysts achieved their highest NO conversion at 60 ◦C and decreased in the
following sequence: CuMn (94%) > CoMn (93%) > NiMn (92%) > MgMn (85%). Above
60 ◦C, the NO conversion presented a downward trend, while the EA conversion improved
with temperature increasing. Clearly, there was a competitive effect between the NO
and EA molecules, and the ozonation of NO was prior to the ozonation of EA at lower
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temperatures. With a rise in temperature, the NO conversion decreased to ~70%, and the
NO2 selectivity rose to ~65% at 140 ◦C as EA may compete with NO for more ozone at
higher temperatures. No N2O was observed during the reaction process; hence, lower NO2
selectivity demonstrated the formation of more N2O5, while higher NO2 selectivity proved
the suppression of deep NO oxidation. Moreover, with a higher NO conversion and lower
NO2 selectivity, CuMn performed well in both NO and EA ozonation, proving its great
potential for the simultaneous elimination of EA and NOx.
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Figure 6. Effect of NO on EA catalytic ozonation over synthesized catalysts. (a) EA conversion,
(b) CO2/CO selectivity, (c) NO conversion and (d) NO2 selectivity. (Initial concentration of O3 was
500 ppm, NO was 100 ppm and EA was 50 ppm).

2.4. Effect of SO2 and H2O

To evaluate the interference of H2O and SO2, long-time resistance tests were conducted
on CuMn due to its excellent catalytic performance at 120 ◦C. As shown in Figure S4a,
the simulated flue gas was successively introduced with 2.5 and 5.0 vol.% of H2O. The
catalytic efficiency dropped slightly, reaching a stable platform at ~97% in 2.5 vol.% of H2O
and ~89% in 5.0 vol.% of H2O, respectively. However, with the removal of H2O, the EA
conversion efficiency gradually recovered, indicating that the deactivation caused by H2O
was reversible. Furthermore, the presence of H2O facilitated the creation of OH-active
radicals, which were conducive to the further oxidation of CO and other intermediates to
CO2 [50].

As shown in Figure S4b, under 50 ppm of SO2, the catalytic efficiency slightly de-
clined to ~97%. While under 100 ppm of SO2, the EA conversion reduced rapidly to 79%.
Apparently, the introduction of SO2 caused sulphur poisoning and incomplete oxidation
as it occupied the active sites of the catalyst. However, different from catalytic oxidation,
where the poisoning of SO2 was irreversible, the EA conversion in catalytic ozonation could
gradually recover once SO2 was stopped due to the activation of ozone [51].
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2.5. In Situ DRIFTS Measurement

The formation of intermediate species during catalytic ozonation was investigated
through an in situ DRIFTS analysis over the CuMn catalyst. Firstly, 50 ppm of EA with
N2 as a background gas was introduced to evaluate the EA adsorption process (Figure S5).
The bands centered at 1710, 1562, 1433, 1385, 1280 and 1053 cm−1 could be attributed
to the stretching vibrations of C=O, the asymmetric stretching of COO−, CH3 bending
vibrations, CH3 bending, the stretching of C–O and the C–O–C stretching vibrations of
EA, respectively [52,53]. Moreover, the bands exhibited an increase in intensity over time,
proving the gradual accumulation of EA on the catalyst.

After the saturation of EA adsorption, O3 was added to the flue gas (Figure 7a).
Obviously, the bands of EA declined, indicating its fast reaction with the ozone. The peak
observed at ~1760 cm−1 could be attributed to the C=O stretching vibrations of aldehyde or
carboxylic acid species, while the bands at ~1555 and 1440 cm−1 corresponded to the COO−

antisymmetric and symmetric stretching vibrations of acetic acid, respectively [53–55].
Moreover, the peaks at ~1250 and 1053 cm−1 were related to the stretching vibrations of
C–OH, suggesting the formation of ethanol and an ethoxy group during the ozonation
process [56].
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Figure 7. In situ DRIFTS measurement under various conditions: (a) 50 ppm EA and 500 ppm O3;
(b) 50 ppm EA, 100 ppm NO and 500 ppm O3.

Then, NO was introduced to the EA ozonation process, and the images are depicted
in Figure 7b. The bands newly appearing at 1602 and 1296 cm−1 were ascribed to nitrates
(NO3

−) and nitrites (NO2
−), respectively [57]. In addition, the band intensity of EA

ozonation decreased slightly, demonstrating a certain inhibiting effect of NO, which was
consistent with the activity tests (Figure 6a). In addition, the peak at 1680 cm−1 revealed the
generation of more carboxylic acid or aldehyde species, indicating that more intermediate
products were created and absorbed on the catalyst surface [54]. Thus, the introduction
of NO could cause an incomplete oxidation during the reaction, which was in accordance
with the previous statement (Figure 6b).

2.6. Theoretical Calculation and Reaction Mechanism

DFT calculations were carried out on the CuMn catalyst to further investigate the

reaction mechanism. CuMn2O4, with an Fd
¯
3m space group, was a spinel cubic crystal. The

optimized bulk lattice parameters (a = b = c = 8.315 Å) closely matched experimental values
(a = b = c = 8.327 Å), confirming the reliability of the calculation methods in this work [58].
The CuMn2O4 (1 0 0) surface was easily exposed and catalytically active. Consequently,
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it was used to research the adsorption process on the CuMn catalyst, as presented in
Figure 8 [59].
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CuMn2O4 (1 0 0).

As adsorption was an important step of the heterogeneous catalytic reaction, the bond
lengths and adsorption energies of the reactants were calculated [60]. As depicted in Figure 9,
the adsorption energy of O3 on the Mn-terminated surface (Eads = −0.4542 eV) was lower
than that on the Cu-terminated surface (Eads = −0.4345 eV). On the Cu-terminated surface,
the adsorption energy of EA (Eads = −1.2101 eV) was lower than that on the Mn-terminated
surface (Eads = −1.1748 eV). Research indicates that a smaller adsorption energy and bond
length signify a stronger interaction between the catalyst and adsorbate, suggesting a
preference for O3 to adsorb on the Mn-terminated surface, whereas the Cu-terminated
surface was more suitable for EA adsorption [61].
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To study the effect of NO, the adsorption energies of NO on the Mn-terminated
(Eads = −0.9613 eV) and Cu-terminated (Eads = −0.6018 eV) surfaces were calculated.
Obviously, NO tended to adsorb on the Mn-terminated surface, which was also active for
O3 adsorption. As O3 and NO simultaneously adsorbed on the Mn-terminated surface, it
could be easier for them to react with each other, which may be the reason why O3 reacted
preferentially with NO rather than EA. Thus, insufficient O3 may cause the incomplete
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oxidation of EA and lead to lower EA conversion, corresponding with the experimental
results (Figure 6).

Based on the in situ DRIFTS measurements and DFT calculation, the proposed reaction
mechanism is presented in Figure 10. Firstly, EA adsorbed on the Cu-terminated surface,
while O3 occupied the Mn-terminated surface. Next, O3 was activated and decomposed
into O2 and active oxygen radicals (O*). With the assistance of O* radicals, the C–O
bond of EA was first cleaved for its lowest bond energy and then formed alkoxides and
acetates. For deep oxidation, the alkoxides were rapidly converted into aldehydes and
then oxidized into acetates. At last, the acetates could be easily resolved into CO2 and H2O,
generating harmless inorganic products. As NO and O3 could simultaneously adsorb on
the Mn-terminated surface, O3 would preferentially react with NO first for their full contact.
Primarily, NO was transformed into NO2 and then deeply oxidized into N2O5, which was
more easily absorbed. However, the introduction of NO inhibited the conversion of EA
and suppressed EA deep oxidation, resulting in the generation of more carboxylic acid or
aldehyde species.
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3. Materials and Methods
3.1. Catalyst Preparation

The MMn2O4 (M = Cu, Co, Ni, Mg) catalysts were all prepared by the redox-precipitation
method. Initially, 0.04 mol of KMnO4 (Sinopharm Chemical Reagent Co., Ltd., Shanghai,
China) and 0.02 mol of M(NO3)2·xH2O (M = Cu, Co, Ni and Mg) (Sinopharm, China) were
dissolved into 400 mL of deionized water under vigorous stirring, and the molar ratio of
M:Mn was 1:2. Subsequently, 0.1 mol/L of a H2C2O4 (Sinopharm, China) solution was
instilled into the mixed solution dropwise to reach complete precipitation. The suspensions
were magnetically stirred for 3 h to be fully equilibrated at room temperature. After
centrifugal separation, thorough washing with deionized water and further drying at
100 ◦C for 12 h, the obtained powder was calcined at 400 ◦C for 3 h with a ramp rate
of 5 ◦C·min−1 in air. The catalysts were denoted as CuMn, CoMn, NiMn and MgMn,
respectively. The reagents used were all of analytical grade, and the as-prepared samples
were ground to 40~60 mesh prior to the activity tests.

3.2. Catalytic Activity

The catalytic activity of the prepared catalysts was evaluated on the self-designed
catalytic platform (WFS-2017, Tianjin Xianquan Co., Ltd., Tianjin, China), as shown in
Figure S1. Ozone generation was achieved through a dielectric barrier discharge (DBD)
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reactor (VMUS-1S, AZCO Industries., Ltd., Vancouver, BC, Canada), with one O3/O2
mixture stream directed towards an ozone analyzer (BMT-964BT, OSTI, Inc., Monterey, CA,
USA) to monitor the concentration of ozone and the other O3/O2 stream flowing to the
reactor. The simulated flue gas was provided by standard cylinder gases (Jingong Gas
Co., Ltd., Hangzhou, China), including C4H8O2 (EA, 500 ppm/N2), NO (2000 ppm/N2),
SO2 (1000 ppm/N2), N2 (99.99%) and O2 (99.99%), and controlled by mass flow controllers
(MFC S500, HIRIBA METRON Co., Ltd., Irvine, CA, USA). During the catalytic activity
tests, 0.15 g of catalyst was mixed with a certain amount of SiO2 (Sinopharm, 40~60 mesh)
and placed in a quartz tube in an electrically heated furnace. The gas hour space velocity
(GHSV) was maintained at 30,000 h−1.

The initial concentration of EA was set to 50 ppm, and the total flow rate was controlled
at 200 mL/min with 10 vol% of O2 in the stream. To investigate the effect of H2O, water
vapor was introduced into the simulated flue gas by bubbling, and the moisture content
was measured with a humidity analyzer. After the reaction, the exhaust gas was analyzed
using a gas chromatograph (GC9790II, Zhejiang Fuli Co., Ltd., Taizhou, China), which
was equipped with one flame ionization detector (FID) for measuring the concentration
of EA and another for analyzing CO and CO2 generation. An FTIR gas analyzer (Gasmet
FTIR DX4000, Finland) was used to detect the concentration of NO and NO2 continuously,
and the residual O3 in the exhaust gas was monitored with an ozone analyzer of low
concentration (BMT-932-1, OSTI Inc., Monterey, CA, USA).

The catalytic activity was assessed based on EA, NO and O3 conversion and the
selectivity of CO, CO2 and NO2, which were determined by the following equations:

[EA]conv. =
[EA]initial − [EA]outlet

[EA]initial
× 100% (5)

[NO]conv. =
[NO]initial − [NO]outlet

[NO]initial
× 100% (6)

[O3]conv. =
[O3]initial − [O3]outlet

[O3]initial
× 100% (7)

[CO]selec. =
[CO]outlet

([EA]initial−[EA]outlet)× 4
× 100% (8)

[CO2]selec. =
[CO2]outlet

([EA]initial−[EA]outlet)× 4
× 100% (9)

[NO2]selec. =
[NO2]outlet
[NO]initial

× 100% (10)

where [EA]initial, [NO]initial and [O3]initial are the initial concentrations of EA, NO and O3,
and [EA]outlet, [NO]outlet, [O3]outlet, [CO]outlet, [CO2]outlet and [NO2]outlet are the outlet
concentrations of EA, NO, O3, CO, CO2 and NO2, in unit ppm, respectively.

3.3. Catalyst Characterization

The X-ray diffraction (XRD) patterns were evaluated to reveal the crystal structure
of the catalysts using a Rigaku D/max 2550PC diffractometer (PANalytical B.V., Almelo,
The Netherlands) with a Cu Kα radiation source (λ = 0.15406 nm; 10 ◦C·min−1; diffraction
angle: 10~80◦) at 40 kV and 40 mA. The specific surface area and pore structure were
measured through N2 adsorption–desorption isotherms by the BET and BJH methods,
using an automatic gas adsorption analyzer (Micromeritics ASAP 2460, Norcross, GA,
USA) at 77 K. The morphology and microstructure were analyzed with a field emission
scanning electron microscope (FE-SEM, Zeiss Sigma 300, Jena, Germany). The chemical
states of the elements were analyzed with an X-ray photoelectron spectrometer (XPS,
Thermo Scientific K-Alpha, Mass. Waltham, MA, USA) with a standard Al Kα source
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(1486.6 eV), with binding energies referring to the C 1s peak (284.8 eV). The H2-TPR, NH3-
TPD and O2-TPD measurements were performed on a chemical temperature- programmed
chemisorption analyzer (AutoChem II 2920, Micromeritics, Norcross, GA, USA). The spectra
of the adsorption and ozonation processes were collected on an in situ diffuse reflectance
infrared Fourier transform spectrometer (in situ DRIFTS, Thermo Scientific Nicolet iS50,
Waltham, MA, USA), equipped with an MCT/A detector and a high-temperature reaction
chamber (Harrick, ZnSe windows). All the spectra were recorded in the range of 600
to 4000 cm−1 at a resolution of 4 cm−1. Prior to the measurements, the catalysts were
pretreated at 120 ◦C with N2 (200 mL/min) for 30 min to remove surface impurities.

3.4. DFT Calculation

The catalytic mechanism was investigated through the density functional theory (DFT)
method and implemented in CASTEP code [62]. The PBE (Perdew–Burke–Ernzerhof)
exchange–correlation potential with a GGA (generalized gradient approximation) function
was employed. And the cutoff energy of 450 eV was set on a plane-wave basis. In addition,
the geometry optimization was completed until the absolute energy, the force and the
maximum displacement were below 1.0 × 10−5 eV/atom, 0.03 eV/Å and 1.0 × 10−3

Hartree, respectively. For the self-consistent field (SCF), the convergence criterion was set
as 1.0 × 10−6 eV/atom. The Brillouin zone of the unit cell was set as 4 × 4 × 4, while for
the surface, it was set as 3 × 3 × 1 Monkhorst Pack k-point grids.

To avoid the next periodic slab effects, a vacuum layer (16 Å) was constructed in the z
direction. The adsorption energy (Eads) of the adsorbates on the surface of the catalyst was
calculated with the following equation:

Eads = E(adsorbate-catalyst) − (Ecatalyst + Eadsorbate) (11)

where E(adsorbate-catalyst) is the total energy of the catalyst–adsorbate system, Ecatalyst is the
total energy of the catalyst, and Eadsorbate is the total energy of the gas-phase molecule.

4. Conclusions

This study focused on the investigation of the catalytic ozonation of EA over MMn2O4
(M = Cu, Co, Ni and Mg) catalysts at relatively low temperatures. With the best performance,
CuMn maintained above a 90% EA conversion in the range of 80 to 140 ◦C, achieving nearly
100% EA conversion and above 90% CO2 selectivity at 120 ◦C. The abundant surface
defects of CuMn contributed to its large surface area and pore volume, which facilitated the
generation of active sites for deep oxidation. Moreover, its higher Mn3+ content and lower
AOS value were conductive to the formation of oxygen vacancies, while more Oad promoted
the adsorption of reactive oxygen species, and a higher O2 desorption amount accelerated
the mobility of oxygen species. Together with plentiful acid sites and lower reduction
temperatures, the adsorption, activation and oxidation of EA at lower temperatures were
enhanced, corresponding to the excellent performance of CuMn.

Moreover, the addition of NO proved to inhibit the degradation of EA to some extent,
as NO would compete with EA for ozone. In comparison, CuMn performed well in
both the NO and EA ozonations, exhibiting great potential for simultaneous elimination.
With the treatment of H2O, the conversion of EA dropped slightly, reaching a stable
platform at ~89% in 5.0 vol.% of H2O. On the other hand, after the addition of SO2, the
EA conversion decreased rapidly to 79% and was gradually recovered for the activation of
ozone. Additionally, the presence of H2O contributed to higher CO2 selectivity because of
the formation of OH active radicals. With the combination of in situ DRIFTS measurements
and the DFT calculation, a reaction mechanism for catalytic ozonation was proposed:
adsorption (O3 and NO on the Mn-terminated surface and EA on the Cu-terminated
surface), O3 activation, the formation of intermediates (alkoxides→ aldehydes→ acetates)
and deep oxidation (acetates→ CO2 and H2O, NO→ NO2 → N2O5).
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