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Abstract: We used a new one-pot green technique to prepare polysaccharide-based Pd and PdAg
nanocatalysts. Catalysts were obtained using a sequentially supporting natural polymer (2-hydroxyethyl
cellulose (HEC), chitosan (Chit), pectin (Pec)) and metals on zinc oxide. Nanocatalysts based on a polysac-
charide were studied using various physicochemical methods (IR spectroscopy, transmission electron
microscopy, X-ray powder diffraction, etc.). The catalyst characterization results indicated the complete
adsorption of polysaccharides and metal ions onto the inorganic support (ZnO). We demonstrated
the formation of polysaccharide-stabilized Pd nanoparticles with a size of ~2 nm. Metal nanoparticles
were uniformly located on the surface of polysaccharide-modified zinc oxide. The synthesized cata-
lysts were tested using liquid-phase hydrogenation of 2-hexyn-1-ol under mild conditions (0.1 MPa,
40 ◦C). Close conversion values of 2-hexyn1-ol were obtained for all the developed catalysts. The
selectivity for cis-hexen-1-ol of the polysaccharide-based PdAg nanocatalysts varied as follows: PdAg-
HEC/ZnO > PdAg-Pec/ZnO > PdAg-Chit/ZnO. A similar correlation was obtained in the presence of
monometallic Pd-polysaccharide/ZnO catalysts. We determined the optimum reaction temperature and
catalyst loading for PdAg catalysts modified using HEC and Chit (40 ◦C, 0.05 g).

Keywords: hydrogenation; palladium–silver catalysts; polysaccharide; 2-hexyn-1-ol

1. Introduction

Because of the requirements of green chemistry, researchers in the field are currently
focused on the study of nontoxic natural polymers to create new environmentally friendly
nanomaterials and stabilized metal nanoparticles for widespread use [1–9]. Polysaccharides
derived from natural sources are suitable alternatives to synthetic polymers produced
from petroleum products [5–9]. Polysaccharides have different functional groups in their
structure and can, therefore, form composites with mineral sorbents [10–15] and transition-
metal ions [15–18].

For example, the hydroxyl and amino groups in the chitosan structure, interacting
with transition-metal ions, form metal nanoparticles, which are very promising as cata-
lysts [19,20]. The multifunctionality of pectin (Pec) is due to the nature of its molecule,
which consists of linear chains of 1,4-linked residues of α-d-galacturonic acid [3,21–23] with
a large number of –OH− and –COOH− groups. This nature allows its use in the design
of various polymer–inorganic materials such as nanocatalysts [3], sorbents for wastew-
ater treatment [4], thickeners, emulsifiers, and gelling agents for the food industry and
biomedicine [21–23].

Cellulose is the most common natural polysaccharide. Its soluble derivative 2-hydroxyethyl
cellulose (HEC) is formed by treating cellulose with alkali and causing it to react with ethylene
oxide [24]. The advantages of this derivative are its good water solubility, biodegradability,
biocompatibility, and film formation [25–28]. It is widely used in pharmaceuticals [29], the textile
industry [30], paper making [31], cosmetology [32], etc.
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The use of polysaccharides as new auxiliary materials for the design of heterogeneous
catalysts is becoming more frequent. Chitosan (Chit) is beginning to find use [8], primarily
due to its high affinity for metal ions [20]. Several studies have emerged that are devoted to
catalysts for processes such as hydrogenation [1,33,34], oxidation [3,4], coupling reactions,
and other possible catalytic syntheses [8,19,20,35]. Chitosan acts as a reducing agent in
catalysts due to the presence of functional groups (CH2OH and NH2) in its structure [36].
Chitosan can also stabilize catalytic centers and prevent the formation of aggregates and
the occurrence of metal leaching [33,36,37]. In Ref. [33], an efficient chitosan-based Ni
catalyst for the selective hydrogenation of acetylene was developed. The Ni catalyst was
obtained through the interaction of a chitosan/carbon nanotube composite with a NiSO4
solution. Using the Ni-chitosan/carbon nanotube catalyst, the acetylene conversion and
ethylene selectivity reached 100% at temperatures of 160 and 190 ◦C, respectively. In
Ref. [38], unmodified commercial chitosan was investigated as a heterogeneous catalyst for
the transfer reaction of diazo compounds. Various compounds (1,3-diketones, malonates
and β-ketoesters) were selected as substrates. The catalyst showed stability and could
be easily recovered via filtration after a simple treatment. In Ref. [1], chitosan was used
as a support to create palladium nanocatalysts. The palladium particles were uniformly
distributed across chitosan. The chitosan-based catalysts (Pd@CS) were investigated in
the hydrogenation of 4-nitrophenol and compared with commercial catalysts (Pd/C). The
synthesized chitosan-based palladium catalysts showed high catalytic activity and sta-
bility in the selective hydrogenation of aromatic aldehydes. In Ref. [39], chitosan was
modified by mixing it with polyvinyl alcohol. We prepared palladium catalysts based on
chitosan–polyvinyl alcohol using a reduction method. Subsequently, they were utilized
for the Suzuki conjugation reaction of halogenated benzene and phenylboronic acid. The
catalyst exhibited good substrate stability and catalytic activity. One of the disadvan-
tages of chitosan-based catalysts is the low strength of chitosan microspheres, which can
be easily overcome during the reaction. Ref. [40] proposed an environmentally friendly
method for the preparation of a heterogeneous nanocatalyst based on palladium nanopar-
ticles anchored on chitosan/Co3O4 (CS/Co3O4). The developed PdNPs/CS/Co3O4 was
successfully applied in the cyanidation of aryl halides to various substituted benzonitriles.

There are limited data on pectin-containing catalysts or their design and use as stabi-
lizers for metal nanoparticles [2–4,41–44]. In Ref. [45], an environmentally friendly method
for the production of pectin-based palladium nanoparticles was developed. Palladium
nanoparticles, stabilized using pectin (Pdnp/pectin), were prepared by exposing an aque-
ous solution of PdCl2 (100 mL, 1 mM) to pectin without an additional reducing agent.
The synthesized nanoparticles were investigated in the Mizoroki-Heck reaction between
various aryl halides and n-butyl acrylate under solvent-free conditions. The catalyst can
be reused for six cycles without significant loss of catalytic activity. In Ref. [46], pectin
was used as a support for the preparation of a heterogeneous catalyst based on metal
phthalocyanines. Before the immobilization of copper tetraaminophthalocyanine, pectin
was oxidized using periodate. The catalytic activity of the developed catalysts was investi-
gated in a CO2 fixation reaction to produce cyclic carbonates. The cation-binding ability of
pectin was investigated in Ref. [47]. A CaO-based catalyst was prepared in accordance with
the precipitation method using Na2CO3 and Ca(NO3)2 in the presence of pectin, which
was followed by calcination. The most active catalyst, CaP-600, was prepared at 600 ◦C,
and it showed a high level of activity in the transesterification reaction of soybean oil to
produce biodiesel.

Different types of cellulose have been used to support catalysts in hydrogenation,
oxidation, dye reduction, and coupling reactions [3,4,35,48–51]. Bearing abundant reactive
–OH groups on its chains, HEC can act as both a reducing agent for transition-metal ions
and a stabilizing agent for the metal nanoparticles formed. Despite the fact that HEC is
an attractive biopolymer [26–28], its full potential for use in the design of heterogeneous
catalysts has not yet been adequately explored [52,53]. Thus, [24] reports on the synthesis
of an HEC-modified palladium catalyst, which was successfully tested via Suzuki reactions
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in aqueous ethanol solution. In [53], ruthenium (Ru) nanoparticles synthesized from
hydroxyethylcellulose (HEC-Ru) were used in the hydrogenation of a-pinene in aqueous
medium. The results showed that HEC promoted the dispersion of Ru nanoparticles,
with the particle sizes ranging from 4 to 6 nm. The micelles formed with HEC acted
as “microreactors”. In addition, a-pinene was loaded into the HEC micelles through
hydrophobic interaction, resulting in promising contact with Ru nanoparticles. Thus, the
HEC-Ru nanoparticles significantly improved the hydrogenation of a-pinene, with a-pinene
conversion and cis-pinane selectivity reaching 99.6% and 98.6%, respectively.

Thus, there exists a sufficient number of works devoted to the development of
polysaccharide-modified catalysts for various catalytic processes. However, not much
has been reported on the application of such catalysts in the hydrogenation of acetylene
alcohols. The selective hydrogenation of alkynol through carbon-carbon triple bonds is an
important process involved in producing fine chemicals and pharmaceuticals [54,55].

Among metal catalysts, supported Pd is commonly applied in this process due to its
high activity. However, it has the disadvantage of insufficient selectivity for alkenols at
high conversions. The addition of metal (Ag, Au, Cu or Zn) can improve Pd catalysts due to
the formation of small palladium nanoparticles [56–58]. Another approach for improving
the effectiveness of Pd catalysts is the use of functional polymers to stabilize and modify
active centers [59,60].

In order to assess the growing need for environmentally friendly nanocatalyst syn-
theses, this work aimed to prepare polysaccharide-containing PdAg/ZnO catalysts. HEC,
pectin and chitosan were used as green stabilizers, and water was the only medium for
catalyst synthesis in ambient conditions without high-temperature processes of calcina-
tion and reduction. To this end, we used a new, green one-pot technique for catalyst
synthesis via sequentially supporting polysaccharides and metals on zinc oxide. In this
study, we evaluated and compared the efficiency of the developed HEC-, Chit- and Pec-
stabilized bimetallic PdAg catalysts supported on zinc oxide with that of the monometallic
Pd-polysaccharide/ZnO nanocatalysts in the hydrogenation of 2-hexyn-1-ol.

2. Results
2.1. Characterization of Catalysts

Mono- and bimetallic palladium and palladium–silver catalysts, modified using
polysaccharides such as chitosan (Chit), 2-hydroxyethyl cellulose (HEC) and pectin (Pec),
were prepared via adsorption methods in an aqueous medium under ambient conditions
and constant stirring. The solution of polymers and metal salts was sequentially added
into a zinc oxide suspension. The resulting composites were washed with water and dried
in air. As a result, the following catalysts were obtained: Pd-HEC/ZnO, Pd-Chit/ZnO,
Pd-Pec/ZnO, PdAg-HEC/ZnO, PdAg-Chit/ZnO and PdAg-Pec/ZnO.

The palladium and silver content in the catalysts were evaluated using spectrophotom-
etry and potentiometry methods, respectively. Analyses of the supernatant solution before
and after the sorption process showed that 91–99% of the introduced Pd and 99–100% of Ag
were adsorbed onto the polymer-modified ZnO. The calculated total metal content (Pd and
Ag) in the obtained polymer-modified mono- and bimetallic catalysts was 0.46–0.49 wt%,
which is close to the expected value of 0.5 wt% (Table S1).

Table 1 shows the results of an elemental analysis of the catalysts. The palladium
contents in Pd-HEC/ZnO, Pd-Chit/ZnO, Pd-Pec/ZnO, PdAg-HEC/ZnO, PdAg-Chit/ZnO
and PdAg-Pec/ZnO catalysts were found to be 0.49%, 0.47%, 0.57%, 0.36%, 0.44% and
0.48%, respectively. The silver contents in the bimetallic PdAg-HEC/ZnO, PdAg-Chit/ZnO
and PdAg-Pec/ZnO catalysts were found to be 0.18%, 0.15% and 0.16 %, respectively.
Thus, the total metal content in all catalysts was no lower than 0.5 wt%, suggesting the
almost complete adsorption of metals (Pd and Ag) onto the polymer-modified support
materials (Table 1). This is consistent with the data obtained using spectrophotometry and
potentiometry methods.
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Table 1. Results of elemental analysis of the catalysts obtained.

Sample
Elemental Composition of the Catalyst, wt%

Pdcalcd/detd Agcalcd/detd Zncalcd/detd

Pd-HEC/ZnO 0.50/0.49 - 79.0/77.8
Pd-Chit/ZnO 0.50/0.47 - 79.0/81.1
Pd-Pec/ZnO 0.50/0.57 - 79.0/80.5

PdAg-HEC/ZnO 0.37/0.36 0.13/0.18 79.0/81.5
PdAg-Chit/ZnO 0.37/0.44 0.13/0.15 79.0/81.6
PdAg-Pec/ZnO 0.37/0.48 0.13/0.16 79.0/82.0

The results of X-ray powder diffraction analysis (XRD) of the ZnO, HEC/ZnO and
PdAg-HEC/ZnO are shown in Figure 1. All XRD patterns showed characteristic peaks at
37.0◦, 40.2◦, 42.3◦, 55.8◦, 66.7◦, 74.5◦, 78.9◦, 80.9◦, 82.3◦, 86.8◦ and 92.6◦, corresponding to
the (100), (002), (101), (102), (110), (103), (200), (112), (201), (004) and (202) planes of ZnO
wurtzite structures (JCPDS card no. 79-0206) [61]. The broad peak observed at 23◦ in the
polymer-modified materials could be attributed to the amorphous phase of the HEC [62].
No peaks related to palladium (Pd or PdO) and silver (Ag or AgCl) species were observed
on the XRD pattern of the PdAg-HEC/ZnO catalyst. This can be explained by the low
metal (Pd and Ag) content in the catalyst and the small particle sizes [63].
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The modification of ZnO using HEC was also confirmed via the standardized Brunauer-
Emmett-Teller (BET) method (Table 2). HEC/ZnO and PdAg-HEC/ZnO composites were
characterized by decreased surface area in comparison with the initial zinc oxide. It should
be noted that the PdAg-HEC/ZnO catalyst demonstrated a higher surface area compared
with that of the HEC/ZnO composite. This is consistent with data obtained for similar
systems modified with polyvinylpirollidone (PVP) [64]. In Ref. [64], the decrease in the sur-
face area from ZnO to PVP/ZnO was attributed to the blockage of micropores in inorganic
material after modification with the polymer. Conversely, the increase in the surface area
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from PVP/ZnO to Pd-PVP/ZnO could be attributed to a decrease in the surface coverage
of the ZnO with a PVP shell via alterations in the orientation of the polymer functional
groups from ZnO to Pd. Another potential explanation for such changes in the surface area
from unmodified zinc oxide to a polymer-modified catalyst was related to the changing
degree of agglomeration of ZnO particles after modification with a polymer and following
the adsorption of metal ions onto the polymer/ZnO composite. That is, adding an HEC
solution to a zinc oxide suspension can lead to the agglomeration of ZnO particles, which
probably occurs due to ZnO-HEC-ZnO bonding. The adsorption of metal ions onto the
HEC/ZnO composite, on the contrary, can decrease the agglomeration of ZnO particles
due to the formation of ZnO-HEC-Pd (Ag) bonds. It should be noted that according to
these assumptions, HEC can interact with both zinc oxide and metal (Pd and Ag) ions.

Table 2. Surface area of ZnO, HEC/ZnO and PdAg-HEC/ZnO.

Sample Surface Area, m2 g−1

ZnO 8.7
HEC/ZnO 1.1

PdAg-HEC/ZnO 5.2
Pd-HEC/ZnO 4.9

The interaction of the polysaccharide with other components of the PdAg-HEC/ZnO
catalyst and the formation of a polymer—metal complex on the ZnO surface was confirmed
using infrared spectroscopy (IRS). Figure 2 shows the IR spectra of HEC, HEC/ZnO and
PdAg-HEC/ZnO. HEC shows characteristic bands at 1061 and 1122 cm−1, corresponding
to the C–O–C stretching vibrations in the glucopyranose structure and C–O anti-symmetric
vibrations, respectively [65,66].
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Other characteristic bands at 1460 and 1385 cm−1 were attributed to O–H “plane
deformation” and C–H “symmetric bending vibrations”, respectively, in –CH2O– [65,66].
The shift in the absorption bands of the O–H, C–O–C, C–O and –CH2O– groups in the IR
spectrum of the catalyst, compared to the same bands in HEC and HEC/ZnO (Figure 2,
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spectra 1 to 3), confirmed the intermolecular interaction of HEC with both Pd (or Ag) ions
and Zn2+ of ZnO through van der Waals forces.

In our prior studies [64,67], similar 1%Pd-PVP/ZnO, 1%Pd-PAM/ZnO, 1%Pd-Ag
(3:1)-PAM/ZnO and 1%Pd-Ag (3:1)-HEC/ZnO catalysts were characterized via the TEM
method. We showed that the interaction of polymers with metal ions on a support surface
led to the formation of smaller active-phase nanoparticles (~2 nm) compared with similar
unmodified supported catalysts. The transmission electron microscopy (TEM) image of
the Pd-HEC/ZnO catalyst showed the formation of finely dispersed palladium nanopar-
ticles of ~2 nm, which were evenly distributed on the surface of zinc oxide modified
with HEC (Figure 3a). This was also confirmed using SEM and EDX elemental mapping
images of Zn and Pd from the Pd-HEC/ZnO catalyst (Figure 3b), according to which
palladium and zinc were homogeneously distributed. It should be noted that reflections
corresponding to PdOxH2O (JCPDS 9-254), PdO2 (JCPDS 34-1101), PdZn (JCPDS 6-620),
PdZn2 (JCPDS 31-942), PdZn2O4 (JCPDS 32-723), Ag (JCPDS 4-783), Ag2O (JCPDS 19-1155),
AgZn (JCPDS 29-1156) and AgZn3 (JCPDS 25-1325) phases were observed in the diffraction
patterns obtained from the TEM images of Pd-HEC/ZnO and PdAg-HEC/ZnO catalysts
(Tables S1 and S2). Thus, the electron microscopy results show that metal ions can be sta-
bilized via the polysaccharide, in addition to interacting with ZnO in the formation of
new phases.
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HEC/ZnO catalyst.

Studying the Pd-HEC/ZnO catalyst using X-ray photoelectron spectroscopy (XPS)
also confirmed the presence of both polysaccharides and palladium on the surface of zinc
oxide (Figure 4).

An analysis of the XPS spectrum of the Pd 3d (5/2) region (Figure 4a) showed the
presence of palladium in the catalyst o in both oxidized (Pd2+) and reduced (Pd0) states at
binding energies of ~337.3 and ~336.0 eV, respectively [68]. The presence of a small amount
of zero-valent palladium was probably caused via the photocatalytic reduction of Pd2+ in
the presence of zinc oxide, which is known as an efficient photocatalyst [69]. This suggested
that a small part of the introduced palladium interacted with zinc oxide. This was confirmed
by the fact that the binding energy of Pd0 had a positive shift (ca. 0.6 eV) due to a strong
metal–support interaction and the formation of PdZn species [70], which was consistent
with the microdiffraction analysis data (Tables S2 and S3). In the case of palladium in an
oxidized state, such shifting was not observed, confirming the stabilization of Pd0 particles
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using the polymer. The peaks at 1020.4 and 1045.0 eV (Figure 4b), corresponding to Zn
2p (3/2) and Zn 2p (1/2), respectively, were attributed to the presence of Zn2+ ions in a
zinc oxide crystal lattice [71]. The peaks shifted toward smaller energies in comparison
with typical ZnO [72,73], a phenomenon attributed to the interaction of Zn2+ with the
oxygen-containing functional groups of HEC. It should be noted that similar negative
shifting was observed in nanosized zinc oxide particles [74,75].
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The XPS spectrum of the O 1 s region (Figure 4c) was de-convoluted into two peaks
with binding energies of 530.6 (peak 1) and 532.5 eV (peak 2). According to the literature
data [72], peak 1 is related to O2− ions in the Zn–O bonding of the wurtzite structure, and
peak 2 is attributable to the presence of oxygen from OH groups on the zinc oxide surface.
Elsewhere, peak 2 was assigned to the C–O oxygen in the HEC repeated unit [73]. The
de-convolution of the C 1s line in the XPS spectrum of the catalyst indicated that carbon
was represented by two components (Figure 4d). The main component centered at 285.0 eV
was attributed to the C–C bond in the HEC macromolecule, and no shift in the binding
energy was observed for this peak. In the case of the minor peak at 288.0 eV related to the
C–O bond in HEC, some positive shift in binding energy (ca. 1.3 eV) was observed, which
is probably due to the interaction of the C–O–C, C–O and –CH2O– groups of HEC with
both Pd2+ and Zn2+ of zinc oxide [73].

Thus, the characterization of polysaccharide-modified catalysts using physical–chemical
methods such as spectrophotometry, potentiometry, elemental analysis, XRD, IRS, BET, TEM
and XPS indicated that polysaccharide and metal (Pd and Ag) ions were quantitatively
adsorbed onto zinc oxide and that the polymers interacted with both ZnO and the active-
phase particles formed. The role of polymers was both to fix Pd and Ag species onto the zinc
oxide surface and guarantee their stabilization. This was consistent with the data obtained in
our prior study for similar Pd-PVP/ZnO catalysts [64]. However, in the case of Pd-HEC/ZnO,
a small amount of Pd also interacted with ZnO, forming the PdZn species. This was attributed
to the lesser affinity of HEC functional groups to metal ions in comparison with those of PVP.
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2.2. Catalytic Test

The obtained palladium and palladium–silver catalysts, modified using natural polysac-
charides (chitosan (Chit), 2-hydroxyethyl cellulose (HEC) or pectin (Pec)), were tested in
the hydrogenation process under mild conditions (0.1 MPa, 40 ◦C). The hydrogenation of
2-hexyn-1-ol was chosen as a model reaction, with the further prospect of developing catalysts
for the hydrogenation of complex acetylene alcohols, the semihydrogenated form of which
is used in the production of vitamins, pest pheromones and fragrances [76]. The possible
pathways of the reaction are illustrated in Scheme 1. The first-step triple bond of the alkynol
was reduced to a C=C double bond. This formed forming cis/trans-isomers, which then
hydrogenated to alkanol.
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Scheme 1. Hydrogenation of 2-hexyn-1-ol.

The test results of the developed catalysts in the hydrogenation process of 2-hexyn-1-ol
are given in Table 3. Monometallic palladium catalysts were more active than identical
bimetallic Pd-Ag catalysts, but less selective. The reaction rate on bimetallic catalysts
decreased depending on the polymer modifier in the following order: HEC > Pec > Chit
(Figure 5). The maximum yield of alkenol was observed on the bimetallic PdAg catalyst
stabilized with HEC and was 89.4% at a rate conversion of 93.0% (Table 3). The introduction
of silver into the HEC-containing catalyst improved selectivity to 2-hexen-1-ol compared
with selectivity toward a monometallic Pd catalyst (Figure 6). The cis-alkenol selectivity
achieved on this catalyst was 97.2% versus 90.6% achieved on Pd-HEC/ZnO.
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Figure 5. The rate of 2-hexyn-1-ol hydrogenation on the PdAg/ZnO catalysts modified with hydrox-
yethyl cellulose (HEC), chitosan (Chit) and pectin (Pec). Reaction conditions: T = 40 ◦C, PH2 = 1 atm,
mcat = 0.05 g, ethanol = 25 mL and Calkynol = 0.09 mol/L.
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Table 3. The results of 2-hexyn-1-ol hydrogenation on Pd/ZnO and PdAg/ZnO catalysts stabilized
with hydroxyethyl cellulose (HEC), chitosan (Chit) and pectin (Pec) *.

Catalysts Wmax × 10−6

(mol s−1)
Maximum Yield of
cis-Hexen-1-ol, % Scis-hexen-1-ol,% Conversion, %

Pd-HEC/ZnO 4.3 82.8 90.6 91.4
Pd-Chit/ZnO 3.1 80.1 86.3 92.8
Pd-Pec/ZnO 5.4 80.9 86.1 94.0

PdAg-
HEC/ZnO 4.0 89.4 97.2 93.0

PdAg-
Chit/ZnO 2.6 85.9 92.3 93.1

PdAg-Pec/ZnO 2.8 86.4 93.5 92.4
* Reaction conditions presented in Figure 5.
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catalysts supported on ZnO. Reaction conditions are presented in Figure 5.

We determined the optimum temperature and catalyst loading for the PdAg catalysts
modified with HEC, Chit and Pec, and the results are shown in Tables 4 and 5. The initial
reaction rate increased with the rising temperature up to 40 ◦C.

Further temperature increases to 50 ◦C led to a significant decrease in the reaction rate,
which could be attributed to the shrinking of the surface polymer layer of the catalyst and
the blocking of the active centers [64].

The increase in the catalyst loading from 0.01 g to 0.1 g led to an increase in the reaction
rate. The highest rate was achieved on the 0.1 g load of both catalysts. At the same time,
the maximum yield and selectivity to cis-hexene-1-ol decreased, which was probably due
to the accelerated hydrogenation of the cis-alkene double bonds into alkanes.

According to the chromatographic analysis, in the presence of HEC-modified catalyst,
the conversion of 2-hexyn-1-ol into cis-2-hexen-1-ol began in the first half of the process
(Figure 7a). After the almost-complete disappearance of acetylenic alcohol in the reaction
medium, a process of isomerization of cis-alkenol into trans-form was initiated and a
parallel reduction of double bonds of alkenols to produce saturated alcohol was performed.
A similar change in the composition of the reaction mixture was observed when the process
was carried out using catalysts containing chitosan. The small difference was that the
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isomerization of cis- to trans-2-hexen-1-ol onto this catalyst started slightly before the
complete conversion of the initial alkynol (Figure 7b).

Table 4. Effect of variations in temperature on reaction conditions in hydrogenation of 2-hexyn-1-ol *.

Catalysts Temperature, ◦C Wmax·× 10−6

(mol s−1)
Maximum Yield of
cis-Hexen-1-ol, % Scis-hexen-1-ol, %

PdAg-Chit/ZnO

20 0.6 84.0 91.8
30 2.3 76.4 93.5
40 2.6 85.9 92.3
50 2.3 79.3 79.8

PdAg-
HEC/ZnO

20 0.4 77.0 93.0
30 1.3 75.6 84.9
40 4.0 89.4 97.2
50 1.6 76.2 86.7

PdAg-Pec/ZnO

20 0.4 78.0 91.6
30 1.9 79.6 85.6
40 2.8 86.4 93.5
50 1.8 78.2 87.0

* Reaction conditions: T = 20 ◦C, 30 ◦C, 40 ◦C, 50 ◦C, PH2 = 1 atm, mcat = 0.05 g, ethanol = 25 mL and
Calkynol = 0.09 mol/L.

Table 5. Effect of variations in catalyst loading on reaction conditions in hydrogenation of 2-hexyn-1-ol *.

Catalysts Catalyst Loading, g Wmax·× 10−6

(mol s−1)
Maximum Yield of
cis-Hexen-1-ol, % Scis-hexen-1-ol, %

PdAg-Chit/ZnO

0.01 0.6 62.0 67.8
0.03 1.9 71.8 84.7
0.05 2.6 85.9 92.3
0.10 2.8 83.5 89.9

PdAg-
HEC/ZnO

0.01 0.5 58.4 63.2
0.03 2.5 88.2 89.8
0.05 4.0 89.4 97.2
0.10 4.4 87.6 94.5

PdAg-Pec/ZnO

0.01 0.5 60.3 61.7
0.03 2.1 78.4 83.0
0.05 2.8 86.4 93.5
0.10 3.1 84.6 90.0

* Reaction conditions: T = 40 ◦C, PH2 = 1 atm, mcat = 0.01 g, 0.03 g, 0.05 g, 0.10 g, ethanol = 25 mL,
Calkynol = 0.09 mol/L.

The reusability of PdAg-Chit/ZnO and PdAg-HEC/ZnO catalysts was studied via
the hydrogenation of successive portions of 2-hexyn-1-ol using the same load of catalyst
(Figure 8). The high stability was demonstrated by the fact that the reaction rate seen using
both catalysts remained nearly the same after at least 10 runs. This could be attributed to
the swelling ability of the polymer–metal shell of the catalysts in ethanol and the limitation
of the leaching active phase via the prevention of the effect of polymers [64].

Thus, a comparison of the performance of palladium and palladium–silver catalysts,
stabilized with the derivatives of natural polysaccharides (Table 5) and pectin, confirmed
the potential of their use in the synthesis of metal nanoparticles and their further application
in catalysis.
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3. Materials and Methods
3.1. Materials

The chemicals 2-hexyn-1-ol, palladium chloride (PdCl2, 59–60% Pd), silver nitrate
(AgNO3, 99.0%), potassium chloride (KCl, reagent grade), 2-hydroxyethyl cellulose (HEC,
Mw 90,000), pectin (Pec, Mw 15,000), chitosan (Chit, Mw 250,000) and zinc oxide (chemically
pure) were acquired from Sigma-Aldrich, St. Louis, MO, USA. Ethanol (reagent) was
purchased from Talgar Alcohol LLP (Talgar, Kazakhstan) and purified via distillation.

3.2. Preparation of K2PdCl4 Precursor Solution

A K2PdCl4 precursor solution was prepared by crushing 168.4 mg of palladium (II)
chloride and 155.7 mg of KCl in an agate mortar according to the procedure described
in [52]. The obtained potassium (II) tetrachloropalladate was dissolved in 50 mL of distilled
water. The process was carried out at 70 ◦C with constant magnetic stirring for 2 h. The
concentration of palladium ions in the resulting solution was 0.019 M.

3.3. Synthesis of Pd-Polysaccharide/ZnO Catalysts

The nanocatalysts were prepared via an adsorption method in accordance with the pro-
cedure described in [64,67]. A 10 mL water solution of 0.9 × 10−2 M 2-hydroxyethylcellulose
polysaccharide (HEC, Chit or Pec) was added dropwise to the aqueous suspension of in-
organic sorbent (1 g ZnO in 15 mL of water) and stirred for 2 h. Then, we added 5 mL
of a 0.9 × 10−2 M water solution of potassium (II) tetrachloropalladate. This process
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was carried out at room temperature with constant stirring for 3 h. The concentration of
2-hydroxyethylcellulose and potassium (II) tetrachloropalladate solutions corresponded to
a palladium content of 0.5% and a molar ratio of (Pd:polysaccharide) = 1:1. The synthesized
catalysts were kept in the mother liquor for 12–15 h. Then, we conducted washing with
distilled water and air-drying. The amount of immobilized palladium was monitored
using photoelectrocolorimetry.

3.4. Synthesis of PdAg-Polysaccharide/ZnO Catalysts

The method of polysaccharide adsorption onto an inorganic sorbent followed by
metal ion deposition was used to prepare 0.5% bimetallic PdAg polysaccharide–inorganic
nanocatalysts [64,67]. In total, 5 mL of 0.9 × 10−2 M polysaccharide solution (HEC, Chit
or Pec) was added to the aqueous suspension of the support (1 g ZnO in 15 mL of water).
The preparation process was carried out at room temperature with constant stirring for 2 h.
Afterward, palladium salt and then silver salt (K2PdCl4 and AgNO3) were added under
constant stirring conditions. The duration of the process was 3 h. The concentration of
potassium (II) tetrachloropalladate and silver (I) nitrate water solutions corresponded to
0.5% metal content (Pd:Ag ratio = 3:1). The amount of polymer for catalyst preparation
was calculated at the rate of one transition-metal atom per monomer unit. After keeping
the synthesized nanocatalyst in the mother liquor for 12–15 h, it was washed with distilled
water and dried in air. The completeness of palladium and silver fixation was monitored
via photoelectrocolorimetry and direct potentiometry, respectively.

3.5. Characterization of Catalysts

The concentration of metals (Pd, Ag) in nanocatalysts was monitored via the change
in the concentration of palladium and silver ions in aqueous solution before and after the
immobilization of Ag+ and/or PdCl42− on an inorganic support (ZnO) modified using
polysaccharide. The quantitative content of Pd in aqueous solutions was detected via
photoelectrocolorimetry (PEC). The measurement was carried out using an SF-2000 UV/Vis
spectrophotometer (OKB Spektr, St. Petersburg, Russia) according to calibration curves
(wavelength λ = 425 nm). Ag concentration in aqueous solutions was monitored using the
potentiometric method (direct potentiometry method). The measurement was carried out
on an ANION 4100 ionometer (Infraspak-Analit, Novosibirsk, Russia) using an ion-selective
electrode ELIS-131Ag.

A DRON-4-0.7 powder X-ray diffractometer (Burevestnik, St. Petersburg, Russia), with
monochromatized radiation of cobalt Co-Kα (λ = 0.179 nm), was used to obtain powder
X-ray diffractograms.

The specific surface area and pore size distribution of the obtained nanocatalysts were
investigated using the low-temperature N2 adsorption–desorption method. The study was
carried out on an Accusorb instrument (Micromeritics, Norcross, GA, USA).

The catalyst samples were studied via the FTIR spectroscopic method. A Nicolet iS5
instrument (Thermo Scientific, Waltham, MA, USA) was used to study the samples in the
4000–400 cm−1 region via FTIR spectroscopy. A mixture of 1 mg of sample with 100 mg of
dry potassium bromide was ground to obtain pellets for IR analysis. The mixture was then
pressed into a mold.

Transmission electron microscopy (TEM) micrographs were obtained on a JEM-2100
transmission electron microscope (Jeol, Tokyo, Japan) with an accelerating voltage of 100 kV.
Elemental analysis of the nanocatalysts was performed on a JSM-6610LV scanning electron
microscope using an EDX detector (Jeol, Tokyo, Japan).

Nanocatalysts were investigated via X-ray photoelectron spectroscopy (XPS) on
a Kratos Axis Ultra DLD photoelectron spectrometer (Kratos Analytical LTD, Manch-
ester, UK).
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3.6. Hydrogenation of 2-Hexyn-1-ol

The hydrogenation process was carried out in a thermostated glass reactor according
to the procedure described in Ref [64]. The reaction was carried out in ethanol medium
(25 mL) at atmospheric hydrogen pressure and a temperature of 20–50 ◦C, with intensive
stirring (600–700 oscillations per minute). Before hydrogenation, the nanocatalyst (0.05 g)
was reduced with hydrogen in the reactor for 30 min under conditions of intensive stirring.
After hydrogen treatment, 2.23 mmol (0.09 mol/L) alkynol was added to the reactor. The
amount of alkynol corresponded to an uptake of 100 mL of hydrogen. The hydrogenation
rate was calculated from hydrogen uptake per unit time. For this purpose, the volume of
hydrogen uptake was measured after a certain time interval using a burette connected to
the reactor.

To determine the selectivity for the main products of the hydrogenation reaction,
syringe samples of the reaction mixture were taken at proper time intervals.

The hydrogenation products were analyzed using gas–liquid chromatography on
a Chromos GC1000 chromatograph (Chromos Engineering, Dzerzhinsk, Russia) with a
flame ionization detector in isothermal mode. A BP21 capillary column (FFAP) with a
polar phase (PEG modified with nitroterephthalate) was used. This device was 50 m in
length and 0.32 mm in inner diameter. The column temperature was 90 ◦C, the injector
temperature was 200 ◦C and helium served as the carrier gas. A total of 0.2 mL of sample
was investigated. Selectivity for alkenol was calculated as the fraction of the target product
present in the reaction products at a given degree of substrate conversion.

To determine the stability of the catalysts, hydrogenation of successive portions of
alkynol (2.23–4.46 mmol) was carried out for the same nanocatalyst sample (0.05 g).

4. Conclusions

Pd/ZnO and PdAg/ZnO nanocatalysts, modified with pectin (Pec), 2-hydroxyethyl
cellulose (HEC) and chitosan (Chit), were prepared using a green one-pot method via the
introduction of water solutions of polysaccharide and metal salts into a water suspension of
ZnO under ambient conditions. A study of the resulting catalysts using spectrophotometry,
potentiometry, elemental analysis, XRD, IRS, BET, TEM and XPS methods indicated both
that polysaccharides and metal (Pd and Ag) ions were quantitatively adsorbed onto zinc
oxide and the polymers interacted with both ZnO and the active-phase particles formed.
In the case of Pd-HEC/ZnO, the interaction of a small amount of Pd with ZnO and the
formation of PdZn species was also observed. This suggests that, by varying the polymer
nature in such a variety of catalysts, it is possible to regulate the composition of active-
phase particles.

The catalysts showed excellent activity in the hydrogenation of model 2-hexyn-1-ol
substrates at 40 ◦C and 1 atm of H2. In this comparative study, the maximum selectivity for
2-hexen-1-ol (97.2%) was obtained in the presence of a bimetallic PdAg-HEC/ZnO catalyst.
Monometallic Pd catalysts showed high activity, but lower selectivity, than Pd-Ag catalysts.

The hydrogenation reaction takes place in a swollen bulk metal–polymer surface layer,
increasing the lifetime of PdAg-HEC/ZnO. Thus, the catalyst combines the advantages of
both homogeneous and heterogeneous catalysts.

The excellent performance at low catalyst loadings and mild reaction conditions makes
polysaccharides containing metal nanocatalysts highly attractive for further improvement.
Additional testing should be performed in both the hydrogenation of different types of
unsaturated organic compounds and other important catalytic processes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal13111403/s1, Table S1: Results of adsorption of Pd2+ and
Ag+ ions on polymer-modified ZnO; Table S2: Analysis of electron diffraction pattern from TEM of
0.5%PdAg-HEC/ZnO catalyst [77]; Table S3: Analysis of electron diffraction pattern from TEM of
0.5%Pd-HEC/ZnO catalyst [77].
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