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Abstract: Upgrading the properties of diesel fractions is considered one of the crucial processes in
the petrochemical industry; and for this purpose in laboratory-scale researching it is studied on the
base of the hydroisomerization of n-hexadecane as a main model reaction. Recently, zeolite-based
bifunctional catalysts have proven their efficiency due to their remarkable acidity, shape-selectivity
and relative resistance to deactivation. In this review, different topological-type zeolite-based catalysts,
the mechanism of their catalytic effect in n-C16 isomerization, and the principles of shape-selectivity
are reviewed. A comparison of their structural-operational characteristics is made. The impact
of some feedstock impurities on the catalyst’s performance and deactivation due to carbonaceous
deposits as well as various modern eco-friendly cost-effective synthesis techniques are also discussed.
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1. Introduction

Currently, a key focus in the global production of petroleum products is to raise
the standards for motor fuels. The inadequate quality of such fuels is a leading factor
contributing to environmental pollution. To address this issue, improving the chemical
composition of the fuel is used to meet high quality requirements [1,2]. One of the most
promising technologies is isodewaxing process. Instead of removing n-paraffins by solvent
extraction, the is the odewaxing technology modifies the molecular structure of the wax
through catalytic isomerization, producing isoparaffins with superior cold flow properties,
high viscosity index, and excellent oxidation resistance.

The isodewaxing process comprises four reactions: (i) isomerization of the normal
paraffins to obtain their isomers, (ii) hydrocracking of the long-chain paraffins into shorter-
chain ones, (iii) hydrogenation of the unsaturated aromatic components, and (iv) hydrode-
cyclization with the ring-opening reaction. In this review we will focus on the first type
of reaction, which usually occurs in the presence of hydrogen, so it is referred to as hy-
droisomerization. Usually, this reaction is accompanied by hydrocracking in which the
extent varies according to the operational conditions of the process and the characteristics
of the catalyst used. The rates of hydroisomerization and hydrocracking reactions define
the composition of products.

Considerable research efforts have been dedicated towards the production of value-
added products from low-grade waxy feedstocks (Figure 1). In particular, the focus has
been on converting these feedstocks into branched products to improve the fuel quality.
These researches have been centered on catalysts development, with a specific emphasis on
micro/mesoporous catalysts to accelerate mass transfer and optimize the residence time
of reagents on the active sites, thereby increasing their efficiency in the desired chemical
reactions [3–6].
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skeletal isomerization reaction of the olefinic intermediates created over the metal sites 
and in cracking [7,8]. A well-balanced bifunctional catalyst promotes hydrogenation and 
dehydrogenation reactions, with rearrangements of the hydrocarbon intermediates over 
acid sites dictating reaction rates [9]. As a result, hydroisomerization and hydrocracking 
reactions occur in sequence, leading to mono- and multibranched isomers, and cracked 
paraffins [10,11]. One of the primary challenges in advancing the hydroisomerization tech-
nology is the need for highly effective and selective bifunctional catalysts that can mini-
mize the formation of byproducts resulting from hydrocracking [12,13]. 

In this review, the latest findings in improving the isomerization processes of linear 
alkanes through the development of catalyst structures, methods of their preparation, and 
studies related to the operational conditions of the process will be discussed. A compre-
hensive analysis will be conducted to compare the performance of various catalysts dur-
ing the hydroisomerization of n-C16. The operating conditions of the hydroisomerization 
of n-C16 will be discussed in details. 

2. Straight-Chain Alkane Hydroisomerization Process 
2.1. The Principle of the Process and Its Technical Significance 

Hydroisomerization of diesel fraction is considered as a vital chemical process that 
includes the hydroconversion of normal paraffins into their branched isomers. This reac-
tion comprises breaking and rearranging C-C bonds to obtain more favorable isomers 
providing the higher cetane number of diesel, thus reducing engine emissions and im-
proving the cold flow characteristics of fuels, making them less prone to clogging at low 
temperatures. 

As shown in Table 1, the presence of linear alkanes improves the cetane number of 
diesel, however, the melting point also increases. Given the importance of diesel quality, 
maintaining an adequate cetane number is crucial. According to the 2019 Worldwide Fuel 
Charter, the minimum cetane number equals 51.0 and up to 55.0 for some markets having 
high requirements for emission control [14]. 

It should be noted that branched-chain paraffins typically have lower cetane numbers 
than their linear counterparts. Among the mono-branched isomers with alkyl substituents 
or with methyl groups at the end of the hydrocarbon chain, the latter not only have lower 
melting points but also higher cetane numbers (Table 2). Therefore, the selective 
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Figure 1. Distribution of published papers on isomerization of n-C16 paraffins by countries [sourced
from Scopus database].

Hydroisomerization catalysts are generally categorized as bifunctional catalysts, com-
posed of a metal, typically platinum, that is dispersed on an acidic support. The metal
serves as a dehydrogenation/hydrogenation agent, while the acidic support aids in the
skeletal isomerization reaction of the olefinic intermediates created over the metal sites
and in cracking [7,8]. A well-balanced bifunctional catalyst promotes hydrogenation and
dehydrogenation reactions, with rearrangements of the hydrocarbon intermediates over
acid sites dictating reaction rates [9]. As a result, hydroisomerization and hydrocracking
reactions occur in sequence, leading to mono- and multibranched isomers, and cracked
paraffins [10,11]. One of the primary challenges in advancing the hydroisomerization
technology is the need for highly effective and selective bifunctional catalysts that can
minimize the formation of byproducts resulting from hydrocracking [12,13].

In this review, the latest findings in improving the isomerization processes of linear
alkanes through the development of catalyst structures, methods of their preparation, and
studies related to the operational conditions of the process will be discussed. A comprehen-
sive analysis will be conducted to compare the performance of various catalysts during the
hydroisomerization of n-C16. The operating conditions of the hydroisomerization of n-C16
will be discussed in details.

2. Straight-Chain Alkane Hydroisomerization Process
2.1. The Principle of the Process and Its Technical Significance

Hydroisomerization of diesel fraction is considered as a vital chemical process that
includes the hydroconversion of normal paraffins into their branched isomers. This reaction
comprises breaking and rearranging C-C bonds to obtain more favorable isomers providing
the higher cetane number of diesel, thus reducing engine emissions and improving the cold
flow characteristics of fuels, making them less prone to clogging at low temperatures.

As shown in Table 2, the presence of linear alkanes improves the cetane number of
diesel, however, the melting point also increases. Given the importance of diesel quality,
maintaining an adequate cetane number is crucial. According to the 2019 Worldwide Fuel
Charter, the minimum cetane number equals 51.0 and up to 55.0 for some markets having
high requirements for emission control [14].

It should be noted that branched-chain paraffins typically have lower cetane numbers
than their linear counterparts. Among the mono-branched isomers with alkyl substituents
or with methyl groups at the end of the hydrocarbon chain, the latter not only have
lower melting points but also higher cetane numbers (Table 1). Therefore, the selective
hydroisomerizing n-alkanes to these isomers can produce diesel with improved cold flow
properties and a shorter ignition delay [15].
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Table 1. Characteristics of hexadecane isomers as a fuel component [PubChem database]; [16].

Isomer Chemical Structure Boiling Point a, ◦C Flash Point a, ◦C Melting Point a, ◦C Cetane Number

Mono-isomers
2-methylpentadecane
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Mono-isomers 
2-methylpentadecane  

 
282.0 

 
95.3 

 
−9.2 

 
100 

8-methylpentadecane  274.3 94.0 −25.6 75 

5-butyldodecane 

 

150.7 b N/A −47.4 45 

Di-isomers 
(3R,4R)-dimethyltetradecane 
(3R,4S)-dimethyltetradecane 
(3S,4R)-dimethyltetradecane 
(3S,4S)-dimethyltetradecane 

 
248.0 N/A −37.0 

 
61 
64 
58 
62 

(5R,6R)-dimethyltetradecane 
(5R,6S)-dimethyltetradecane 
(5S,6R)-dimethyltetradecane 
(5S,6S)-dimethyltetradecane 

 
N/A N/A N/A 

51 
51 
48 
52 

7,8-dimethyltetradecane 
 

270.0 −86.2 −86.2 40 

282.0 95.3 −9.2 100

8-methylpentadecane
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n-undecane C11H24 195.9 −25.5 62.0 79.0 

n-dodecane C12H26 216.3 −9.6 83.0 72.9 

n-tridecane C13H28 235.4 −5.4 94.0 88.0 

n-tetradecane C14H30 253.6 5.9 100.0 95.0 

n-pentadecane C15H32 270.6 10.0 N/A 98.0 

n-hexadecane C16H34 286.9 18.2 135.0 100.0 

n-heptadecane C17H36 303.0 22.0 149.0 105.0 

n-octadecane C18H38 316.0 28.2 166..0 110.0 
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Isomer Chemical Structure
Boiling 

Point a, °C 

Flash Point 
a, °C 

Melting 

Point a, °C  

Cetane 

Number 

Mono-isomers 

2-methylpentadecane 282.0 95.3 −9.2 100 

8-methylpentadecane 274.3 94.0 −25.6 75 

5-butyldodecane 150.7 b N/A −47.4 45 

Di-isomers 

(3R,4R)-dimethyltetradecane

(3R,4S)-dimethyltetradecane

(3S,4R)-dimethyltetradecane

(3S,4S)-dimethyltetradecane

248.0 N/A −37.0 

61 

64 

58 

62 

(5R,6R)-dimethyltetradecane

(5R,6S)-dimethyltetradecane

(5S,6R)-dimethyltetradecane

(5S,6S)-dimethyltetradecane

N/A N/A N/A 

51 

51 

48 

52 

7,8-dimethyltetradecane 270.0 −86.2 −86.2 40 
270.0 −86.2 −86.2 40

Multi-branched isomers
2,2,4,4,6,8,8-

heptamethylnonane
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Table 2. Characteristics of n-alkanes C3-C18 as a fuel component (sourced from PubChem
database [16]).

Alkane Chemical Formula Boiling Point (◦C) Melting Point (◦C) Flash Point (◦C) Cetane Number

n-propane C3H8 −42.0 −187.6 −104.0 −20.0

n-butane C4H10 0.5 −138.3 −60.0 20.6

n-pentane C5H12 36.0 −129.0 −40.0 30.0

n-hexane C6H14 69.0 −95.4 −22.0 47.9

n-heptane C7H16 98.4 −90.6 −4.0 56.0

n-octane C8H18 125.6 −56.7 13.0 64.4

n-nonane C9H20 150.5 −53.5 31.0 60.9

n-decane C10H22 174.1 −29.7 46.0 65.5

n-undecane C11H24 195.9 −25.5 62.0 79.0

n-dodecane C12H26 216.3 −9.6 83.0 72.9

n-tridecane C13H28 235.4 −5.4 94.0 88.0

n-tetradecane C14H30 253.6 5.9 100.0 95.0

n-pentadecane C15H32 270.6 10.0 N/A 98.0

n-hexadecane C16H34 286.9 18.2 135.0 100.0

n-heptadecane C17H36 303.0 22.0 149.0 105.0

n-octadecane C18H38 316.0 28.2 166.0 110.0

From a thermodynamic point of view, the formation of iso-paraffins is more favorable
at lower temperatures; therefore, to achieve better selectivity towards isomers, catalysts are
usually designed for low temperature exploitation [17,18].
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2.2. Illuminating the Pathways of Molecular Transformation

Zeolites composed entirely of silica have a neutral charge, however, if Si4+ is replaced
with Al3+, the framework becomes negatively charged. Protons can neutralize the frame-
work charges, resulting in the development of acid sites that accelerate the main processes
of oil refining: hydrocarbon isomerization and cracking. Based on the zeolite topology
and acidity, these processes can yield desirable products by converting linear alkanes into
diverse branching isomers and breaking down higher hydrocarbons into smaller ones [19].
Before digging into the influence of shape selectivity on these reactions, it is crucial to look
at the case where shape selectivity is omitted.

Conventional hydroisomerization proceeds with the formation of an olefinic interme-
diate via dehydrogenation on the metal site. As a result of the highly endothermic nature of
the dehydrogenation step, the concentration of olefins in the hydroisomerization reaction
mixture is typically low. Thus, it is crucial to convert these olefinic compounds promptly
to carbocations on the acid sites of the catalyst to ensure efficient conversion. Due to the
weak basicity of the hydrocarbons, the equilibrium concentration of carbocations on the
acid sites of the zeolite is relatively low [20,21].

According to Jacob et al. [22], there are two types of carbocations:

• Tricoordinated carbenium ion;
• Pentacoordinated carbonium ion (extremely unstable).

Carbenium ions can be formed via three distinct routes depending on feedstock prop-
erties and the catalyst acidity. These routes include (i) hydride elimination on Lewis acid
sites (Figure 2a), which can occur through a variant pathway of the carbenium ion R+

adsorbed on active sites of the zeolite, known as “bimolecular hydride transfer” (Figure 2b);
(ii) alkane protonation followed by hydrogen abstraction (Figure 2c); and (iii) olefin pro-
tonation, leading to the formation of an alkylcarbenium ion (Figure 2d). The last route
comprises the protonation of olefinic intermediates instead of the energetically unfavorable
direct protonation of alkanes. Thus, the isomerization via route (iii) accelerates as compared
to the direct activation of the alkanes [22].
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As per the classical bifunctional mechanism of the isomerization, the metal component
of the catalyst facilitates the dehydrogenation of alkanes to form alkenes that are protonated
to transitional alkylcarbenium ions on the Brønsted acid sites. These ions undergo rear-
rangement and scission reactions to obtain ultimately obtain, after hydrogenation on the
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metal sites, the saturated product—mono-substituted isoalkanes. In the case of availability
of potent Brønsted acid sites, mono-substituted tertiary carbenium ions may undergo
additional isomerization, finally leading to the formation of carbenium ions containing
multi-branches [23].

Aluminosilicate zeolites that incorporate platinum or palladium metal typically oper-
ate based on the classical bifunctional mechanism (Figure 3), particularly at high conver-
sions, elevated hydrogen pressure, and a sufficiently high carbon number of the feedstock.
The pathway of converting hydrocarbons on metals often compete with the bifunctional
mechanism, and the significance of the former increases in the case of more severe condi-
tions and the weak acidity of zeolite. The presence of CH4 and C2H6 in the final reaction
products is indicative of metal-catalyzed cracking, a process commonly referred to as hy-
drogenolysis.
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Weiss demonstrated that alkenes displayed high reactivity in the isomerization on
Pt-free aluminosilicate, whereas alkanes did not [24]. Several studies have reported an
increase in the isomerization rate with rising Pt content, which can be attributed to high
concentration of the olefinic intermediate [25,26].

Due to the formation of strong covalent bonds, both the enthalpy of protonation (∆Hp)
and the activation energy of the isomerization step (Eiso) are expected to be high, as a result
of the deformation of the C-O-Z bond (Z-acid site). The skeletal isomerization reaction
is postulated to occur through the rearrangement of the carbenium ion via a cycloalkyl
intermediate. The resulting isoparaffinic carbenium ion is subsequently transformed into
an olefin via the loss of proton at the acid site. Finally, the isoolefin intermediate is rapidly
hydrogenated to the isoalkane product [27].

The rate of isomerization has been observed to be heavily influenced by the length of
the alkane chain. The longer chains result in the greater stability of bound carbenium ions
and the higher rate of the isomerization reaction. However, high isomerization selectivity
becomes increasingly challenging as the chain length increase, due to adverse reactions,
namely carbocation intermediate hydrocracking on acid sites and hydrogenolysis reactions
on metal sites. The balance between hydrogenation and acid function is a key factor that
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governs the prevalence of acid- or metal-catalyzed reactions, ultimately determining the
composition of products [28,29].

Three mechanisms of alkane cracking have been established: (a) non-catalytic thermal
cracking that proceeds at high temperatures as radical process, (b) proteolytic α-cracking
including carbonium ion and (c) β-cracking via the carbenium ion. The commonly ac-
knowledged mechanisms of catalytic cracking in hydroisomerization conditions can be
described using two fundamental steps: the formation of carbenium ions and β-cracking.

In contrast to acid-catalyzed cracking, the product of thermal cracking of alkanes via
free-radical intermediates possesses a the distinct composition (Table 3).

Table 3. Comparison of thermal and catalytic cracking processes.

Hydrocarbons Thermal Cracking Products Catalytic Cracking Products

n-Hexadecane
Primary products—alkanes C1-C3; significant

quantity of n-olefins C4-C15; relatively low
concentrations of branched aliphatics

Primary products—alkanes C3-C6; minor
amounts of n-olefins; high concentrations

of branched aliphatics

Aliphatics Minor conversion to aromatics at 500 ◦C Large conversion to aromatics at 500 ◦C

n-olefins Slow sigmatropic rearrangement of double
bond with a low isomerization

Rapid sigmatropic rearrangement of
double bond with a significant

isomerization conversion

Branched olefins
Non-selective hydrogen transfer and lower
rate of cracking as compared to that of the

corresponding alkanes

Selective hydrogen transfer and higher
rate of cracking than that of the

corresponding alkanes

Naphthenes The rate of cracking is lower than that of the
corresponding alkanes.

The rate of cracking is comparable to that
of the corresponding alkanes.

Alkyl aromatics Cracking happens within the side of alkyl
functional groups

Cracking happens within the side of
aromatic ring itself

Alkyl aromatics with larger
functional groups

The rate of cracking is lower than that of the
corresponding alkanes

The rate of cracking is higher than that of
the corresponding alkanes

Typically, the formation of free-radical intermediates in the process is of kinetic signifi-
cance at temperatures higher than 530 ◦C [30,31].

According to the traditional catalytic cracking mechanism (also known as the carbe-
nium ion mechanism), an alkane is subjected to hydride abstraction by a carbenium ion,
resulting in the formation of another carbenium ion, which then undergoes β-scission, or
the cleavage of the C-C bond β-situated to the trivalent carbocation [32]. Carbenium ions
are known to act as chain carriers, with the most stable ones, typically tertiary ions like the
t-butyl cation, being the predominant carriers [33,34].

3. n-Hexadecane Hydroisomerization on Bifunctional Catalysts
3.1. Development of Hydroisomerization Catalysts

To improve the formation and isomerization of the carbocation intermediate in the
hydroisomerization reaction, the catalyst must have a significant acidity [35,36]. Since the
discovery of aluminum chloride in 1933 as a catalyst for hexane and heptane isomerization,
four generations of hydroisomerization catalysts have been developed over the course
of several decades (Table 4) [37–39]. Currently, only third and fourth generations are
used in the industry, although the academic interest in these generations of catalysts
has increased dramatically over the past 10 years (Figure 4), and this review focuses on
the last generation. A critical challenge in the research and development of innovative
hydroisomerization catalysts is to achieve high selectivity of isomerization and considerable
n-paraffin conversion, constraining the formation of cracking byproducts. This parallel
reaction reduces the yield of the intended products [40].



Catalysts 2023, 13, 1363 7 of 30

Table 4. Catalysts generations for hydroisomerization of n-alkanes.

Generation Catalysts
Composition

Operating
Temperature, ◦C Advantages Disadvantages

1st Friedel-Crafts, AlCl3 80–100 High activity Sensitivity to trace water;
fast deactivation

2nd Metal/support 350–500

Easy to apply;
corrosion issues are

mitigated; sensitivity
problems are less severe

Thermodynamic
limitations on conversion

3rd Metal/halogenated
support 120–160

Enhanced acidity due to
halogenation (Cl, F) of

alumina support

Sensitive to impurities;
continuous feeding
chlorine to maintain

catalyst activity; corrosion
of equipment

4th Bifunctional
zeolite-based catalysts 250–340

Easy to use;
tolerant to poisons;

no feedstock pretreatment

Selectivity issues;
more expensive to produce
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Figure 4. The study of n-alkanes isomerization on zeolite-based catalysts over the last decade
[ScienceDirect database].

Typical zeolites-based catalysts are prone to poisoning and deactivation in the hydroi-
somerization process of linear alkanes due to the presence of sulfur-containing substances
in the feed. Currently, the major developments in the design of catalysts for n-paraffin
hydroisomerization are the high efficiency at temperatures 100–200 ◦C and tolerance to
both sulfur and water.

Synthetic zeolites have been recognized as solid acid catalysts and are widely used
in a variety of applications in industry, notably in petrochemical synthesis and oil refin-
ing [41]. The topology and morphology of the zeolites defines their suitability for the
particular application process (Table 5), which is defined by interlinked channel structures
or a hierarchical structure that integrates micro- and mesopores, in addition to acid-base
properties [42–46].
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Table 5. The standard structural properties of zeolites [Database of Zeolite Structure].

Zeolite Topology Member Ring (MR) Channel Dimensionality Accessible Volume, %

ZSM-5 MFI 10, 6, 5, 4 3D 9.81

ZSM-12 MTW 12, 6, 5, 4 1D 9.42

ZSM-22 TON 10, 6, 5 1D 8.04

ZSM-23 MTT 10, 6, 5 1D 7.98

ZSM-35 FER 10, 8, 6, 5 2D 10.01

ZSM-48 MRE 10, 6, 5, 4 1D 6.55

SAPO-11 AEL 10, 6, 4 1D 6.77

Beta BEA 12, 6, 5, 4 3D 20.52

Mordenite MOR 12, 8, 5, 4 2D 12.27

EMM-23 EWT 21, 10, 6, 5, 4 3D 21.95

3.2. Analysis of the Relationship between Catalyst Characteristics and Activity
3.2.1. Shape-Selectivity

The study of the structural effect of zeolites on their selectivity deals with the concept
of “shape-selectivity” that is classified into two basic categories: configurational selectivity
and transition state selectivity (Figure 5). Typically, zeolites acquire the requisite shape
selectivity at the expense of restricted mass transfer inside micropores to and from the
active sites. To overcome this issue, several approaches have been used to improve the
accessibility of active sites inside zeolites. One successful way is to take advantage of
molecular shape selectivity, which acts inside zeolite’ channel systems and has shown
higher efficiency and selectivity in various chemical reactions.
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Configurational selectivity arose from the insight that molecule cannot pass through
the channels of the zeolite. In the case where the molecule will not be adsorbed it will keep
staying intact in the resultant mixtures (reactant shape selectivity) (Figure 5a). In the case
where the molecule will not be desorbed, it can exist as an adsorption transitional-state, and
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only molecules originating from this state will be included in the product via the following
reactions (product shape selectivity) (Figure 5b). In addition, the effective pore diameter
may strongly affect the formation of transition-state intermediates and direct them towards
forming states that fit its topology or towards participating in secondary intermediate
interactions (transitional-state shape selectivity) (Figure 5c).

In some cases, transition state intermediates approximating the topological framework
of the zeolite are quickly formed (inverse shape selectivity) (Figure 6a), this phenomenon
was caused by sorption shape selectivity instead of transition state shape selectivity, as
previously thought [47,48].

Catalysts 2023, 13, x FOR PEER REVIEW 9 of 32 
 

 

 
Figure 5. Representation of basic shape selectivity types in the zeolite: (a) reactant shape selectivity; 
(b) transitional-state shape selectivity; (c) product shape selectivity. 

In addition to the previous two classifications, some effects related to the interactions 
on the outer surfaces of zeolites were studied and formulated by Chen et al. [54], including 
the window or cage effect (Figure 6d), to understand how the shape selectivity of erionite 
affects the product distribution of cracking of linear alkanes (C16H22–C36H74). This phenom-
enon attempts to explain the differences in diffusion rates of n-paraffin having various 
chain lengths inside a particular zeolite structure, which are referred to as “up and down” 
diffusivity variations. Generally, as the chain length of the n-paraffin increases, its diffu-
sivity within the zeolite structure decreases due to the higher steric hindrance [55]. 
Derouane [56] also formulated the nest effect (Figure 7), which tried to explain the non-
shape selectivity of zeolite at transition-state intermediates formation that occur within 
the cavities located at the ends of the pores. 

 
Figure 6. Representation of secondary shape selectivity types in the zeolite: (a) inverse shape
selectivity; (b) molecular traffic shape selectivity; (c) pore mouth and key-lock selectivity; (d) the
window effect.

Transition state selectivity can be influenced by restrictions that could occur either
on the surface or within the pores of the framework of the zeolite. In the locations where
the paths of the pores happen to intersect, this case can affect the diffusion of the reactant
molecules—whether due to geometric reasons or the characteristics of molecular diffusion.
As a result, molecules of the specific reactant may enter one of the pores and do not enter
to the other one (molecular traffic control) (Figure 6b). Otherwise, the ends of the straight-
chain alkanes may enter simultaneously into two (or more) adjacent pores (Pore mouth &
key-lock selectivity) (Figure 6c) [49–53].

In addition to the previous two classifications, some effects related to the interactions
on the outer surfaces of zeolites were studied and formulated by Chen et al. [54], including
the window or cage effect (Figure 6d), to understand how the shape selectivity of erion-
ite affects the product distribution of cracking of linear alkanes (C16H22–C36H74). This
phenomenon attempts to explain the differences in diffusion rates of n-paraffin having
various chain lengths inside a particular zeolite structure, which are referred to as “up and
down” diffusivity variations. Generally, as the chain length of the n-paraffin increases, its
diffusivity within the zeolite structure decreases due to the higher steric hindrance [55].
Derouane [56] also formulated the nest effect (Figure 7), which tried to explain the non-
shape selectivity of zeolite at transition-state intermediates formation that occur within the
cavities located at the ends of the pores.
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Various approaches have been established to manipulate the morphological character-
istics of zeolites based on using and developing new structure-directing agents in order to
gain a better distribution of products of n-hexadecane hydroisomerization. Several of these
approaches have led to acceleration of hydrocarbons’ transport within the crystals, and
eventually to decreasing the residence time of intermediate alkylcarbenium in microspores
and the rate of secondary cracking.

Romero D. et al. [57] observed the effect of member ring (MR) size of the zeolite
framework on the selectivity of n-C16 hydroisomerization over 3D-10MR ZSM-5 (bulk
and nanostructured), 1D-12MR ZSM-12, 1D-10MR ZSM-22 and extra-large intersecting
pores (10MR + 21MR) EMM-23. Zeolite ZSM-5 having hierarchical structure and shorter
intercrystalline length (higher diffusion rate) demonstrates an upgraded shape-selectivity
for di-branched isomers (dimethyl) cracking owing to a snug fit of isomers at (straight-
zigzag) channel intersections in the ZSM-5 framework. This shape of intersections is absent
in the framework of ZSM-22; however, the cracking of di-branched isomers could be
explained by the pore mouth type of shape-selectivity. The wide size of the 12MR pores
provides an acceptable performance of ZSM-12, whilst in the case of EMM-23 the 10MR
pores prevailed over the framework at the expense of 21MR, as a result of molecular defects
of silanol groups.

Table 6 shows ZSM-12 prepared using various types of organic templates giving
different morphological and acidic properties of zeolite. For instance, ZSM-12 with high
specific area (>300 m2.g−1) and good total acidity (~200 µmol/g) with low Si/Al ratios (~40)
is synthesized applying template comprising tetraethylamonium cations (like TEABr and
TEAOH). In contrast, samples prepared with MTEACl and MTEABr as templates have high
specific area with Si/Al ratios near to 70, to increase their acidity up to 300–700 µmol/g.
As for ZSM-22, the majority of researchers use 1,6-diaminohexane as the template, giving
zeolite with good crystallinity and optimal textural properties. With regard to ZSM-23, it
may be produced using template comprising amide and amine functional groups, however,
the last type has proven its superiority with Si/Al = 100–150 despites of the weak acidity of
the zeolite produced.

Table 6. The morphological properties of zeolite-based catalysts of hydroisomerization prepared
with using various organic structure-directing agents (OSDAs).

Zeolite Support
Type OSDAs Si/Al Specific Area a,

m2·g−1
Total Pore Volume b,

cm3·g−1
Total Acidity c,

µmol/g Ref.

ZSM-5 Tetrapropylammonium
hydroxide 32 371 0.232 238 [58]

ZSM-12 Tetraethylammonium bromide
(TEABr)

45
60
90
120

310
270
220
260

N/A

195
92
80
54

[59]
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Table 6. Cont.

Zeolite Support
Type OSDAs Si/Al Specific Area a,

m2·g−1
Total Pore Volume b,

cm3·g−1
Total Acidity c,

µmol/g Ref.

ZSM-12 Methyltriethylammonium
chloride (MTEACl)

25 280

N/A

720

[60]
40 293 530
50 287 430
75 314 300
100 323 270

ZSM-12 45 301 0.160 601 [61]

ZSM-12
Tetraethylammonium

hydroxide
(TEAOH)

40 323

N/A N/A [62]
50 331
71 300
100 291

ZSM-12

Benzyltrimethylammonium
chlorid (BTMACl)

TEABr
Methyltriethylammonium

bromide (MTEABr)

~90
260
220
260

N/A
107
80
115

[63]

ZSM-12 TEAOH
MTEACl

61
94

258
380

0.120
0.230 N/A [64]

ZSM-12

P-Phenylenedimethylene-bis(N-
methylpyrrolidinium)

dibromide
P-Phenylenedimethylene-bis(N-

methylpiperidinium)
dibromide

20
50

297
306

0.370
0.340

898
550 [65]

ZSM-22
1,6-diaminohexane

(+Organosilane)
(+Silanized silica beads)

76
72
72

258
257
251

0.210
0.190
0.230

N/A [66]

ZSM-22 1,6-diaminohexane (with acid
treatment) 46 229 0.320 N/A [67]

ZSM-22 1,6-diaminohexane
40
60
100

240
255
244

N/A
192
145
95

[68]

ZSM-22 6-amino-1-hexanol

35
50

100
150

110
137
134
144

0.210
0.190
0.140
0.120

150.2
121.7
83.2
59.1

[69]

ZSM-23 N,N-dimethylformamide 40 150 N/A N/A [70,71]

ZSM-23 Pyrrolidine (PY) 100
150

305
228

0.280
0.230

68 *
52 *

[72]ZSM-23 Isopropylamine (IPA) 200 206 0.260 49 *

ZSM-23 Dual-OSDA (PY + IPA)
100
150
200

278
282
251

0.190
0.200
0.200

22 *
19 *
17 *

EU-1 Hexamethonium bromide 25 325 0.160 847 [61,73]

IM-5
1,5-bis(methylpyrrolidinium)-

pentane bromide

33 338 0.257 289

[58]IM-5
(micro-
pores)

21 381 0.412 252

SAPO-11 Dipropylamine phosphate
(DPA.H3PO4) 0.24 209 0.134 245.3 [74]

SAPO-31 Di-n-butylamine 0.6 222 0.144 57.9 [75]

BETA (TEAOH)

20
30
40
50

648
614
591
553

0.341
0.314
0.277
0.271

850
830
580
490

[76,77]

a Calculated by BET method. b Obtained using t-plot method at p/p0 = 0.99. c Obtained using FTIR data of
pyridine absorption considering bands at 1545, 1490, and 1445 cm−1. * Obtained by NH3-TPD considering peaks
centered at 441–445 ◦C, 313–348 ◦C, and 220–230 ◦C.
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The wide pores are not always preferred, where it could allow secondary reactions
to happen. For instance, 12MR zeolites have the capability to accommodate mono-, di-
and multi-branched hydrocarbons. However, multi-branched hydrocarbons are prone to
undergoing cracking reactions [78,79].

An optimal hydroisomerization catalyst provides a high yield of isomerized products
alongside the decreasing of cracking products formation (Figure 8). As a result, 10MR
zeolites-based catalysts have been identified as the preferred catalyst because they al-
low unhindered diffusion of monobranched hydrocarbons while discouraging diffusion
of multi-branched hydrocarbons via shape selection, promoting superior isomerization
selectivity. Zhang M. et al. [80] studied different 10MR zeolites (ZSM-22, -23, -35 and
-48)—corresponding topologies (TON, MTT, FER and MRE respectively)—as catalysts’
supports n-C16 hydroisomerization reaction. The products distribution of n-C16 hydroi-
somerization over 10MR zeolites was significantly influenced by tiny distinctions in the
channel configuration.
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Figure 8. Product distribution of n-C16 hydroisomerization over 0.5% Pt/ZSM-5, -23, -35, 48 and 0.5%
Pd/ZSM-12, -22 [58,79,80].

The predominated hydroisomerization product was primarily 2-methylpentadecane.
This likely occurred due to fast diffusion of 2-methylpentadecane. 4-Methylpentadecane
and 5-methylpentadecane were not observed in products obtained over the ZSM-22-based
catalysts, due to the smallest pore size in zeolite of this type.

The hydroisomerization mechanism might be explained by the pore mouth reac-
tion pathway due to the lack of detection of multi-branched isomers. These results are
supported by the study of Zhang et al. [79], in which three different types of zeolites
were tested (ZSM-12, ZSM-22 and Beta) as supports of 0.5 wt. % Pt catalysts. 1D-10MR-
ZSM-23 gave the highest concentration of mono-branched C16 isomers, whereas ZSM-12
and ZSM-48 zeolites gave the highest concentrations of multi-branched isomers. These
could be described by pore channel sizes for ZSM-12 and ZSM-48 (0.57 × 0.61 mm and
0.53 × 0.56 mm respectively). Significant isomerization yields have been reported with
non-interconnected mesopore zeolites and zeotypes, such as ZSM-12, IZM-2 and
ZSM-23 [81,82].

3.2.2. Effect of the Active Metal Site

In the literature, much attention is given to the impact of the metal precursor and
its loading on the catalyst selectivity (Table 7). The metal precursor utilized in synthesis
can also contribute to heterogeneities in the metal structure obtained on both bulk and
nanometer scales, which are referred to as precursor effects [83–85]. Distinct characteristics
of each metal precursor, such as its decomposition temperature and interaction with the
support, can significantly affect the distribution of metal particles across the support and
the particle size distribution [86]. As a result, the metal to acid site ratio (nM/nA) within
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the sample varies. Ultimately, this can have a substantial impact on the performance of
a catalyst [87–90]. In contrast, when considering the specific n-paraffin and operating
conditions, the performance of bifunctional catalysts depends not only on the zeolite
utilized but also on the ratio of metal/acid sites [25,91]

Table 7. The performance of zeolite-based catalysts of hydroisomerization prepared with using
various metal precursors.

Bifunctional Catalyst Metal
Loading, % Precursor Si/Al Conversion, % Selectivity to

i-C16, % Ref.

Pt/ZSM-12 0.50
[Pt(NH3)4](OH)2

45
60
90
120

88
88
86
85

86
87
87
92

[59]

Pt/ZSM-12 0.50 90 82 87 [63]

Pt/ZSM-22 0.50
Pt(NO3)2
H2PtCl6

Pt(NH3)4Cl2
100

33
32
30

52
72
45

[88]

Pt/ZSM-22
(Pt nanocrystals)

Octahedral
Spherical

Cubes

0.50 H2PtCl6 100 30
35
32

71
56
53

[92]

Pt/ZSM-22 0.46

[Pt(NH3)4](NO3)2 N/A

60 85
[93]Pt/BETA 0.70 26 76

Pt/SAPO-11 0.90 90 75

Pt/SBA-15 + BETA 0.50
H2PtCl6

[Pt(NH3)4](NO3)2
Pt(NH3)4Cl2

SBA(7)
BETA(75)

80
80
80

70
85
60

[94]

Pt/Fe/ZSM-23

0.98:0.98
1.00:1.90
0.99:3.66
1.03:7.00

H2PtCl6
Fe(NO3)·9H2O 50

57
70
64
62

80
82
65
64

[95]

Pt/ZSM-22/ZSM-23
(40:60) 0.50 H2PtCl6 100 58 78 [96]

Ni/ZSM-48 N/A Ni(NO3)2·6H2O 200 60 50 [97,98]

Pt/SAPO-11 0.50 H2PtCl6 0.24 96 58 [74]

Table 7. Cont.

Bifunctional Catalyst Metal
Loading, % Precursor Si/Al Conversion, % Selectivity to

i-C16, % Ref.

Pd-Ni2P/SAPO-31 0.05 Pd
4.00 Ni2P

Pd(NO3)2
(NH4)2HPO4 +

Ni(NO3)2

0.6 83 72 [75]

Pt/(SAPO-11/Al2O3)
SAPO-11:Al2O3 =

0.43
0.67
1.00

1.00 H2PtCl6
0.015
0.020
0.025

50
56
57

99
99
99

[99]

Table 7 shows that changing Si/Al—using [Pt(NH3)4](OH)2 as a metal precursor—does
not effect the performance of ZSM-12 especially on the side of conversion, but on the other
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hand, the selectivity slightly improves with increasing ratio Si/Al. Also the use of differ-
ent metal precursors greatly affects the selectivity of zeolite ZSM-22, as the case of using
Pt(NO3)2, Pt(NH3)4Cl2 and H2PtCl6, it is clear that the latter offers the best selectivity. In
general, it is obvious that the best metal loading for all zeolite-based catalysts is 0.50%
achieving an optimum balance between metal and acidic functions along with obtaining
and guarantee the high dispersion of metal on the support.

3.2.3. Effect of the Acidity

The zeolite framework contains exchangeable cations, which play an important role
on the neutralization of the charge produced by isomorphous substitution (Figure 9). For
example, the substitution of Si+4 with Al+3 leads to the formation of bridging [Si-OH-Al]
hydroxyls, which acts as a Brønsted acid sites (BAS) providing the catalytic activity of zeo-
lites [100]. The removal of the 4-coordinate Al associated with the BAS via dealumination
results in the formation of extra-framework Al (EFAL) species within the pores, which
often function as Lewis acid sites (LAS) [101–103]. These EFAL species have been found
to modify the thermal stability of zeolites and enhance their catalytic activity. Notably,
the hydrothermally dealuminated Y zeolite (USY) serves as a general catalyst in the fluid
catalytic cracking process.
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Moreover, extra-framework or framework-incorporated metals, such as Ga, B, Ti,
and Sn, may form LAS. These metals frequently provide zeolites with bifunctionality
characterized by both redox property and acidity, which extends their application beyond
petrochemistry to biomass transformation [104–106].

Achieving a balance between the density and strength of acidic sites is critical for the
reactivity and selectivity of hydroisomerization reactions, and catalysts with optimal hydro-
genation capacity and suitable acidity are preferred [107,108]. Aluminosilicate zeolites with
medium pores have significant activity and selectivity for the isomerization of long-chain
n-alkanes. However, excessive acidity may lead to cracking reactions, and extensive efforts
have been made to modify the acidity via improved synthetic methods or post-treatments,
such as altering acid site distribution using mixed zeolitic catalysts, among others [109].

A catalyst with high acidity could cause both hydroisomerization and hydrocracking
processes, resulting in lower isoparaffin yields and the breakdown of long-chain n-paraffins
to obtain less valued and lighter products. To promote hydroisomerization and suppress
hydrocracking, a catalyst with the strong hydrogenation activity and moderate acidity
is ideal. Furthermore, the size of the pore aperture in zeolites may have a substantial
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impact on catalyst selectivity. In the case where pore sizes are small enough to prevent
larger iso-paraffin formation at the acid sites, the catalyst will be good on converting
n-paraffins [110].

Over the past few decades, researchers have emphasized the significant influence of
the zeolite acidity of hydroisomerization catalysts on their activity and selectivity [111–113].
The general consensus is that a proper balance between hydrogenation and acid func-
tions is essential to maximize isomer yields. However, the role of acid site density and
strength remains a subject of debate due to variations in zeolite structure and reaction
conditions [114]. For instance, in the case of hydrogen spillover highlights, the olefinic inter-
mediates formed on acidic sites can be hydrogenated with H adsorbed over the far Pt cluster,
and as a result, the physical mixture of Pt/SiO2 and zeolite can exhibit good selectivity.
Batalha et al. [115] propose that catalyst selectivity is determined by the intimacy between
metal and protonic sites, which is the number of acid sites that olefinic intermediates
encounter during diffusion between two metallic sites.

The acidity of zeolites can be adjusted by altering the ratio of SiO2/Al2O3. Further-
more, some alkaline earth metals (Ba [116], Mg [117]) and transition metals (Fe [118]) can
be included into the structure to decrease the acidity; the same effect exerts coating the
zeolite with alumina [119].

4. Impact of Operating Parameters on Process Efficiency

The operational conditions of hydroisomerization of the diesel fraction are largely
influenced by the composition of feedstocks and the desired quality of the final product.
However, the choice of catalyst is equally critical. Initially, the hydroisomerization process
was performed at high hydrogen pressures ranging from 10 to 25 MPa. Upon the devel-
opment of more active catalysts, however, the pressure requirements have been reduced
to 4–5 MPa.

The temperature of the process is determined by both the boiling range of the feedstock
and the activity of the catalyst. Usually, higher boiling fractions necessitate higher process
temperatures. The application of highly efficient zeolite-based catalysts has enabled a
significant temperature reduction in recent years. For example, kerosene fractions are
processed at temperatures ranging from 240 to 280 ◦C, as opposed to previous temperatures
as high as 450 ◦C. Thus, the progress of the hydroisomerization process could be defined as
a trend to significant reduction of temperature and pressure due to the use of more active
catalysts. Despite numerous investigations in the field of knowledge, there is a relatively
limited understanding of the interconnected influence of these operational parameters.
Usually, experiments are performed by varying temperature within a predetermined range
while keeping the remaining parameters fixed. Consequently, the predominant impact of
temperature variation on catalyst performance can be observed. In general, with rise in
temperature, conversion increases, but selectivity decreases (Figure 10).
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Figure 10. Performance of zeolite-based catalysts (~1 wt% Pd) for hydroisomerization of n-C16 at the
operating condtions: temperature 220–340 ◦C, WHSV = 10 h−1, H2/n-C16 = 20, P = 6 MPa. Reprinted
with permission from [57]. Copyright 2020 Elsevier Inc.
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Typically, recent studies of n-hexadecane hydroisomerization have performed at
temperature range of 200–380 ◦C, operating pressure up to 6 MPa, the weight hourly space
velocity (WHSV) between 1–6 h−1, and H2/n-C16 ratios ranging from ~10 up to 1000.

As Table 8 shows, the majority of catalysts operate at temperature of at least 270 ◦C
and pressure exceeding 2 MPa. Analysis of the performance of catalysts above reveals
that zeolites ZSM-12, ZSM-22, and SAPO-11 at temperatures above 310 ◦C and ZSM-23
at temperatures between 270 and 290 ◦C are superior supports for platinum-impregnated
catalysts. In contrast, zeolites SAPO-11, SAPO-31, and SAPO-41 at temperatures exceeding
340 ◦C are preferable for palladium-impregnated catalysts, while catalysts supported with
BETA, USY, and mordenite have the modest performance.

However, ZSM-5 supports demonstrated the worst selectivity (whatever type of active
metal) even in the nanostructural form. As for the effect of pressure change, it depends
on the type of zeolites. For example, in the case of ZSM-5, the increase in pressure from
2 to 6 MPa has affected remarkable effect on the conversion of n-alkanes. On the other
hand, in the case of ZSM-22, the effect of pressure is somewhat proportionally limited on
the reaction conversion and selectivity. However, the effect of WHSV and H2/n-C16 is still
unclear considering that they have not ever been the main objectives of any investigation.

Parmar et al. [116] studied the impact of increasing WSHV on the performance of
bifunctional catalysts comprising Pt/ZSM-22 modified with Group-II cations (Ca+2, Ba+2,
Mg+2). Their findings revealed that higher WSHV and temperatures > 300 ◦C led to a
decrease in the conversion and an increase in selectivity towards iso-paraffins C16. This
observation can be due to the shortened reaction time, which has a negative impact on both
the main (isomerization) and secondary (cracking) reactions. Subsequently, Zhang et al. [80]
investigated the impact of WHSV at temperatures below 300 ◦C on the performance of
different Pt-impregnated 10MR zeolites. These data confirmed an advantageous effect of
increasing WHSV for both MTT and FER zeolite types (Pt loadings ~0.93 wt %), resulting
in improved selectivity. This phenomenon can be attributed to the suppression of cracking
iso-paraffins C16. In contrast, increasing WSHV led to a decrease in selectivity for both
TON and MRE zeolite types (Pt loading ~0.91 wt %), due to the lesser content of Brønsted
acid sites.

Table 8. The performance of zeolite-based catalysts of hydroisomerization at optimal operating conditions.

Bifunctional Catalyst
Active
Metal

Loading, %
Si/Al

Optimal Conditions Conversion,
%

Selectivity,
% Ref.

T, ◦C P, MPa WHSV, h−1 H2/n-C16

Pd/ZSM-5 1.00 40 280
6.0 10.0 20

95 4
[57]

Pd/ZSM-5 a 1.00 61 290 58 16

Pt/ZSM-5 0.50 32 240 2.0 6.0 10 33 4 [58]

Pt/ZSM-12 0.50 90 310 6.0 1.1 10 86 87 [63]

Pd/ZSM-12 1.00 62 310 6.0 10.0 20 85 92 [57]

Pt/ZSM-22 0.46 N/A 320 4.0 N/A N/A 80 85 [93]

Pd/ZSM-22 1.00 61 330 6.0 10.0 20 85 56 [57]

Pt/ZSM-22 0.45

45

305

6.0
0.7

10

94 76

[120]Pt/Ca-ZSM-22 0.42 312 91 82

Pt/Ba-ZSM-22 0.44 312 1.1 90 86

Pt/ZSM-22 0.90
100

300
4.0 N/A 600

15 33
[81]

Pt/ZSM-23 0.91 290 70 80

Pt/ZSM-23 0.60 60 270 3.0 1.0 6 91 82 [117]

Pt/ZSM-23 0.50 58 290 3.0 2.0 1000 85 85 [121]

Pd/EMM-23 1.00 60 290 6.0 10 20 80 13 [57]

Pt/ZSM-35 0.95 40
300 4.0 N/A 600

92 48
[80]

Pt/ZSM-48 0.93 200 20 54
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Table 8. Cont.

Bifunctional Catalyst
Active
Metal

Loading, %
Si/Al

Optimal Conditions Conversion,
%

Selectivity,
% Ref.

T, ◦C P, MPa WHSV, h−1 H2/n-C16

Pt/EU-1/ZSM-48 0.97 200 300 4.0 N/A 600 80 55 [122]

Pt/SAPO-11 b 0.15 0.6 310 2.0 3.1 650 94 96 [123]

Pt/SAPO-11 0.90 N/A 350 4.0 N/A N/A 90 75 [93]

Pd/SAPO-31 0.15

0.3 340 2.0 3.7

500 90 90 [124]

Pd/SAPO-41 0.80
8

90 96 [125]

Pt-Pd/SAPO-41 0.15:0.35 96 94 [126]

Pd/SAPO-41 0.10 0.3 360 2.0 3.7 500 87 95 [127]

Pd-Ni2P/SAPO-31 0.05/4.00 0.3 380 2.0 3.7 500 85 87 [75]

Pt/IM-5 0.50 33 240 2.0 6.0 10 43 5 [58]

Pt/BETA 0.40 14 200 0.5 3.0 13 50 63 [128]

Pt/BETA 0.79 - 280 4.0 N/A N/A 50 70 [93]

Pt-Pd/BETA 0.40/0.40 25 200 0.1 3.0 750 78 93 [129]

CoMo/Al2O3-Y 3.50–13.00 2.5 360 1.5 1.0 150 11 55 [130]

Pt/BETA 1.00 14 200

0.5 3.0 13 50

68

[117]Pt/USY 0.70 17 215 61

Pt/USY+ Pt/BETA 0.70/1.00 14/17 205 65

Pt/Al-SBA-15 + BETA
0.50

75
300 5.0 3.5 5

84 71
[131]

Pt/Al-SBA-15 + MOR 45 43 81

a Nanostructure. b Vacuum-assisted synthesis.

Upon the investigation of n-hexadecane hydroisomerization over Pd-Pt/β-zeolite
catalyst, Bauer et al. [129] observed a decline in the conversion from 89.0% under pressure
of 3 MPa to 53.0% at 7.5 MPa. This result can be attributed to the competition of olefinic
intermediates with hydrogen adsorbed over active sites under high-pressure conditions.
Although higher hydrogen pressures have a negative impact on the conversion of n-
paraffins and provide minimal enhancements in selectivity and catalyst stability, it should
be noted that industrial specifications are usually required to exploit catalysts within the
pressure range of 3–5 MPa.

5. Tolerance of Bifunctional Catalysts to Poisons and Deactivation
5.1. The Effect of Impurities-Containing Feed

Commercial feedstock is frequently impaired with nitrogen- and sulfur-containing
compounds, which could damage the metallic and acidic active sites of bifunctional cata-
lyst [132]. Nitrogen poisoning is a serious issue in catalysis, especially with zeolite-based
catalysts employed in n-hexadecane isomerization. Understanding the forms of nitrogen
adsorption and the further blocking of active sites allows us to understand the mechanisms
that govern catalyst deactivation and selectivity loss. The deactivation of bifunctional
catalysts on hydroisomerization of n-hexadecane with sulfur and nitrogen compounds
has got some attention, but the understanding of their impacts on catalytic isodewaxing is
unclear [133,134].

According to Lee et al. [135] the polymetallic bifunctional Pt-Pd-Mg/ZSM-23 catalyst
exhibited a high stability of product properties for more than 30 days in the presence of
sulfur impurities (1–2 wt.%).

Pimerzin et al. [136] examined the stability of two type of SAPO-11-supported bi-
functional catalysts (transition metal sulfides and noble metal) for the isomerization of
hexadecane. Nitrogen-containing feedstock inhibits isomerization catalytic activity more
strongly, and whether the quantity of sulfur in the feedstock is equivalent to or higher than
100 ppm, transition metal-based bifunctional catalysts surpass Pt-catalyst in n-hexadecane
isomerization (Figure 11).
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Figure 11. The stability of the conversion of bifunctional catalysts on processing feedstocks containing
sulfur (a) and nitrogen (b). Adapted with permission from [136]. Copyright 2020 MDPI.

Later, the effect of nitrogen-containing feed was retraced by Vinogradov et al. [130]
with different zeolite-supported catalysts (ZSM-5, Beta, and Y). It was observed that the
nitrogen impurities (quinoline) could play a role as a selective-controlling agent, as a
result of the predominant adsorption of quinoline on strong acid sites performing the
cracking process.

5.2. The Impact of Water

The effect of water-containing feed on the process of hydroisomerization of n-alkanes
was considered recently [137–139]. Controlled amounts of water and iso-pentanol promoted
the performance of FAU-type structured zeolite (with rare-earth metal—REM) in the
hydroconversion of n-hexadecane [140]. According to the results, the support was activated
by creating new protonic active centers via the hydration of REM cations. However, due to
competing adsorption and hydrating protons located in the zeolite, water decreases acidic
strength and deactivates the catalyst.

The impact of competing water adsorption on the acid sites of Pt/MFI, Pd/MFI, and
Pt/HY was investigated by Brosius et al. [141]. Authors discovered that water prevented
n-hexadecane cracking products from the secondary isomerization. Moreover, in the case of
using Pt(0.9 wt%)/HY products with a great extent of branching were obtained. In contrast,
Pt(0.9 wt%)/MFI produced a wider extent of linear products (Figure 12).

Catalysts 2023, 13, x FOR PEER REVIEW 19 of 32 
 

 

 
Figure 12. Distributions of n-hexadecane hydrocracking products (cracking yield 55%) with water 
over (a) 0.9% Pt/MFI and (b) 0.9% Pd/MFI and (c) (cracking yield 44%) over 0.9% Pt/H-Y. Reprinted 
with permission from [141]. Copyright 2016 American Chemical Society. 

5.3. Deactivation by Coke Deposition 
Upon the hydroisomerization of n-alkanes over zeolite-based catalysts, carbonaceous 

deposits are obtained as a result of complicated chain of reactions, namely the 
oligomerization, cyclization, and condensation of alkylaromatics to generate polycyclic 
aromatics (Figure 13) [142–145]. Coke is composed of heavy components that are 
extremely deposited as a byproduct on the surface of the zeolite, poisoning the active sites 
and clogging the pores. It was observed that the interaction between intermediates of 
coking and other reactions intermediates impacts on the distribution and selectivity of the 
products. Coking occurs faster on strong acid sites than on weak acid sites, because the 
last are less sensitive to coke formation [146,147]. 

The coke can be formed in one of three ways: (a) synchronously with the desired 
reaction (competitive phase), (b) consecutively to the directed reaction (successive phase), 
or (c) both of (a + b) simultaneously [145]. Coke combustion can renew the catalyst, 
however, the intense regeneration conditions and the presence of water prevent full 
catalytic activity from being regained [148]. 

 

Figure 12. Distributions of n-hexadecane hydrocracking products (cracking yield 55%) with water
over (a) 0.9% Pt/MFI and (b) 0.9% Pd/MFI and (c) (cracking yield 44%) over 0.9% Pt/H-Y. Reprinted
with permission from [141]. Copyright 2016 American Chemical Society.



Catalysts 2023, 13, 1363 19 of 30

5.3. Deactivation by Coke Deposition

Upon the hydroisomerization of n-alkanes over zeolite-based catalysts, carbonaceous
deposits are obtained as a result of complicated chain of reactions, namely the oligomer-
ization, cyclization, and condensation of alkylaromatics to generate polycyclic aromatics
(Figure 13) [142–145]. Coke is composed of heavy components that are extremely deposited
as a byproduct on the surface of the zeolite, poisoning the active sites and clogging the
pores. It was observed that the interaction between intermediates of coking and other
reactions intermediates impacts on the distribution and selectivity of the products. Coking
occurs faster on strong acid sites than on weak acid sites, because the last are less sensitive
to coke formation [146,147].
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Figure 13. General illustration of the routes of the coke formation over bifunctional catalysts.

The coke can be formed in one of three ways: (a) synchronously with the desired
reaction (competitive phase), (b) consecutively to the directed reaction (successive phase), or
(c) both of (a + b) simultaneously [145]. Coke combustion can renew the catalyst, however,
the intense regeneration conditions and the presence of water prevent full catalytic activity
from being regained [148].

Bauer and Karge [149] proposed a classification system that differentiates between two
forms of coke obtained. Condensation, oligomerization, and alkylation processes involving
reactants and their intermediates produce “Coke-type I” at lower temperatures. “Coke-
type II” is found at higher temperatures and comprises chemical stages requiring greater
activation energies, such as dehydrocyclization, thermal cracking, and dehydrogenation.

The coke formation rate is influenced by the same parameters as the rate of the catalytic
reaction itself. These parameters encompass the nature of the reactants [150,151], the pore
structure of the catalyst [152], the density of the active sites [151,153], and the operating
conditions [153].

Carbonaceous deposits are thought to disable the catalyst by poisoning the active sites
or by pore blockage [154], but the latter causes more severe deactivation than active site
poisoning [155], because one active site per coke molecule can be deactivated, but pore
clogging with a single carbonaceous molecule could limit or prohibit reactant molecules
from accessing all active sites inside the clogged pore.

The coke may accumulate via three ways: (a) uniform surface deposition [156], (b) pore-
mouth blockage [157], and (c) bulk-phase blockage [156,158]. Each mode has a particular
effect on the diffusivity of reactants and, as a result, on catalytic activity.

In the case of uniform surface deposition, it has been hypothesized that carbonaceous
deposits are uniformly distributed throughout the micropore channels of catalyst. Nonethe-
less, this distribution is likely to shorten the micropore diameter decreasing the diffusion
rate and catalytic activity. According to the pore-mouth blockage scenario, carbonaceous
deposits tend to build at the pore entrances, limiting access for the reactant to the active
sites within the pore. Although the pores are not totally blocked, this process reduces the
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diffusion rate. In this situation, carbonaceous deposits cover a tiny fraction of active sites,
in which productivity will be proportional to the number of accessible active sites [157].
The bulk-phase blocking scenario incorporates both of the aforementioned carbonaceous
deposition mechanisms. However, in this instance, a large quantity of coke is generated on
the outer surface of catalyst, resulting in full clogging of the pores.

During the catalytic cracking of n-hexane and 1-hexene over ultrastable Y zeolite,
Chen and Manos [159,160] differentiated coke into coke precursors and hard coke. Coke
precursors are easily volatilized in inert nitrogen and removed off the catalyst sample,
whereas hard coke stays on the catalyst even at high temperatures (600 ◦C) and is removed
by burning. Bauer et al. [129] investigated the formation of coke depositions during the
hydroisomerization of n-hexadecane on the Pt-Pd/H-beta bifunctional catalyst. It was
revealed that both the volume and surface area of micropores were decreased by roughly
8% after 62 days on-stream as a result of pore occlusion with coke.

Bifunctional catalysts including mesopores have enhanced the lifetime. In the most
cases, deactivation is caused by pore-mouth occlusion by carbonaceous deposition. Nu-
merous studies have claimed that the favorable effect on the lifetime is due to an increased
tolerance to the impacts of coke rather than a lower rate of the coke formation. Shortening
diffusion lengths combined with increased pore openings in the mesoporous makes the
pores more resistant to blocking, which may explain the reduced effects on coking. This
simple reasoning, however, may not fully describe the situation. Holm et al. [161] reasoned
that, due to mesoporosity, products obtained will have a shorter retention time in the
micropores, potentially suppressing subsequent secondary coking.

6. Cost-Effective and Eco-Friendly Synthesis Approaches

Conventional methodologies for zeolites synthesis have been extensively documented
in the scientific literature [162]. However, numerous challenges exist, including the high
expenses associated with structure-directing agents and starting materials, energy consump-
tion and, recycling wastes. Moreover, the multistage production comprising expensive
procedures hinders commercialization [163–165]. As a result, the synthesis of hierarchi-
cal zeolites using an environmentally friendly approach has gained attention [166,167].
Reliable syntheses aim to accommodate the effectiveness of conventional methods with
strategies that reduce environmental impact, such as utilizing alternative starting materials,
carrying out solvent-free or template-free syntheses, and reusing water [168–170].

Recent studies have reported the successful synthesis of hierarchical zeolites using an
eco-friendly approach [171,172]. These works have demonstrated the feasibility of zeolite
production through the application of green chemistry principles. However, certain draw-
backs have also been observed, including low crystallinity, non-uniform pore structures,
and reduced process efficiency (Table 9).

Significant efforts have been devoted to establishing the connections between the
characteristics and catalytic performance of zeolites, driven by their economic significance.
In this regard, the development of innovative syntheses and alternative raw materials have
a focal point. An example of a recent eco-friendly approach is template-free synthesis, which
has been tested for the production of the MFI framework structure [173–175]. Notably,
tubular clay nanomaterials, specifically Halloysite, have been utilized as triple-functional
materials: the source of alumina and silica, and hard template [176–180]. It should be
noted that bioresources, such as water reeds (Phragmites) [181] and rice husk ash [182–187],
mineral sources including rectorite [188] and diatomite [189,190], and industrial wastes like
coal fly ash [191,192], have a minor scale, but employed as sources of silica and alumina
in the synthesis above. This advancement represents a notable step forward in green
chemistry for zeolite production.
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Table 9. Comparison of traditional and modern approaches of zeolite-based catalyst production.

Approach Principle Influencing Factors Advantages Disadvantages

Solvothermal method Using solvents

Temperature, pressure,
reactants sources and
compositions, Si/Al,
aging time, alkalinity,

stirring conditions,
seeding, solvents type

Simple; cheaper
Environmentally harmful;

energetic and
time-consuming approach

Alkali-fusion method
Fussing raw materials

with alkali before
hydrothermal treatment

Si/Al, concentration of the
alkali medium,
temperature of
crystallization

Using low-grade raw materials
without purification; offers the

zeolite with high purity

High energy consumption;
expensive; multistep;

time-consuming

Sol-gel method

Formation of an inorganic
sol and its gelation in

liquid phase gel to form a
3D structure

Hydrolysis rate,
temperature, heating

rate, PH

High-quality product;
homogeneity; does not require

expensive equipment
Cost of precursors

Microwave method Using microwave
irradiation

Si/Al ratios, alkalinity,
wavelength, temperature,

crystallization time

Concise time;
high purity product;

small particle size
Low crystal aspect ratio

Ultra-sound method Using ultrasound with
frequency 20 kHz–2 MHz

Duration and frequency
of ultrasonication

Very simple; rapid reaction;
high crystals growth rate;

suitable particle size
distribution and morphology;
control on nucleation process

The mechanism of
ultrasonic effect
remains unclear

Occasionally, traditional synthesis approaches necessitate substantial quantities of
organic or water-based solvents that are economic and ecological drawbacks, particularly
evident in the context of silicoaluminophosphate (SAPO) materials [193,194].

Recently, Xiao et al. effectively synthesized a variety of zeolites without the need
for extra solvents. The zeolites obtained comprised SAPO-11, SAPO-20, SAPO-34), alu-
minophosphates (AlPO-11), metal-containing aluminophosphate zeolites (Mg-AlPO-11,
Co-AlPO-11, Mg-SAPO-46, and Co-SAPO-46) [195], as well as aluminosilicates (ZSM-5,
silicate-1, ZSM-49, SOD, MOR, Beta, and FAU) [196]. This innovation in synthesis indicates
that it has the potential to produce a wide range of zeolite frameworks without the need
for extra solvents.

Most current studies have focused on the seed-assisted approach to crystal pattern
modification as a simple and ecologically benign method [197–199]. This method includes
the inducing and orientation of crystals growth by adding into the gel a minor amount of
the same targeted zeolite structure as a seed. This method has been shown to be successful
in syntheses of zeolite frameworks such as MFI [200–203], MTW [64,204], MEL [205],
FAU [206], MOR [207], CHA [208], and MRE [209].

Nonetheless, despite its potential benefits, the seed-assisted approach has several
limits, such as the broad particle size distribution, tendency to particle aggregation, and
possibility of pore blockage [210,211]. To maximize the efficiency and performance of the
seed-assisted synthesis technique, these constraints must be handled and minimized.

Unconventional methodologies for zeolite synthesis and the ability to modify surface
properties through post-treatments are two effective strategies employed to improve the
zeolite performance. One such approach is microwave-assisted hydrothermal synthesis
(MAHyS), which significantly accelerates synthesis. For instance, Muraza et al. [212]
successfully increased the rate of synthesis of the TON framework zeolite from 66–72 hours
to 24 hours using the MAHyS technique.

Another promising technique is the ultrasound-assisted synthesis of zeolites, which
offers several advantages, including increased surface area and shorter synthesis
time [213,214]. These effects have been confirmed in the syntheses of MCM-22 [215],
ZSM-5 [182,216], and SAPO-11 [217] zeolites, where the ultrasound-assisted method pro-
motes the dissolution of reactants and accelerates the progression of crystallization.
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7. Conclusions

The isomerization of n-hexadecane and its multiple isomers is critical to upgrading
the low-temperature characteristics of diesel, such as cloud point, pour point and cold filter
plugging point, also enhancing the cetane number, therefore, the effective catalysts and the
optimal operating conditions have been reviewed.

The concept of main and secondary types of shape selectivity was analyzed in detail.
On this basis the requirements for the preparation procedure of zeolites were formulated:
mainly, mesopores should possess the product shape, transition-state, and pore mouth
selectivity, but pores with the reactant shape, mutual intersections, and nest effect selectivity
should be excluded.

The fundamentals of mechanism of n-hexadecane hydroisomerization, characterizing
zeolite were highlighted. To improve the yield, the choice of structural and morphological
characteristics of catalyst, combined with the optimal balance between metal and acidic
sites (nM/nA) have the greatest impact on the process. Large external surface area and
mesoporous structures minimize the diffusion limitations and unfavorable cracking. Diffu-
sion on a high surface area enhances adsorption at pore-mouths and improves accessibility
to acid sites, resulting in better conversion and selectivity.

The effects of nitrogen-, sulfur- and water-containing feedstock on the catalyst per-
formance were also discussed. It was concluded that sulfur plays a lesser deactivation
role than nitrogen impurities as a selectivity-control agent, poisoning the acid sites and
deactivating the isomerization function. In contrast, water prevents the deactivation of
catalysts and suppresses cracking reactions.

The recent trend in the synthesis zeolite-supported catalysts from natural sources—such
as clay and natural minerals is considered very attractive from both economic and en-
vironmental standpoints. Although it is still limited to the ZSM-5 zeolite, it promises a
lot of progress in developing new types of zeolites. The novel methods for synthesis of
bifunctional catalysts, and their success were discussed in overcoming the problems that
may face traditional methods, despite the presence of some challenges that still exist in
environmental and economic areas, and the textural and structural properties of zeolites.

Furthermore, the use of alternative feedstocks, such as renewable sources, as well as
the integration of hydroisomerization to other refining processes, such as hydrotreating
and hydrocracking, could open up new avenues for producing high-quality diesel fuels.
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