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Abstract: In this study, the crystalline metal-organic framework (MOF) ZIF-67 was obtained using the
solvent-free ball milling method, which is a fast, simple, and economical green method without the
need to use solvents. Using the impregnation method, platinum metal ions were loaded in the MOF
cavities. Various descriptive methods have been used to explain the prepared Pt@ZIF-67 compound,
such as FTIR, BET, TEM, SEM, EDS, XRD, TGA, and ICP. Based on this, the results showed that
Pt nanoparticles (0.26 atom%) were located inside the pores of ZIF-67. In addition, no evidence
supports their accumulation on the MOF surface. The efficiency of Pt@ZIF-67 was approved in the
reduction of toxic and harmful nitrophenol compounds in water. The results showed that the removal
of 4-nitrophenol in aqueous medium was successfully achieved with 94.5% conversion in an optimal
time of 5 min with the use of NaBH4, and catalyzed by Pt@ZIF-67. Additionally, the Pt@ZIF-67 was
recoverable and successfully tested for five qtr runs, with reasonable efficiency.

Keywords: ball-milling; platinum nanoparticles; metal-organic framework (MOF); nitrophenol
reduction; ZIF-67; impregnation method

1. Introduction

Ball mill (BM) is one of the mechanical methods widely used for pulverization and
conversion of solids into fine particles [1,2]. When raw materials get stuck between the
bullets and are crushed by rotation, because of the potential energy release, some surface
changes would occur, including breakage of bonds. Therefore, in this process, not only
is the particle size reduced, but it also leads to reactions through the formation of active
sites [3]. To achieve high quality and pure products, it is essential to control different
parameters, such as the type of substrates, the diameter and the density of the milling balls,
the rotation speed, and the milling time [4]. Since this method is environment-friendly
and cost-effective, it is widely applied in synthesizing organic, mineral, and metallurgi-
cal nanomaterials [5]. Due to the advantages such as short reaction time, the absence of
solvent, and lack of a requirement to external heating, this method has made significant
progress in synthesizing metal-organic frameworks. Today, ball mill has attracted much
attention to nanomaterials, leading to considerable changes in this area [6–8]. Metal-organic
frameworks (MOFs) are the polymers of metal ions and carbon-based ligands, formed
to create three-dimensional crystal structures [9]. Because of the exclusive periodic pore
building and brilliant properties, these structures have been used in a variety of fields
such as adsorption [10,11], separation [12,13], catalysis [14–16], sensing [17], electromag-
netism [18], and medicine [19,20]. Due to their pore structure tunability, the high porosity
and high surface area, scientists have paid special attention to MOFs as adsorbents in
aqueous solutions [21]. Due to low contamination, low reaction time, and high capability
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for large-scale synthesis, ball mill is particularly suitable for producing MOFs. In recent
years, many important advances have been made in MOF-based derivatives [22–25]. It
is noteworthy that by using different nanoparticles, such as metal nanoparticles (MNP),
in the matrix of metal-organic frameworks, the potential applications of these derivatives
can be increased [26–29]. For example, imidazole zeolite frameworks (ZIFs) are a new
type of metal zeolite with complex transfer of metal ions using an imidazole ligand. This
compound has some specific properties, such as great strength and porosity, mainly used
as hard mold in the preparation of carbon materials [30]. Due to its high thermal, chemical,
and porosity stability, ZIF-67 is growing in prominence [31]. Moreover, water filtration
was a common application for ZIF-67. The exponential development of industries and
the increase in the industrial and agricultural wastewater have brought various harmful
and dangerous chemical pollutants into the environment [32,33], such as pesticides [34],
pathogenic microbes [35], and explosives [36]. Amongst these, 4-nitrophenol has received
much consideration due to its rapid negative effect on the human nervous system as well
as showing high polarity and solvability [37,38]. Different methods have been developed to
control this organic pollutant, such as adsorption [39,40], photocatalytic destruction [41,42],
and catalytic destruction (including reducing and oxidative degradation) [43–45], among
which catalytic reduction is a method for reducing 4-nitrophenol (4-NP) to 4-aminophenol
(4-AP), using sodium borohydride as the reducing agent [46,47]. Noble metal nanoparticles
(NPs), such as gold, platinum, and palladium, are suitable options, due to their superior
consistency and the great surface-to-volume ratio [48–52]. In this paper, the method of pro-
ducing the ZIF-67 organic metal framework and its nano-scale impregnation with platinum
metal as well as applying it in eliminating the toxic 4-NP from water have been studied
and reported.

2. Results and Discussion

The ZIF-67 metal-organic framework was synthesized through ball milling a mixture of
cobalt nitrate hexahydrate and 2-methylimidazole without the addition of solvent (Figure 1).
The platinum metal was mixed and the obtained Pt@ZIF-67 was used as a catalyst in the
reduction of 4-NP in the presence of the NaBH4.
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The FT-IR spectra of the synthesized ZIF-67 and Pt@ZIF-67 are reported in Figure 2. In
the FT-IR spectrum of the ZIF-67 structure, the peak of 2922.8 cm−1 indicates the stretching
vibration of aliphatic C-H of methyl imidazole. The peaks at 1633 and 1416 cm−1 are
related to the C=N and C=C groups of imidazole, respectively. In addition, the peak of
3439 cm−1 is related to the hydroxyl groups (O-H) and the peak of 425 cm−1 corresponds
to the vibration of the Co-N bond [53]. Due to the low concentration of Pt nanoparticles in
the ZIF-67 structure’s cavities, the synthetic Pt@ZIF-67 structure does not exhibit a distinct
peak for Pt nanoparticles in the FTIR.
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Figure 2. Comparison of FTIR spectra of ZIF-67 and Pt@ZIF-67.

To investigate the crystal structure of the synthesized Pt@ZIF-67, X-ray powder diffrac-
tion (XRD) was used. The diffraction peaks in the XRD patterns of the synthesized struc-
tures of ZIF-67 and Pt@ZIF-67 are shown in Figure 3. Comparing the resulting patterns, it
was found that all the peaks related to the ZIF-67 structure are also present in the Pt@ZIF-67
structure, indicating that the platinum metal in the ZIF-67 structure did not damage the
structure of this metal-organic framework. The patterns of the ZIF-67 had many obvious
diffraction peaks at 2θ = 7.42◦, 10.46◦, 12.81◦, 14.79◦, 16.53◦, and 18.12◦. Examining the XRD
pattern of the simulated ZIF-67 model (Figure 3a), it was found that the ZIF-67 and Pt@ZIF-
67 did not show any significant decrease in crystallinity. In addition, in the XRD model,
the synthesized structure of Pt@ZIF-67 does not show a clear peak for Pt nanoparticles,
resulting from the low concentration of Pt nanoparticles in the cavities of ZIF-67 structure.

The surface area and the whole pore volume of ZIF-67 and Pt@ZIF-67 were studied
using N2 physical adsorption experiments (Figure 3b and Table 1). The N2 adsorption-
desorption isotherms of ZIF-67 and Pt@ZIF-67 are type I, indicating their microporous
properties. The BET surface area of ZIF-67 and Pt@ZIF-67 were 1138 and 648.89 m2 g−1,
respectively. Moreover, the total pore volume was 0.5235 and 0.302 cm3 g−1, respectively.
Obviously, for Pt@ZIF-67, the surface area and total pore volume are less than those for the
parent ZIF-67, approving the successful immobilization of platinum nanoparticles in the
ZIF-67 pores. Pore size distribution experiments show that ZIF-67 and Pt@ZIF-67 are micro
pore types, with average diameters of 1.84 and 1.86 nm, respectively. According to the
stated BET analysis results, there is no discernible difference between the average diameter
of ZIF-67 and Pt@ZIF-67 structures, or, to put it another way, nothing out of the ordinary
has happened.
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Table 1. Specific surface area (SBET), diameter pore, and total pore volume.

Sample BET Surface Area
(m2 g−1)

Average Diameter
(nm)

Total Pore Volume
(cm3 g−1)

ZIF-67 1138 1.84 0.5235
Pt@ZIF-67 648.89 1.86 0.302

To observe the morphology of ball mill produced ZIF-67, FESEM and TEM were
performed. The FESEM images show spherical morphologies for both primary ZIF-67 and
Pt@ZIF-67 particles, with a nano-size distribution between 50 and 100 nm. The TEM image
of Pt@ZIF-67 showed good distribution of Pt nanoparticles in the MOF structure. The dark
dots in the TEM pictures provided evidence that platinum was present in the Pt@ZIF-67
(Figure 4).

The EDS spectroscopy results and SEM element mappings support well the presence
of the elements N, C, Co, and Pt (Figure 5). Additionally, Table 2 shows that 3.18 wt.%
(0.26 A.%) of platinum nanoparticles is contained in the Pt@ZIF-67. Furthermore, we
discovered that the particles are equally dispersed across the surface by examining the
mapping pictures of the elements extracted from the SEM image of Pt@ZIF-67.



Catalysts 2023, 13, 9 5 of 14Catalysts 2022, 12, x  5 of 15 
 

 

 
Figure 4. (a) The SEM, (c) TEM of ZIF-67, (b) The SEM, and (d) TEM of Pt@ZIF-67. 

The EDS spectroscopy results and SEM element mappings support well the presence 
of the elements N, C, Co, and Pt (Figure 5). Additionally, Table 2 shows that 3.18 wt.% 
(0.26 A.%) of platinum nanoparticles is contained in the Pt@ZIF-67. Furthermore, we 
discovered that the particles are equally dispersed across the surface by examining the 
mapping pictures of the elements extracted from the SEM image of Pt@ZIF-67. 

 

Figure 4. (a) The SEM, (c) TEM of ZIF-67, (b) The SEM, and (d) TEM of Pt@ZIF-67.

The thermal stability of the synthesized ZIF-67 and Pt@ZIF-67 was evaluated by
thermal gravimetric analysis (TGA) (Figure 6). The thermal behavior of both MOFs is
essentially the same, approving the similarity between chemical composition and crystal
structure. Both are stable at temperatures up to 300 ◦C, and lose 60% of their weight at
higher temperatures up to 700 ◦C. This confirms the presence of similar organic moieties in
their structure.

The catalytic reduction of the toxic compound 4-NP into 4-AP was performed by
adding the synthesized catalyst and in the presence of NaBH4 as the reducing agent. This
way, metal particles in the supporting materials can accelerate the transfer of electrons
from NaBH4 to the 4-NP electron receptor and ultimately reduce the hydrogenation of
4-NP to 4-AP. Considering enough runs for the given model can help in evaluating and
identifying the most important variables. Response Surface Methodology (RSM) is a
combination of mathematical and statistical procedures to determine the optimal range of
parameters. Even in complex interactions, this range can be used to determine and evaluate
the relative importance of the parameters. Analysis of the results was performed based on
the ANOVA. In this modeling method, by fitting the first or second polynomial equation,
the experimental answer is obtained and used in the relevant experimental design. The
analysis of variance (ANOVA) is then performed. As a result, the approved model of the
surface response modeling method would be presented as a three-dimensional diagram as
well as a contour diagram. According to the response function, the best operational and
experimental conditions for the process are determined. In general, RSM analysis uses a
second-order polynomial model for the expected response (Y):

Y = β0 +
k

∑
i=1

βiXi +
k

∑
i=1

βiiX2
i +

k

∑
i=1

k

∑
j=1

βijXiXj + ε

where β0 is the expression of the point of intersection, βi the constant of the linear factor, Xi
and Xj are the parameters assigned to the factors i and j, βii and βij are the coefficients of
the square factor and the interaction factor, and k is the number of rate factors [54,55].
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Table 2. Weight percentage of elements from EDS analysis.

Element Line Int Error K Kr W% A% ZAF Ox% Pk/Bg

C Ka 345.6 187.3370 0.4099 0.1759 38.51 51.78 0.4569 0.00 67.97
N Ka 91.6 187.3370 0.1468 0.0630 36.32 41.87 0.1735 0.00 43.69
Cl Ka 20.6 1.8728 0.0063 0.0027 0.32 0.15 0.8383 0.00 2.63
Co Ka 313.0 0.6091 0.3972 0.1705 21.67 5.94 0.7868 0.00 25.37
Pt La 2.2 0.6091 0.0398 0.0171 3.18 0.26 0.5364 0.00 2.30

1.0000 0.4292 100.00 100.00 0.00

The experimental layout was determined as a function of the most essential factors,
including reducing agent concentration (A), catalyst value (B) and 4-NP concentration, for
reaching the optimal conditions of eliminating 4-NP. The destruction percentage of each
pollutant was considered the parameter response (Y) and each reaction’s total reduction
time was calculated as the time parameter. Finally, 20 experiments were carried out in the
same conditions (Table 3). For more information, data were collected as separated files (see
Supporting Information (Tables S1–S3)).
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Table 3. Results from experiments designed by RSM.

Std. Run Response (R) Time (min)

1 9 26.48 10
2 11 69.48 8
3 13 70.56 8
4 2 89.78 6
5 17 39.27 7
6 20 50.58 14
7 10 85.56 5
8 15 79.30 7
9 4 53.54 4
10 18 93.07 6
11 1 8.37 10
12 12 98.58 4
13 6 90.80 11
14 8 62.81 17
15 14 82.11 5
16 16 96.92 9
17 19 79.71 6
18 5 82.50 5
19 7 83.97 11
20 3 92.87 6

In general, based on Figure 7a–c, it was found that increasing the concentration of
NaBH4 leads in maximum response, but at lower levels, minimum response would be
observed. The maximum response range for NaBH4 is from 0.0015 to 0.002 M. Considering
the maximum concentration of NaBH4, the influence of other parameters can be achieved.
Consumption of the Pt@ZIF-67 catalyst should be increased in the range of 0.006 to 0.01 g
and be decreased in the lower amounts. In addition, in the concentration range of 0.001 to
0.0015 M of 4-nitrophenol, the model response is maximal and at higher levels the response
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is minimal. Therefore, increasing the concentration of NaBH4 in the solution contributes
in maximum response. On the other hand, promoting the 4-NP concentration leads in
minimum response in the model.
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The results showed that the reduction of 4-nitrophenol increased with time. In addition,
a test predicted by the final model was designed to be optimized according to the proposed
test conditions. Conforming the predicted data and one of the 20 samples tested (Table 4
and Figure S1), it was possible to match 97.3% of the actual value tested and the total



Catalysts 2023, 13, 9 9 of 14

predicted value of the model, which was calculated in the Design Expert10 software to
optimize the model (see Supporting Information).

Table 4. The results obtained and their conformity of the expected values of the model.

Number NaBH4
(M)

Catalyst
(g)

4-NP
(M)

R
(Accuracy) Desirability

1 0.0015 0.006 0.0015 86.44 1.000

The concentration of cobalt released in the solution after the completeness of the
reaction was equal to 0.28 ppm, which is equivalent to roughly 0.5% leaching, and the
concentration of platinum released in the solution after the reaction was also equal to
0.054 ppm, which is equivalent to less than 1% leaching, according to an ICP Optical
Emission (ICP-OES) analysis of the nitrophenol reduction reaction solution under optimal
conditions. Additionally, the recycling test for Pt@ZIF-67 was carried out for five consec-
utive runs of the model reaction. The results showed that the catalyst can be recovered
and reused several times, although with some minor decrease in its activity after each run.
(Figure 8).
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In addition, a brief comparison of our investigation was provided with earlier studies
on 4-nitrophenol reduction utilizing different catalysts and NaBH4. According to this, we
listed various kinds of catalysts in terms of time, efficiency %, and reaction conditions, as
summarized in Table 5. In particular, it can be expressed that the catalytic activity obtained
by our catalyst is prominent when compared with the previously mentioned catalysts.

Reviewing the process by which 4-NP reduces on the surface of metals using NaBH4
(as a reductant), 4-NP first deprotonates to 4-aminophenolate, then moves toward the
metal’s surface (in this case, Pt), accepts the electron, and then transforms to the reduced
state. The donated electron from the catalyst is provided by NaBH4. A possible scheme for
the conversion of 4-NP to 4-AP is displayed in Figure 9.
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Table 5. Summary of materials that can be used for the reduction of 4-NP using NaBH4

previously reported.

Catalyst Reduction Condition Efficiency (%) Time (min) Refs.

Pd-PBL
Cat. (1 mol %)
4-NP (10−3 mmol)
NaBH4 (10−4 mmol)

98.3 32 [56]

Bentonite clay
supported Fe
NPs

Cat. (10 mg/L)
4-NP (0.2 mM)
NaBH4 (0.2 M)

96.8 20 [57]

NPC
Cat (30 mg)
4-NP (30 mL, 0.015 mmol)
NaBH4 (1.5 mmol)

100 20 [58]

Pt@ZIF-67
Cat (6 mg)
4-NP (1.5 mM)
NaBH4 (1.5 mM)

96.5 5 This work

PBL: Phenylene-Bridged Bis(thione) Ligands; NPs: Nanoparticles; NPC: Nitrogen and Phosphorus co-doped
Carbon-based metal-free.
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3. Materials and Methods

Cobalt (II) nitrate hexahydrate, 2-methylimidazole (C4H6N2), potassium hexachloro-
platinate (K2PtCl6), sodium borohydride (NaBH4), methanol, and ethanol were purchased
from Merck and Fluka and used directly without any purification. Brunauer–Emmett–Teller
(BET) specific surface area, volumetric nitrogen adsorption/desorption curves, and pore
volume were recorded on a Belsorp mini and Finetec appliance at 77 K. The surface mor-
phology of the samples was evaluated with Field Emission Scanning Electron Microscopy
(FESEM, TE-SCAN Device model MIRA III made in the Czech Republic). The X-ray diffrac-
tion energy measurement and mapping of the samples were measured by Ultima iv-Rigaku
X-ray diffractometer (made in Japan) with Cu Kα radiation (λ = 1.5406 Å) between 0 and
80◦ (2θ). Fourier-transform infrared spectroscopy (FT-IR) spectra were recorded on an
AVATAR-Thermo FTIR (made in the U.S.) range of 400−4000 cm−1. For thermogravimetric
(TGA) analysis under N2, STA 504-1700-50 ◦C thermal analyzer was used. UV–Vis spectra
were applied with a wavelength ranging from 200 to 550 nm using a Perkin–Elmer UV–Vis
spectrophotometer. The ball mill was a Retch MM400 with stainless steel jar and balls.

3.1. Ball Mill Mediated Preparation of ZIF-67

In a characteristic synthesis, 0.225 g (0.77 mmol) Co(NO3)2·6H2O and 0.622 g (0.76 mmol)
2-methylimidazole (C4H6N2) were mixed, then placed in a ball mill and ground at a
frequency of 18 Hz for 10 min (optimized time and frequency of BM). Afterward, the
precipitates were washed several times with methanol, then collected by centrifugation.
They were put in an oven at 60 ◦C for 12 h to get solid ZIF-67. When working with a
ball mill, it is very important to pay attention to the two points of time and frequency of
rotation. Due to the number of repetitions of the synthesis, we found that in the synthesis
of this MOF, if the time and frequency of rotation are less than the specified value, the
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raw materials are not mixed well with each other, and we will not get pure products. At
a higher time and frequency, due to the long vibration and long duration of the milling,
the wear of the ball will lead to the synthesis of products with some swarf and, as a result,
low efficiency.

3.2. Preparation of Pt@ZIF-67

To load the platinum metal into the nanopores of ZIF-67, we used the impregnation
method. In this method, first, the 0.1 g of MOF prepared from the previous step was poured
on a watch glass and spread through by a glass rod. Then 0.006 g of K2PtCl6 in 2 mL of
DI-water was added drop by drop. while stirring with a glass rod until it dries. Then the
powder was washed with ethanol to get solid Pt+4@ZIF-67. In addition, 0.006 g of NaBH4
in 2 mL of DI-water was used as reducing agent for generation of Pt nanoparticles from
Pt+4 which loaded on ZIF-67 MOF. The impregnated method was also used for this step,
added as described in the previous step. In this way, the platinum ions were loaded on the
desired MOF and reduced by NaBH4 in situ. Finally, ethanol was added and the mixture
was centrifuged, and the solid was washed with ethanol and dried in an oven. Based on
the EDS analysis, the amount of Pt loaded in the ZIF-67 cavities was 3.18 wt.%.

3.3. Catalytic Activity of NaBH4

Pt metal nanoparticles in supported ZIF-67 materials can accelerate electron trans-
fer from borohydride to the 4-nitrophenol electron acceptor and reduce 4-nitrophenol
to 4-aminophenol. Catalytic reduction of 4-nitrophenol to 4-aminophenol in an aqueous
solution was performed in the presence of NaBH4 reducing agent at room temperature. At
this stage, according to the values and concentrations provided by the surface response
modeling (RSM) method and model analysis by ANOVA analysis, the nitrophenol re-
duction process was performed (see Supporting Information). Finally, 20 experiments
were designed and at each stage, after adding each substance including 4-NP, NaBH4,
and Pt@ZIF-67 catalyst in predetermined concentrations with a constant volume of 25 mL
of distilled water serving as the reaction solvent, until the reduction reaction ended and
the solution’s color changed, sampling was carried out every minute. Finally, at one-
minute intervals, sampling from the solution was done and analyzed by Ultraviolet-Visible
spectroscopy (UV-Vis). After observing complete reduction, the color of the solution was
changed from yellow to colorless. In addition, to evaluate the response value of the de-
signed model based on the tested values, the results of UV-Vis spectroscopy analysis of
each sample were analyzed and analyzed in surface response modeling through Design
Expert 10 software.

4. Conclusions

In this study, the Pt@ZIF-67 was prepared by ball milling, as a fast, scalable, and eco-
nomical environmentally friendly method, with no solvent at room temperature. Anodized
platinum was immersed into the MOF structure of the pores, and then the final compound
was used in the reduction of 4-nitrophenol in the presence of NaBH4. Although the amount
of Pt in the MOF structure was small (3.18 wt.%), it can be considered an important step in
the reduction of 4-nitrophenol. In addition, the resulting MOF showed good crystallinity, so
it can maintain this property after the saturation process. The results show that Pt@ZIF-67
has good catalytic performance due to the reduction of nitrophenol mixes, leading to the
removal of these toxins.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/catal13010009/s1, Figure S1: The results obtained and
conformity the expected values of the model.; Table S1: Experiments designed 20 performances with
3 variables. Table S2: Table S2. Standard Deviation Analysis (ANOVA) of data obtained for nitro
reduction rate. And Table S3: Table S3. Data and the values predicted by the model.

https://www.mdpi.com/article/10.3390/catal13010009/s1
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