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Abstract: In this study, CuO loaded on anatase TiO2 catalysts (CuO/anatase) with oxygen vacancies
was synthesized via reduction treatments by NaHB4 and H2 (CuO/anatase-B, CuO/anatase-H),
respectively. The characterizations suggest that different reduction treatments bring different con-
centration of oxygen vacancies in the CuO/anatase catalysts, which finally affect the CO catalytic
performance. The CuO/anatase-B and CuO/anatase-H exhibit CO conversion of 90% at 182 and
198 ◦C, respectively, which is lower than what occurred for CuO/anatase (300 ◦C). The XRD, Raman,
and EPR results show that the amount of the oxygen vacancies of the CuO/anatase-H is the largest,
indicating a stronger reduction effect of H2 than NaHB4 on the anatase surface. The in situ DRIFTS
results exhibit that the Cu sites are the adsorption sites of CO, and the oxygen vacancies on the
anatase can active the O2 molecules into reactive oxygen species. According to the in situ DRIFTS
results, it can be concluded that in the CO oxidation reaction, only the CuO/anatase-H catalyst can
be carried out by the Mvk mechanism, which greatly improves its catalytic efficiency. This study
explained the reaction mechanisms of CO oxidation on various anatase surfaces, which offers detailed
insights into how to prepare suitable catalysts for low-temperature oxidation reactions.

Keywords: CuO/anatase; H2 reduction treatment; oxygen vacancies; CO catalytic oxidation; CO
reaction mechanism

1. Introduction

In the past years, carbon monoxide (CO) exhaust from diesel engine vehicles and
gasoline-type engines due to incomplete combustion of fuel has been emitted into envi-
ronment in large amounts [1–3]. It can not only endanger the atmosphere but also the
human health [2]. Therefore, how to efficiently remove CO in the atmosphere is an urgent
concern of the majority of researchers at present [4]. Previous studies have shown that
heterogeneous catalysts, such as platinum-group metal (PGM) materials used in three-way
catalysts, can greatly reduce CO emissions from vehicles [5–7]. However, the PGM catalysts
are expensive, and resources are limited. It is easy to gather and sinter at high temperature
and then be deactivated, which is impractical in industrial applications [8]. Therefore, it
is urgent to develop a new type of highly efficient catalyst that can replace the traditional
noble metal catalyst.

Transition metal oxide-based catalysts have excellent activities and low cost, becoming
one of the best substitutes for PGM catalysts [9–13]. For example, a series of Ce-based
catalysts such as ceria-zirconia [9], ceria-praseodymia [9], and ceria-copper [11] catalysts
have been synthesized by different methods, and they all show improved CO oxidation
activity. In addition, Cu-based catalysts have been used extensively in catalytic oxidations,
fine chemical productions, and sterilization processes due to their variable oxidation state
of Cu species and surpassing reducibility [14,15]. It is reported that copper species are
mainly present as Cu+ and Cu2+. The redox cycle of Cu+ ↔ Cu2+ can enhance the redox
ability of the catalysts. More importantly, Cu sites have been proved as the adsorption sites
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for CO molecules, which is the vital step of catalytic reactions [16–18]. TiO2 is one of the
most popular materials that has been used as support in catalysts due to their low cost and
excellent stability. In addition, the interaction between TiO2 and Cu species can effectively
stabilize the Cu species, which can protect the active site [15].

Oxygen vacancies play a crucial role in adjusting the physical and chemical properties
of support materials, which is particularly important for the catalytic activity of the cata-
lyst [19–21]. Yang et al. prepared a La0.8Sr0.2CoO3 catalyst with a large amount of oxygen
vacancies. This report showed that the oxygen vacancies can be the adsorption site for O2
and one electron transferred from the oxygen vacancies to O2 to form a reactive oxygen
species O-, which can react with the CO easily, leading to a better CO conversion [20].
In addition, the in situ electrical conductance measurement had been used to investigate
the formation and reaction mechanism of the oxygen vacancies in CO catalytic oxidation
on the Au/TiO2 catalysts [22]. The results showed that the oxygen vacancies could be
generated on the Au/TiO2 catalyst and the O2 molecules were activated on these oxygen
vacancies, which were beneficial to the adsorption of CO. In addition to CO oxidation, the
role of oxygen vacancies in other oxidation reactions is also crucial. Generally, the methods
for preparing oxygen vacancy mainly include hydrogen reduction [23], sodium borohy-
dride reduction [24], electrochemical reduction [25], and so on. Among them, hydrogen
reduction and sodium borohydride reduction have lower cost and higher efficiency, which
can effectively separate the lattice oxygen on the surface of the catalyst support and form
oxygen vacancies [23,24].

Herein, we synthesized a series of CuO/anatase catalysts with different content of
oxygen vacancies, which were reduced by NaHB4 and H2 (CuO/anatase-B, CuO/anatase-
H). The synthesis method used was a wet-impregnation method. Then the samples were
characterized by means of XRD, Raman, N2 adsorption–desorption isotherms, the induc-
tively coupled plasma optical emission spectrometer (ICP-OES), and transmission electron
microscopy (TEM) in order to investigates the textural and morphology of the catalysts.
The electron paramagnetic resonance (EPR) was derived to detect the oxygen vacancies
on the catalyst surface. The in situ diffuse reflectance Fourier transform infrared spectra
(DRIFTS) were used to verify the role of the oxygen vacancies and to reveal the role of Cu
species in CO catalytic oxidation.

2. Results
2.1. Textural and Morphology of CuO/Anatase Catalysts

First, we have synthesized a series of CuO/anatase catalysts with oxygen vacancies
by different methods, and the textural properties of the catalysts were characterized by
X-ray diffraction patterns (XRD). As shown in Figure 1, the characteristic diffraction line of
the prepared anatase is consistent with the anatase phase (LCPDS Card No. 21-1272) [26].
After the Cu species were loaded on it, no new diffraction lines were observed, indicating
that the content of the Cu species is too low [15,27]. Simultaneously, after the reduction
treatment by NaBH4 or H2, the characteristic diffraction lines of the catalysts did not change,
suggesting that the reduction treatment will not change the crystal structure of the catalyst.
Moreover, the intensity of the diffraction line on (101) facet follows the following order:
anatase > CuO/anatase > CuO/anatase-B > CuO/anatase-H, indicating that both the Cu
incorporation process and the reduction treatment can bring lower crystallinity and the
shift of the CuO-anatase samples to lower degrees, which indicates that the Cu species has
been doped into the TiO2 lattice matrix. This result can lead to notable crystal distortion. In
addition, compared to the samples without the reduction treatment, the relative intensities
between diffraction lines on (105) vs. (211) and (116) vs. (220) were changed, suggesting
that the reduction treatment brings different effects on different crystal phases.
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Figure 1. The XRD patterns of anatase, CuO/anatase, CuO/anatase-B and CuO/anatase-H catalysts.

Raman spectra were measured to further confirm the surface crystal structure of the
catalysts. As shown in Figure 2, five typical bands, which can be assigned to Eg (141, 196 and
638 cm−1), B1g (395 cm−1) and A1g (515 cm−1) Raman modes of anatase, were observed,
which further explained that only pure anatase exists in the four prepared catalysts [28]. This
result is consistent with the XRD result. Compared with anatase, a pronounced broadening
and weakening mode was observed of the Raman spectra (CuO/anatase, CuO/anatase-
B and CuO/anatase-H) at 141 cm−1. Moreover, a significant red shift also occurred at
141 cm−1 of the CuO/anatase, CuO/anatase-B, and CuO/anatase-H catalysts. Especially,
the CuO/anatase-H catalyst shows the most serious red shift, indicating a significant
surface lattice distortion. The above results show that the H2 reduction treatment is able to
create more defects on the anatase surface than NaBH4.
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As shown in Figure 3, the nitrogen (N2) sorption profiles were also recorded to investi-
gate the textural properties of the catalysts. As shown in the N2 adsorption–desorption
isotherms (Figure 3a), the anatase, CuO/anatase, CuO/anatase-B and CuO/anatase-H
catalysts all show the typical type-IV isotherms with the type H3 hysteresis loops at a high
relative pressure [29–31]. The pore size distributions for different catalysts are displayed in
Figure 3b. The pore size of the four catalysts is centered at about 2−40 nm, indicating the ex-
istence of a mesopores structure on the catalysts surface [29]. The specific surface area of the
four catalysts is summarized in Table 1. The BET surface areas of the anatase, CuO/anatase,
CuO/anatase-B and CuO/anatase-H are 34.87, 31.72, 33.51 and 32.97 m2/g, respectively.
After the Cu species were doped on the anatase and the reduction treatment, the BET
surface area is almost unchanged, which suggests the structure of the catalysts is stable. In
addition, the inductively coupled plasma optical emission spectrometer (ICP−OES) was
used to detect the loading of the Cu species on the CuO/anatase, CuO/anatase-B and
CuO/anatase-H catalysts. As shown in Table 1, the actual Cu loading was detected to be
4.9, 4.9 and 4.6, which is a little different among the four catalysts.
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Figure 3. The (a) N2 adsorption−desorption isotherms and (b) pore size distributions of anatase,
CuO/anatase, CuO/anataseB and CuO/anataseH catalysts.

Table 1. ICP-OES results and BET surface area of catalysts.

Samples Cu Content (wt%) BET Surface
Area (m2g−1)

Total Pore
Volume (cm3g−1)

Anatase - 34.9 0.10
CuO/Anatase 4.9 31.7 0.10

CuO/Anatase-B 4.7 33.5 0.13
CuO/Anatase-H 4.6 33.0 0.10

Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) were
carried out to determine the morphology and microstructure of the catalysts. As shown in
Figure 4a, anatase is a nanobelt structure with a length of 3–5 µm and a width of 40–90 nm.
The HRTEM in Figure 4b shows that the lattice fringes with the interplanar spacings of
0.35 nm were measured, which are indexed to the (101) facet of the anatase phase [19,26].
As shown in Figure 4c, for the CuO/anatase catalyst, the nanobelt structure did not change
after the Cu species loaded on the anatase. The interplanar spacings of 0.35 and 0.20 nm
were measured, which are consistent with the anatase (101) and CuO (100) facets, respec-
tively [19]. A clear interface between CuO and TiO2 can be observed in the CuO/anatase
catalyst (red circles in Figure 4c,e,g), displaying that CuO exists as isolate nanoparticles
on the anatase surface. Similar to these phenomena, the morphology of the nanobelts
was maintained in the other two catalysts (CuO/anatase-B and CuO/anatase-H catalysts)
after the reduction treatments (Figure 4e,g), which indicates that the reduction treatment
will not affect the morphology of the catalyst. Furthermore, the lattice fringes with the
interplanar spacings were measured (Figure 4f,h). The CuO/anatase-B and CuO/anatase-H
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catalysts present determined interplanar spacings of 0.35 and 0.21 nm, which expose the
anatase (101) and CuO (100) facets, respectively. However, as shown in Figure 4f,h, many
distortions of the lattice fringes (marked by yellow arrows) have appeared on the surface
of the CuO/anatase-B and CuO/anatase-H catalysts, indicating that the catalyst surface
becomes uneven after the reduction treatment, which demonstrates that more defects
were generated.
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2.2. Composition and Surface Chemical State of the Catalysts

The composition and valence of the elements on the catalyst surface were determined
by X-ray photoelectron spectrum (XPS) analysis, and the results are shown in Figure 5
and Table 2. As shown in Figure 5a, the XPS profiles of O 1s are deconvolved by the
Gaussian–Lorentz function, and the peak can be fitted into three peaks. The binding
energy of the peaks at about 529.7 eV is assigned to the lattice oxygen species (Olat); the
peaks at about 531.6 eV are attributed to the surface adsorption oxygen species (Oads),
which mainly adsorb on the oxygen vacancies of the catalysts surface; and the peaks at
the binding energy of about 533.4 eV correspond to the -OH species (OOH) [30,32]. It is
reported that the Oads species are very active in the catalytic oxidation reaction. Therefore,
the ratio of Oads/(Oads + Olat + OOH) has been listed in Table 2. The CuO/anatase-H catalyst
possesses the highest Oads content (32.7%), and the Oads content follows the following
order: anatase < CuO/anatase < CuO/anatase-B < CuO/anatase-H. This result shows that
after the reduction in the catalyst, a large number of Oads are generated due to the oxygen
vacancies on the catalyst surface, which can promote the catalytic reaction, and the H2
reduction treatment can make more oxygen vacancies form on the catalyst surface.

Ti 2p profiles are shown in Figure 5b. The binding energy of the peaks at 458.5 eV and
464.2 eV is assigned to Ti 2p3/2 and Ti 2p1/2, respectively, which suggest the presence of
Ti4+ [27]. Figure 5c is the Cu 2p XPS spectra of the catalysts. The curves are deconvolved
and are fitted in to the six peaks. The peaks with the binding energy at about 932.4 and
952.4 eV are attributed to the Cu+ species and the peaks with the binding energy at about
934.6 and 954.8 eV are assigned to the Cu2+ species [15,33]. In addition, two satellite peaks
that correspond to the Cu2+ species are observed. As shown in Table 2, the Cu+ content
follows the following order: CuO/anatase < CuO/anatase-B < CuO/anatase-H, which
is consistent with the Oads content order. It is reported that the formation of Cu+ will
be accompanied by the formation of the oxygen vacancies due to the charge imbalance.
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Thus, the order of Oads is the same as the Cu+ content. According to previous reports, the
valence state of Cu and the content of the oxygen vacancies are crucial for the CO catalytic
oxidation reaction. Generally speaking, because Cu+ is the active site for CO adsorption and
activation, the oxygen vacancies are beneficial to the active of oxygen species. Therefore, the
content of Cu+ and the oxygen vacancies are key factors that affect the catalytic oxidation
of CO.
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CuO/anatase-H catalysts.

Table 2. Surface compositions of the catalysts.

Catalysts Oads/(Oads + Olat + OOH) Cu+/(Cu+ + Cu2+)

Anatase 18.3% -
CuO/Anatase 19.0% 37.9%

CuO/Anatase-B 20.8% 46.8%
CuO/Anatase-H 32.7% 57.1%

2.3. Characterization of Oxygen Vacancy

The electron paramagnetic resonance (EPR) was derived to detect the oxygen vacancies
on the catalyst surface and the hyperfine structure of the copper species, and the results
are shown in Figure 6. It can be seen from Figure 6a that there appears a signal of oxygen
vacancy at g = 2.00 of the CuO/anatase, CuO/anatase-B and CuO/anatase-H catalysts [20].
Compared with the CuO/anatase, the oxygen vacancy signal of the catalyst after reduction
is significantly increased (CuO/anatase-B and CuO/anatase-H catalysts). Compared with
the CuO/anatase-B catalyst, the oxygen vacancy signal intensity of the CuO/anatase-
H catalyst is larger, which suggests that the H2 reduction treatments are much easier
for generating oxygen vacancies on the anatase surface. As shown in Figure 6b, for the
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CuO/anatase, CuO/anatase-B and CuO/anatase-H catalysts, there are fine structure signals
with a parallel component of g‖ = 2.37 and a vertical component of g⊥ = 2.08 in the spectral
line, which are attributed to the signal of the Cu2+ species. In addition, there are no lone
pair electrons in the Cu+ orbital, so there is no signal of Cu+ that appears [34].
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2.4. CO Catalytic Oxidation Performance

In order to verify the influence of the oxygen vacancies constructed by different meth-
ods on CO catalytic oxidation performance, we evaluated the catalytic oxidation activity
of the anatase, CuO/anatase, CuO/anatase-B and CuO/anatase-H catalysts. Figure 7a
shows the light-off curves of anatase, CuO/anatase, CuO/anatase-B and CuO/anatase-H
catalysts for the CO oxidation. The results show that when the test temperature is close
to 400 ◦C, the catalytic activity of the anatase catalyst is still less than 5%. However, with
the incorporation of CuO, the catalytic activity of the CuO/anatase catalyst was signifi-
cantly improved (T90 = 300 ◦C), indicating the main active site should be assigned to the
Cu species. Furthermore, compared with the CuO/anatase catalyst, the catalytic activity
of the CuO/anatase-H and CuO/anatase-B catalysts is greatly improved, which can be
attributed to the generation of the oxygen vacancies. In addition, from Figure 7a, the
CuO/anatase-H catalyst has better CO catalytic activity than the CuO/anatase-B catalyst,
which indicates that the greater the surface oxygen vacancy content, the better the CO
catalytic performance. It also indicates that the H2 reduction is more effective than the
NaBH4 reduction on the anatase surface. The performance of theses catalysts is comparable
to other Cu-based catalysts (Table S1). Then, the intrinsic activity of the CuO/anatase-B
and CuO/anatase-H catalysts was investigated by steady-state kinetics study, and the
apparent activation energies (Ea) are shown in Figure 7b. As shown in Figure 7b, the Ea
for the CuO/anatase-H catalyst is 40.81 KJ/mol, which is much lower than that of the
CuO/anatase-B catalyst (66.98 KJ/mol), which is in accordance with the CO catalytic per-
formance. As shown in Figure 7c, with the increase in O2 in the fed gas, the CO conversion
of the CuO/anatase-H also increases. This result indicates that more oxygen fill into the
oxygen vacancies can promote the CO oxidation, which occurs through the MvK pathway.
As shown in Figure S1, after three rounds of the CO catalytic oxidation performance test,
the activities of all catalysts are almost the same as round 1, indicating that the catalysts are
stable after several cycles.
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2.5. Mechanism of CO Catalytic Oxidation

As shown in Figure 8, the in situ diffuse reflectance Fourier transform infrared spectra
(DRIFTS) were recorded to verify the role of the oxygen vacancies constructed by different
methods and the role of Cu species in CO catalytic oxidation. As shown in Figure 8a, after
the CO atmosphere (black curve) was introduced into the reaction cell, bands at 2175 and
2110 cm−1 appeared on the CuO/anatase-H catalyst surface, which are attributed to the CO
adsorbed on Cu2+ and Cu+, respectively [33]. The bands at 1590, 1427 and 1337 cm−1 are
assigned to the carbonate intermediates, which indicate that CO can react with the surface
oxygen species on the CuO/anatase-H catalyst even without gas phase O2 [15]. The CO
oxidation on the CuO/anatase-H catalyst can follow the MvK pathway. Subsequently, the
catalyst surface was purged by N2 and the O2 (pink curve, Figure 8a). The intensity of the
band at 1590 and 1427 cm−1 was strengthened evidently, indicating that the CO adsorbed
on the catalyst surface can also react with oxygen molecules.

As shown in Figure 8b, the bands appearing on the CuO/anatase-B surface are dif-
ferent from the ones on the CuO/anatase-H catalyst surface. Only two bands at 2173 and
2110 cm−1 are observed, which correspond to CO−Cu2+ and CO−Cu+. No bands be-
longing to the intermediates can be noticed, indicating that the oxygen species on the
CuO/anatase-B surface has trouble participating in the CO oxidation reaction. However,
when the oxygen atmosphere was introduced, two bands at 1585 and 1423 cm−1 appear,
which are assigned to the carbonate species. This result indicates that the CO oxidation
reaction of the CuO/anatase-B catalyst cannot follow the MvK pathway but may be only
carried out through the L−H or E−R pathway. According to the above results, with the
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NaBH4 or H2 reduction, the anatase surface can be activated with different content. The
type and concentration of the oxygen vacancies on these two reduced surfaces may be dis-
parate, resulting in the different reaction pathway of the catalysts. The detailed properties
of the oxygen vacancies on these two reduced surfaces will be studied in future research.
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3. Materials and Methods
3.1. Materials

Commercial anatase (99.8%), NaOH (AR), HCl (36–38%), Cu(NO3)2·3H2O (99%),
butanol (AR), NaBH4 (97%), and ethanol (AR) were purchased from Aladdin Reagent Co.,
Ltd. (Shanghai, China).

3.1.1. Preparation of Anatase TiO2

The anatase TiO2 (labeled as anatase) was synthesized by one-step hydrothermal
synthesis using commercial anatase as a precursor [35]. The specific experimental steps
are as follows: 60 g of NaOH and 150 mL H2O were mixed under stirring, and 75 mL
of the above solution and 1.05 g commercial anatase were transferred to a teflon reactor
and stirred for 30 min. Then, the above mixture was put into the oven at 200 ◦C for 24 h.
The obtained samples were washed with water and then were centrifuged with HCl, and
washed with deionized water. Finally, the sample was calcinated at 750 ◦C for 30 min to
obtain anatase TiO2 powder named anatase.

3.1.2. Preparation of CuO/Anatase Catalysts

CuO/anatase sample was prepared by the impregnation method using the anatase
synthesized above as support. In all, 20 mL of n-butanol and 121 mg of Cu(NO3)2·3H2O
were mixed and stirred at room temperature. Then 800 mg anatase were put into the
precursor solution of the above. The content of Cu was 5 wt%. The above solution was
dried overnight in a blast oven at 80 ◦C, and the sample was calcinated at 450 ◦C for
240 min. The sample named as CuO/anatase.

3.1.3. Preparation of CuO/Anatase-H Catalyst

In all, 200 mg of CuO/TiO2-A prepared as above were put into a quartz tube, then
100 mL/min of H2 gas (10%) were passed, and it was kept at 600 ◦C for 10 h to obtain a
dark blue powdery solid labeled as CuO/anatase-H.
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3.1.4. Preparation of CuO/Anatase-B Catalyst

Typically, 0.01 mol/L NaOH solution was put into the ice bath. Then 1.9 g NaBH4
were added into the NaOH solution and stirred for 30min. After the NaBH4 was completely
dissolved, 300 mg CuO/anatase were added and the dispersed slurry was mixed for 30 min.
Then obtained sample was washed and filtered with water till the pH of filtrate was 7 to
ensure that no Na ions were left, and then it was placed in a vacuum drying oven at 60 ◦C
to obtain gray powder, which was marked as CuO/anatase-B.

3.2. Characterization

The X-ray diffraction patterns (XRD) were measured by Bruker D8 advance instrument
with the Cu Kα as the X-ray source (Billerica, MA, USA). The scanning angle range of
the catalysts is 204–80◦. Raman spectra were obtained on the Lab RAMHR Evolution
laser Raman spectrometer produced by Japanese HORIBA Company (Kyoto, Japan). The
content of the Cu species was recorded by the inductively coupled plasma optical emission
spectrometer (ICP-OES) (Agilent, Palo Alto, CA, USA). The nitrogen adsorption and
desorption (N2-Ads/Des) experiment was measured by ASP-2020M porosity analyzer
(Microtrac MRB, Osaka, Japan). Before this analysis, a purification process of the sample
was performed at 300 ◦C under vacuum. The pore size distributions were evaluated by the
BJH method. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM)
were carried out on Titan G2 60–300 transmission electron microscope (Thermo Fisher
Scientific, Waltham, MA, USA). The electron paramagnetic resonance (EPR) was derived to
detect the oxygen vacancies on the catalyst surface (Billerica, MA, USA).

In situ diffuse reflection infrared spectroscopy (DRIFTS) were recorded on a Nicolet
is50 FTIR spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). The samples were
pretreated for 1 h under N2 (50 mL/min) at 300 ◦C. The background spectra were collected
at 150 ◦C under N2 atmosphere. The order of different reaction atmospheres was as follows:
1% CO and N2 → N2 purge→ 20% O2 and N2 → 1% CO, 20% O2 and N2. The total gas
flow rate during the test was 50 mL/min.

3.3. Evaluation of Catalytic Performance

In all, 50 mg of samples in 40–60 mesh were packed into the quartz tube. The gas
mixture was composed of 1% CO, 20% O2 and N2, and the total flow rate was 50 mL/min
to make the GHSV be 60,000 mL g−1h−1. The CO conversion can be obtained according to
the concentration difference of CO before and after the reaction. The gas in the outlet was
analyzed with an online gas chromatograph (GC−9790, Taizhou). The specific calculation
formula is as follows:

Xco (%) =
[CO]in − [CO]out

[CO]in
× 100%

where [CO]in and [CO]out are the concentration of CO in the inlet and outlet gas, respectively.

r = (X × F)/S ×W,

X is the CO conversion, which is below 15%, F is the flow of the feed gas (mol/s),
S is the surface area of the catalysts (m2/g) and the W is the weight of the catalysts (g).
The apparent activation energy (Ea) can be expressed by the Arrhenius law (r = Aexp
(−Ea/RT)[CO]a[O2]b).

4. Conclusions

In this work, H2 and NaHB4 were used to generate oxygen vacancies on the CuO/anatase
catalyst to study the different effect of oxygen vacancy prepared by different methods.
The experimental results demonstrated that the oxygen vacancies and Cu+ may form after
the reduction treatment. More oxygen vacancies were generated on catalysts surface by
the H2 reduction treatment (CuO/anatase-H), leading to a high CO oxidation activity
(T90 = 182 ◦C). Both reductive catalysts show better CO conversion than the catalyst with-
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out the reduction treatment (CuO/anatase, T90 = 300 ◦C). The Cu sites (Cu2+ and Cu+)
are the adsorption sites of CO, and the oxygen vacancies may transform the active O2
molecules into active oxygen species. The synergy effect of them can promote the CO
reaction efficiency obviously. Additionally, the in situ DRIFTS of the CO oxidation indicates
that only the CuO/anatase-H can be carried out by the Mvk mechanism. This study unveils
the different behavior of various anatase surfaces in the CO oxidation reaction, which
facilitates the efficient preparation of active catalysts for low-temperature oxidation.

In future work, the reaction mechanism will be further explained from the atomic level
in combination with the DFT calculation to understand the influence of catalyst structure
on performance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal13010070/s1, Figure S1: The CO oxidation performance of
catalysts; Table S1: Comparison of the catalytic performance between the CuO/anatase catalyst and
the present catalysts [36–39].
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