
Citation: Yang, Q.; Tang, Z.; Xiong, J.;

He, Y. Sustainable Chemoenzymatic

Cascade Transformation of Corncob

to Furfuryl Alcohol with Rice

Husk-Based Heterogeneous Catalyst

UST-Sn-RH. Catalysts 2023, 13, 37.

https://doi.org/10.3390/

catal13010037

Academic Editors: Nicholas Harmer

and Jennifer Littlechild

Received: 8 November 2022

Revised: 8 December 2022

Accepted: 21 December 2022

Published: 25 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

catalysts

Article

Sustainable Chemoenzymatic Cascade Transformation of
Corncob to Furfuryl Alcohol with Rice Husk-Based
Heterogeneous Catalyst UST-Sn-RH
Qizhen Yang 1,†, Zhengyu Tang 1,†, Jiale Xiong 1,† and Yucai He 1,2,3,*

1 National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization,
School of Pharmacy, Changzhou University, Changzhou 213164, China

2 State Key Laboratory of Bioreactor Engineering, School of Biochemical Engineering, East China University of
Science and Technology, Shanghai 200237, China

3 State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University,
Wuhan 430062, China

* Correspondence: yucaihe@cczu.edu.cn or heyucai2001@163.com
† These authors contributed equally to this work.

Abstract: Valorization of the abundant renewable lignocellulose through an efficient chemoenzymatic
strategy to produce the furan-based platform compounds has raised great interest in recent years.
In this work, a newly prepared sulfonated tin-loaded rice husk-based heterogeneous chemocatalyst
UST-Sn-RH was utilized to transform corncob (75.0 g/L) into furfural (72.1 mM) at 170 ◦C for 30 min
in an aqueous system. To upgrade furfural into furfuryl alcohol, whole cells of recombinant E. coli
KPADH harboring alcohol dehydrogenase were employed to transform corncob-derived furfural into
furfuryl alcohol at 30 ◦C and pH 7.5. In the established chemoenzymatic cascade process, corncob
was efficiently transformed to furfuryl alcohol with a productivity of 0.304 g furfuryl alcohol/(g xylan
in corncob). In general, biomass could be efficiently valorized into valuable furan-based chemicals in
this tandem reaction with the chemocatalyst (bio-based UST-Sn-RH) and the biocatalyst (KPADH
cell) in an aqueous system, which has potential application.

Keywords: furfural; furfuryl alcohol; heterogeneous catalyst; chemoenzymatic strategy

1. Introduction

In the modern society, rapid depletion of fossil fuels and serious environment is-
sues have raised concerns among scholars. The search for sustainable and eco-friendly
energy sources which can be alternatives to fossil fuels has gained great interest [1,2].
Lignocellulose (LC) is a kind of sustainable and abundant energy source, generated from
photosynthesis on earth, which is considered to be one of the most promising substitutes to
fossil fuels. Biomass is consisted of three main components (such as hemicellulose, cellulose
and lignin) [3–5]. The hemicellulose component in biomass is a kind of heteropolymer
which is highly branched [5,6] and the reserve of xylan from hemicellulose is second only to
cellulose in lignocellulose [7]. Hemicellulose-derived furfural (FAL) is a versatile bio-based
platform molecule that is widely utilized in the manufacture of polymers, fuel additives,
pharmaceutical intermediates, resins and agrochemicals [8,9].

Generally, homogeneous or heterogeneous catalysts are mainly utilized to catalyze the
formation of FAL from biomass or D-xylose [10,11]. Because of high corrosivity and high
pollution caused by some homogeneous acids, the high catalytic activity, low cost and good
reusability of heterogeneous acid catalysts have been widely utilized in the production of
FAL [12–14]. Using 45 mg SC-CaCt-700 as heterogeneous chemocatalyst, a 93% of FAL yield
was obtained from 150 mg corn stover at 200 ◦C for 100 min in γ-valerolactone [10]. In a
microwave oven (200 ◦C), solid acid S-DP (10 wt% load) was used as a catalyst, achieving a
FAL yield of 76% after 50 min in a water-CPME (1:3, v/v) biphasic system [14]. Sn-graphite
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catalyst (3.6 wt% load) transformed bamboo shoot shell (75.0 g/L) into FAL in the yield of
41.1% in the aqueous phase after 30 min at 180 ◦C [15].

Furfuryl alcohol (FOL) is one of the most essential FAL derivatives, and has wide
application in many fields such as the fabrication of foundry resins, the production of
P-series fuels and the synthesis of lysine even vitamin C [16–18]. Traditionally, high tem-
perature, long reaction time and the presence of heavy metal catalysts are used to prepare
FOL [17–19]. Presently, the perspective of biocatalytic reduction is of great interest due to
high catalytic selectivity, low energy consumption and sustainability [20–22]. Aldehyde
reductase (ADH) is known as a member of a superfamily of NADPH-dependent aldo-keto
reductases. Recently, coupling of ADH with glucose dehydrogenase (GDH) for coenzyme
regeneration has been efficiently used for preparing biobased alcohols. GDH is capable of
biotransformation of NAD(P)+ into NAD(P)H while co-substrate glucose is oxidizing for
regeneration of coenzyme. To ensure the bioreduction process runs smoothly, GDH and
the dehydrogenase can be coupled in one microbe [23–26]. Using glucose as co-substrates,
95.8% yield of FOL was obtained from 75 mM FAL by SF21 cells within 2 h in a CA:Betaine-
water system [23]. KF2021 cells could effectively transform corncob-derived FAL into FOL
at 98% yield in an aqueous medium [24]. The corncob-derived FAL was fully reduced with
CG-19 cells co-expressing reductase and GDH in 3 h at 35 ◦C [27].

In this work, a new sulfonated tin-based heterogeneous chemocatalyst UST-Sn-RH
was prepared using rice husk (RH) as the bio-based carrier to catalyze the formation
of FAL from corncob (CCB) in an aqueous system. To explore the surface structure of
solid acid and confirm the successful loading of Brönsted/Lewis acid sites, a serial of
characterization of Fourier transform infrared spectroscopy (FT-IR), X-Ray Diffraction
(XRD), Brunauer–Emmett–Teller (BET), NH3 Temperature-Programmed Desorption (NH3-
TPD), and Thermogravimetric Analysis (TG) were applied to characterize the catalyst
UST-Sn-RH. During the conversion of CCB into FAL, parameters including the reaction
temperature, time and the catalysts loading were tested to evaluate their influence on the
FAL generation. Moreover, the stability of UST-Sn-RH catalyst was investigated and the
potential mechanism of CCB conversion to FAL was proposed. Furthermore, recombinant
E. coli KPADH [28] containing reductase from Kluyveromyces polyspora (KP) and glucose
dehydrogenase (GDH) from Bacillus subtilis was used for transforming FAL into FOL. Using
KPADH cell as biocatalyst, the biological reaction parameters on the KPADH whole-cell
reduction activity were tested (such as reaction temperature, pH, biocatalyst amount, NAD+

load and co-substrate glucose dosage). Finally, a chemoenzymatic route was established by
bridging UST-Sn-RH-catalyzed chemical reaction and KPADH-catalyzed bioconversion for
valorization of CCB to FOL with a high catalytic efficiency (Figure 1).
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2. Results and Discussion
2.1. Characterization of UST-Sn-RH

As an available renewable biomass resource with huge reserves, rice husk (RH) is not
utilized effectively. RH is not only utilized as the pentose source to produce FAL, it can
also be used as biobased support to prepare the heterogeneous chemocatalyst for efficient
conversion of lignocellulose. In this work, a new sulfonated tin-loaded heterogeneous
solid acid UST-Sn-RH was first prepared using RH as a biobased carrier to transform RH
into FAL. Different methods such as Fourier transform infrared spectroscopy (FT-IR), Scan-
ning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Brunauer–Emmett–Teller (BET)
analysis, NH3 Temperature-Programmed Desorption (NH3-TPD) and Thermogravimetric
Analysis (TG) were used to measure the microstructure and properties of UST-Sn-RH.

BET analysis was employed to determine the pore structure, surface area and porosity
of carrier and catalyst [29]. Distinct from RH, the specific surface area (SSA) of UST-Sn-RH
was largely enlarged from 0.78 to 98.6 m2/g (Table 1). Its pore volume was also expanded
to 0.12 cm3/g, while the pore size decreased obviously from 31.6 nm to 6.16 nm. The
contact opportunities between RH-derived D-xylose and active sites loaded on UST-Sn-RH
would rise because of bigger SSA and larger pore sizes, which would result in the higher
reaction rate and FAL yield [30]. Consequently, the efficiency for catalyzing CCB to FAL
might be improved.

Table 1. Surface and pore properties of LS and UST-Sn-RH via Brunauer–Emmett–Teller
(BET) measurement.

Sample Specific Surface Area,
m2/g

Pore Volume,
cm3/g

Pore Size,
nm

RH 0.78 0.002 31.6
UST-Sn-RH 98.6 0.12 6.16

It was observed that UST-Sn-RH surface became much looser after raw material RH
was used as a carrier for preparing solid acid (Figure 2A,B), verifying that original surface
structure of RH was dramatically destroyed and became looser after a series of treatment
(ultrasonic, ethanol, NaOH, H2SO4, etc.) [31]. FT-IR (Figure 3) showed that UST-Sn-RH
exhibited diverse properties from raw material RH. The peak about 3437 cm−1 is assigned
to the vibration of O-H stretching. The peak near 2921 cm−1 is ascribed to -CH which is
prevalent to cellulose, and it was observed to be substantially weakened because of the
removal of cellulose [32]. The preparation process of solid acid UST-Sn-RH may reshape
the RH structure. As a result, the cellulose and some other structures would be cracked
to some extent. The peak about 1637 cm−1 is attributed to aromatic skeletal vibration [33].
The peak near 1107 cm−1 is related to the stretching vibration of C-O and S=O [34]. The
peak near 804 cm−1 is associated with carbonate [35]. The peak near 620 cm−1 is assigned
the loaded SnO2 [30,33]. Overall, FT-IR verified that Brönsted/Lewis acid sites had been
successfully loaded on UST-Sn-RH.

XRD technique can be employed to test the crystal structure of UST-Sn-RH. As revealed
in XRD images (Figure 4), a broad diffraction peak at 21.9◦ ranging from 10◦ to 30◦ indicates
the existence of amorphous structure in RH. Distinct from raw RH, the narrow diffraction
peaks observed at 26.5◦, 33.8◦, 37.9◦, 51.7◦, 54.7◦, 65.9◦ and 71.2◦ are attributed to the crystal
structure of SnO2 loaded on UST-Sn-RH, which was consistent with the former report on
SnO2 [36].

TG analysis can be used to test the thermal stability of catalysts, which is reflected by
mass loss of the catalyst at high temperature [37]. Only 1.56% mass loss can be observed
on the UST-Sn-RH prepared in this study after being heated to 750 ◦C, reflecting the good
thermal stability of UST-Sn-RH (Figure 5). The NH3-TPD technique was used to measure
the acid properties of Sn-DAT-SS. Depending on the desorption temperature of NH3, a
heterogeneous catalyst is composed of the weak site (79.6 ◦C), medium site (383.8 ◦C), and
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strong site (577.5 ◦C and 737.5 ◦C) (Figure S1, in Supplementary Materials). From the above
characterization, it can be seen that the Lewis/Brönsted acid sites are successfully loaded
on the catalyst UST-Sn-RH using biomass waste RH as the carrier, which may efficiently
transform biomass into FAL.
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at a temperature ramping of 10 ◦C min−1 from 50 to 750 ◦C under nitrogen atmosphere to detect the
weight loss of the sample.

2.2. Optimization of Transformation CCB into FAL with UST-Sn-RH

In recent years, the corrosion and contamination caused by some homogeneous acid
catalysts have been recognized in the preparation of FAL. In this case, heterogeneous
chemocatalysts have been widely studied by researchers due to its high catalytic activity,
low price and easy preparation process [38–40]. In this study, the most important parame-
ters, such as performance temperature (160–180 ◦C) and reaction duration (5–60 min), were
optimized to obtain the highest FAL yield in UST-Sn-RH-catalyzed system.

As revealed in Figure 6, highest yield of 40.9% was observed at 170 ◦C for 30 min,
after exploring the effect of different temperatures and time on the FAL yield, the FAL
could reach 72.1 mM. Too long reaction time could cause a lower FAL yield. Probably, the
higher temperature and longer reaction time not only accelerated the formation of FAL, but
also sped up the side reaction on FAL such as degradation. On the other hand, the reason
why lower FAL yield was obtained under the condition of higher reaction temperature
and long performance time was that more byproducts would deposit on the active site
of catalyst UST-Sn-RH. The catalytic efficiency of the bifunctional solid acid NH2SO3H
was optimized at 200 ◦C for 30 min [41]. After the reaction at 170 ◦C for 20 min, corn
stover-derived pentose could be most effectively converted to FAL [42]. Under the above
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optimal reaction temperature and time, it was detected by HPLC that the formed FAL
liquor contained 72.1 mM FAL, 20.2 mM cellobiose, 23.3 mM glucose, 14.3 mM formic
acid, 6.1 mM levulinic acid and 1.2 mM HMF after the catalytic reaction (Figure S2, in
Supplementary Materials). In order to test the performance on the effect of Sn content on
solid acid, element analysis was made at the recycled UST-Sn-RH, the Sn ions bonded on
the solid catalyst just decreased slightly from 9.57% to 8.21% after use.
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Figure 6. The performance time (5–60 min) and catalytic temperature (160–180 ◦C) on the influence
on the FAL generation. In an autoclave containing 40 mL distilled water, 75 g/L of ground CCB
(37.2% glucan, 31.1% xylan, and 16.5% lignin) was blended with UST-Sn-RH (1.5 wt%) and reacted at
the designed temperature and reaction duration by stirring at 550 rpm.

As we all know, the structure of lignocellulosic biomass is quite compact and various
ingredients (such as cellulose, hemicellulose and lignin) are intertwined together. During
the reaction in autoclave, due to the thermal energy provided by high temperature and the
Brönsted acid sites which were loaded on UST-Sn-RH, lignocellulose structure becomes
loose. Therefore, the hemicellulose without a relatively tight structure is depolymerized
into xylan. In the aqueous phase system, water can provide H+ to the reaction which would
accelerate the breakdown of polymers [43]. In the presence of H+, xylan is hydrolyzed
to monomeric xylose. Xylulose is then obtained by the isomerization of xylose, which is
catalyzed by the Lewis acid sites on UST-Sn-RH. Then, three H2O molecules are removed
from xylulose to form FAL catalyzed by the Brönsted acid sites loaded on the heterogenous
catalyst [44]. During the reaction, the hemicellulose in biomass is hydrolyzed, the cellulose
is also inevitably broken down into hexose sugars to some extent. The similar reaction
of xylose also happened on hexose, which is then transformed into HMF in the aqueous
phase. As HMF has excellent water solubility; it is easy for HMF to diffuse in the aqueous
phase and react with water molecules. Subsequently, HMF is further degraded into formic
acid and levulinic acid. Using bio-based UST-Sn-RH as a catalyst, CCB was catalyzed to
FAL as well as HMF, formic acid and levulinic acid.

2.3. Biological Reduction of FAL with KPADH Cells

Compared with the chemical reduction, biological reduction has caught lots of at-
tention from researchers; reactions could be catalyzed efficiently under mild conditions,
avoiding the use of expensive heavy metal catalysts [19,22]. KPADH cells harboring ADH
and GDH were employed to transform FAL into FOL in a MIBK-H2O biphasic system.

It is well known that the bioreduction activity can be greatly influenced by performance
temperature, medium pH, NAD+ loading and glucose load [23–26]. As illustrated in the
Figure 7A,B, the highest FAL-reducing activity was achieved when the temperature and
pH reached 30 ◦C and 7.5, respectively. Consequently, the following experiments were
performed under these conditions. The bioreduction activity of KPADH cells were greatly
affected by the addition of the NAD+ (0.05–5.0 mM per mol FAL) in the existence of glucose
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(2.5 mol per mol FAL) and FAL (100 mM) (Figure 7C). The activity arrived at the maximum
as the NAD+ load reached 0.5 mM per mol FAL [27]. As depicted in Figure 7D, the glucose
dosage had significant influence on the FAL-reducing activity. As the glucose dosage
increased from 0 to 2.5 mol glucose per mol FAL, FAL-reducing activities were raised
gradually, and the maximum of biocatalytic activity was obtained when the glucose-to-FAL
molar ratio was 2.5:1. Over this molar ratio, the bioreduction activity was inhibited. As
a result, 2.5 mol glucose per mol FAL was the most proper dosage for bioreduction of
FAL. The load of biocatalyst was also an important parameter in the bioreduction [45], and
the formation of FOL was promoted by increasing the biocatalyst load (0.025–0.2 g/mL).
As revealed in the Figure 7E, the bioconversion activity increased greatly as the load of
KPADH was raised from 0.025 to 0.2 g/mL. When the load was increased over 0.1 g/mL,
the enhancement of biocatalytic activity was slight. Therefore, the conclusion could be
drawn that 0.1 g/mL biocatalyst was the most suitable load for FAL reduction. As we all
know, too high FAL concentration could have a toxic effect on biological activity. To test
the tolerance of KPADH towards FAL, 50–300 mM FAL was added to the reduction system.
As shown in Figure 7F, 50 and 100 mM FAL was wholly transformed into FOL within 3 h.
When FAL concentration ranged from 150–300 mM, the FAL conversion reached 93.0% to
64.9%. High concentration FAL obviously inhibited the bioreduction activity; however, the
yield of 64.9% was still obtained with 300 mM FAL, which showed the great tolerance of
KPADH [25,46].
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Figure 7. (A) Effects of bioreduction temperature (20–40 ◦C) on the FAL-reducing activity (FAL 100 mM,
pH 7.5, NAD+/FAL 0.5:1 (mmol:mol), glucose/FAL 2.5:1 (mol:mol), KPADH cell wet weight 0.1 g/mL);
(B) effects of bioreduction pH (100 mM KH2PO4-K2HPO4 buffer, pH 6.0–8.5) on the FAL-reducing
activity (FAL 100 mM, 30 ◦C, NAD+/FAL 0.5:1 (mmol:mol), glucose/FAL 2.5:1 (mol:mol), KPADH cell
wet weight 0.1 g/mL); (C) effects of NAD+ load (NAD+ to FAL molar ratio, 0.05–5:1, mmol: mol) on the
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FAL-reducing activity (FAL 100 mM, 30 ◦C, pH 7.5, glucose/FAL 2.5:1 (mol:mol), KPADH cell wet
weight 0.1 g/mL); (D) effects of glucose load (glucose to FAL molar ratio, 0–4:1 mol: mol) on the
FAL-reducing activity (FAL 100 mM, 30 ◦C, pH 7.5, NAD+/FAL 0.5:1 (mmol:mol), KPADH cell wet
weight 0.025–0.2 g/mL); (E) effects of cell biocatalyst load (0.025–0.20 g/mL) on the FAL-reducing
activity (FAL 100 mM, 30 ◦C, pH 7.5, NAD+/FAL 0.5:1 (mmol:mol), glucose/FAL 2.5:1 (mol:mol));
(F) effects of FAL concentration (50–300 mM) on the FAL-reducing activity (30 ◦C, pH 7.5, NAD+/FAL
0.5:1 (mmol:mol), glucose/FAL 2.5:1 (mol:mol), KPADH cell wet weight 0.1 g/mL).

In this study, the biological reduction was carried out under optimized reaction condi-
tions using KPADH cell as the biocatalyst, and 100 mM of FAL was efficiently converted to
FOL in the analytical yield of 100%. Using S. cerevisiae NL22 as the biocatalyst, the maximal
FOL yield of 98% was given at 30 ◦C in the presence of 62 mM FAL within 8 h [47]. In the
conversion by B. coagulans NL01, about 98 mM FOL was synthesized from FAL in 24 h with
the yield of 92% [48]. SF21 cells transformed CCB-derived FAL (74.6 mM) to FOL with a
conversion of 95.8% at 40 ◦C [23]. Of FAL, 94.8% (66.0 mM) was reduced to FOL using
CCZU-A13 cell as biocatalyst at 30 ◦C in 2 h [15]. Monitoring time course of FAL-reducing
reaction is critical to learn about the biological reaction process. As depicted in Figure 8,
97.2% of FAL (100 mM) was transformed into FOL in 90 min. When the biological reaction
was carried out for 2 h, the FOL yield reached nearly 100%. As a result, it was obviously
that KPADH whole cells had excellent bioreduction activity towards FAL in the aqueous
phase. This established bioreduction strategy had potential application in the production
of FOL.
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2.4. Chemoenzymatic Cascade Catalysis with UST-Sn-RH and KPADH Cells

In this study, a chemoenzymatic cascade reaction route was established using UST-
Sn-RH and KPADH whole cells as catalysts. In view of biomass components, UST-Sn-RH-
catalyzed CCB conversion and KPADH cell-catalyzed FAL reduction, a mass balance was
depicted in Figure 9. In a 2.5-L autoclave (170 ◦C) containing 75.0 g of CCB (27.9 g of glucan,
23.3 g of xylan, and 12.4 g of lignin) and 1.0 L of distilled water, FAL was obtained via the
catalysis with UST-Sn-RH after 30 min. The FAL liquor contained 6.92 g of FAL which
mainly existed in the upper layer of MIBK and by-products such as 6.9 g of cellobiose,
4.2 g of glucose, 0.71 g of levulinic acid, 0.66 g of formic acid and 0.15 g of HMF were
dissolved mainly in the aqueous phase. The treated CCB (51.2% of glucan, 10.3% of xylan,
and 8.5% of lignin) remained in this reactor. Sequentially, the CCB-derived FAL in liquid
was biologically transformed to 7.07 g of FOL using KPADH at 30 ◦C within 2 h (Figure 9).
The final FOL productivity was achieved at 0.304 g FOL per g xylan in biomass. In addition,
the biological reduction did not happen on other CCB-derived by-products (such as HMF
and levulinic acid) when KPADH cell was used as the biocatalyst. Lignocellulose is a kind
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of renewable material consisting of complex network composed of cellulose, hemicellulose
and lignin. These materials have caught great interest from researchers and are used
to produce biobased high-value chemicals [2–5,49,50]. In this study, hemicellulose in
lignocellulose was catalyzed by Brönsted/Lewis acid sites on the surface of solid acid
UST-Sn-RH to synthesize FAL. In the reaction, hemicellulose was rapidly hydrolyzed to
xylose, and the majority of xylose was transformed to FAL whose concentration finally
achieved 72.1 mM. This result showed that the synthesis of FAL from CCB was greatly
promoted by the bio-based chemocatalyst UST-Sn-RH. In addition, KPADH cells had high
bioreduction activity and transformed FAL into FOL in a high yield. Compared with the
previous reports (Table 2), KPADH cells could efficiently transform higher concentrations
of FAL in shorter time periods and obtain a relative high FOL productivity (0.304 g/g of
xylan in CCB) an aqueous phase system. Compared to commercial FAL, corncob-derived
FAL can also be efficiently transformed into FOL with reductase biocatalyst, indicating the
feasibility of chemoenzymatically converting CCB into FOL.
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Table 2. Examples of transforming FAL into FOL with the biocatalyst.

Biocatalyst Reaction Conditions FAL Source FAL Con., Yield, % Reference

S. cerevisiae NL22 30 ◦C, pH 7.0, 8 h Commercial 62.0 mM 98.0% [47]
B. coagulans NL01 30 ◦C, pH 7.0, 24 h Commercial 98 mM 92.0% [48]

E. coli SF21 40 ◦C, pH 7.0, 8.5 h CCB derived 74.6 mM 95.8% [23]

E. coli CCZU-A13 30 ◦C, pH 6.5, 2 h Bamboo shoot
shell derived 66.0 mM 94.8% [15]

E. coli KPADH 30 ◦C, pH 7.5, 2 h CCB derived 72.1 mM 100% This study
E. coli KPADH 30 ◦C, pH 7.5, 3 h Commercial 150 mM 93.0% This study

The conversion of lignocellulose into furan-based chemicals such as FOL by chemoen-
zymatic cascades is one of the research hotspots at present [15,23,25,27,49,50]. In this study,
UST-Sn-RH, which used RH as the bio-based carrier, was employed to transform the chem-
ical conversion of corncob (CCB) to FAL in an aqueous system. As we all know, CCB is a
kind of lignocellulosic biomass, which is the largest renewable bioresource on earth. Using
this biobased RH as carrier, UST-Sn-RH was easily prepared. The prepared heterogeneous
catalyst UST-Sn-RH contained Lewis and Brönsted acid sites and could catalyze 75 g/L
of CCB to promote the production of FAL (72.1 mM) in an aqueous system. To efficiently
catalyze the biological reduction of FAL to FOL, the recombinant E. coli KPADH was used
for the bioreduction. The FOL yield of 98% was given catalyzed by S. cerevisiae NL22 at
30 ◦C, with 62 mM FAL within 8 h [47]. When B. coagulans NL01 was used as biocatalyst,
92% of FOL yield was given in the presence of 98 mM FAL in 24 h [48]. In the DES-water
system, biomass-derived FAL (74.6 mM) was converted into FOL with a conversion of
95.8% at 40 ◦C and pH 7.0 catalyzed by recombinant E. coli SF21 [23]. Within 2 h, 94.8%
of FAL (66.0 mM) was converted into FOL using CCZU-A13 cell biocatalyst at 30 ◦C [15].
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Compared with the former studies, KPADH cells transformed 100–300 mM of commercial
FAL into FOL with the yield of 69.6–100% within 3 h, and 72.1 mM of CCB-derived FAL was
completely converted into FOL after 2 h of bioreduction. Moreover, a hybrid strategy was
newly constructed by bridging the chemocatalyst and biocatalyst and FOL could be effec-
tively produced from CCB in this way. Although chemocatalyst UST-Sn-RH existed in the
reaction system, the obvious inhibition to the reduction activity of KPADH whole cell was
not observed. As a result, a chemoenzymatic cascade reaction was successfully constructed
in this study to efficiently convert CCB into furan-based platform chemical FOL.

3. Materials and Methods
3.1. Chemicals and Materials

Corncob (CCB) and rice husk (RH) were obtained from the remote countryside in
Xuzhou city, China. SnCl4·5H2O, sulphuric acid (H2SO4), NaOH, furfural (FAL), NaCl,
methyl isobutyl ketone (MIBK), tetrahydrofuran (THF), cyclopentyl methyl ether (CPME),
dichloromethane (DCM), ethanol and other reagents were bought from Aladdin (Shanghai,
China) and other commercial sources.

3.2. Preparation of Solid Acid Catalysts UST-Sn-RH Using RH as the Carrier

UST-Sn-RH was prepared via the following steps: First, the ground RH (80.0 g) was
immersed in 300 mL of NaOH (0.5 M) ethanol solution at room temperature for 4 h and
placed in an ultrasonic processor (SB-5200DTS, Ningbo Science Biotechnology Co., Ltd.,
Ningbo, China) (300 W, 60 ◦C). The ultrasonic-treated RH was then separated by filtration
and rinsed with distilled water until it became neutral. After drying, the obtained UST-RH
was immersed in 300 mL of ethanol in which 20.0 g of SnCl4·5H2O was dissolved, and
the pH was adjusted to 6.0 using ammonia (25.0%). The resulting colloidal solution was
separately oven-dried at 70 ◦C and 90 ◦C for 48 h. Next, the dry gray powder was soaked
in 4M H2SO4 at 60 ◦C for sulfonation. After 4 h, the sulfonated solid powder was filtered
and further dried at 90 ◦C. Finally, the resulting black powder was calcined at 550 ◦C for
4 h. After calcining, the formed catalyst UST-Sn-RH was further used to transform biomass
into FAL. Elemental analysis was conducted using a plasma spectrometer (Model#: Optima
5300DV, PerkinElmer, Waltham, MA, USA) to detect the changes of the content of different
elements (Sn) in the solid acid catalyst before and after use.

3.3. Conversion of CCB to FAL with UST-Sn-RH

In an autoclave (Dantu Universal Electronic Equipment Components Factory, Zhen-
jiang, P.R. China) containing 40 mL distilled water, 75 g/L of ground CCB (37.2% glucan,
31.1% xylan, and 16.5% lignin) was mixed with UST-Sn-RH (1.5 wt%) and reacted at
160–170 ◦C and pH 1.1 for 5–60 min and 550 rpm. As soon as the reaction was finished, the
autoclave was transferred to ice-water to quench the reaction. FAL yields were analyzed by
high performance liquid chromatography (HPLC).

3.4. Biological Reduction of FAL into FOL with KPADH Whole Cells

KPADH cells harboring reductase from Kluyveromyces polyspora (KP) and glucose
dehydrogenase (GDH) from Bacillus subtilis were constructed, cultivated and harvested as
previously reported [28]. The biological reduction reactions were carried out at different
pH (6.0–8.5) at 20–40 ◦C with KPADH wet cells (0.025–0.20 g/mL), FAL (50–300 mM),
co-substrate glucose (0–4.0 mol glucose per mol FAL) and coenzyme NAD+ (0.05–5.0 mM).

To improve biocatalytic activity of KPADH cells, various biological reduction con-
ditions were optimized. To test the effects of different biocatalytic temperatures and
medium pH on the biotransformation activity, the reduction system containing KPADH
cells (0.10 g/mL), FAL (100 mM), NAD+ (0.5 µM/mM FAL) and glucose (2.5 mol glu-
cose/mol FAL) were incubated at 20–40 ◦C and pH 6.0–8.5. To test the effects of coen-
zyme NAD+ (0.05–5.0 mM) on the biotransformation activity, different amounts of NAD+

(0.05–5.0 mM) were supplemented into the reduction medium (30 ◦C, pH 7.5) containing
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KPADH wet cells (0.10 g/mL), FAL (100 mM) and glucose (2.5 mol glucose/mol FAL).
To test different loads of glucose (as co-substrate) on influencing biotransformation activ-
ity, glucose (0–4.0 mol glucose/mol FAL), NAD+ (0.5 µM/mM FAL) and 100 mM FAL
were supplemented into the reduction medium (30 ◦C, pH 7.5) containing 0.10 g/mL wet
cells. To optimize the loading of KPADH cells, different amounts of KPADH wet cells
(0.025–0.20 g/mL) was supplemented into the reduction medium (30 ◦C, pH 7.5) contain-
ing FAL (100 mM), NAD+ (0.5 µM/mM FAL) and glucose (2.5 mol glucose/mol FAL). To
explore the tolerance of KPADH towards FAL, different amounts of FAL (50–300 mM) were
supplemented into the reduction medium (30 ◦C, pH 7.5) containing KPADH wet cells
(0.05 g/mL), NAD+ (0.5 µM/mM FAL) and glucose (2.5 mol glucose/mol FAL). After the
transformation on a shaker (180 rpm) for 3 h, the substrate FAL and product FOL were
determined with HPLC.

3.5. Analytical Methods

UST-Sn-RH was measured with XRD (X-ray Diffraction) (Rigaku Co., Akishima-shi,
Japan), TG (Thermogravimetric Analysis) (Mettler-Toledo AG, Schwerzenbach, Switzer-
land), SEM (Scanning Electron Microscopy) (JEOL, Tokyo, Japan), and FT-IR (Fourier
Transform Infrared Spectroscopy) (Thermo Electron Co., Waltham, MA, USA) to explore its
microstructure and properties [24,49,51]. FAL and FOL were quantified with a Model 2695
HPLC (Waters Corporation, Milford, MA) equipped with a Waters Nova-Pak C18 column
(3.9 mm × 150 mm, 4 µM) as reported in reference [23,24].

The yields of FAL and FOL are calculated as follows:

FAL yield (%) =
FAL produced g × 0.88

CC g × 0.31
× 150

96
× 100 (1)

FOL yield (%) =
FOL produced (mM)

initial FAL (mM)
× 100 (2)

4. Conclusions

In this study, a novel heterogeneous catalyst UST-Sn-RH was prepared using rice
husk as a bio-based carrier to catalyze the efficient conversion of lignocellulose into FAL.
In addition, in order to efficiently convert FAL into FOL, recombinant E. coli KPADH
were constructed. As a result, the FOL productivity was obtained at 0.304 g FOL/g xylan
using the chemoenzymatic strategy which bridged the chemocatalyst UST-Sn-RH and the
biocatalyst E. coli KPADH cells. Compared with chemical reduction, biological reduction is
a clean and efficient approach for FOL production. Additionally, the established one-pot
chemoenzymatic process could be conducted in a tandem reaction with chemocatalysis of
available renewable and inexpensive lignocellulose into FAL and biocatalysis of FAL into
FOL, which would reduce the equipment input and shorten the performance time. Clearly,
this strategy provided an environment-friendly way to convert CCB to FOL and indicates a
promising future in industrial application.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal13010037/s1, Figure S1: The NH3-TPD image of UST-Sn-RH,
Figure S2: The HPLC image of FAL liquor after chemocatalysis.

Author Contributions: Methodology, software, validation, formal analysis, investigation, resources,
data curation, writing—original draft preparation, Q.Y., Z.T. and J.X.; visualization, supervision,
writing—review and editing, Y.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was kindly funded by Open Project Program of the State Key Laboratory of
Bioreactor Engineering.

Data Availability Statement: Not applicable.

https://www.mdpi.com/article/10.3390/catal13010037/s1
https://www.mdpi.com/article/10.3390/catal13010037/s1


Catalysts 2023, 13, 37 12 of 14

Acknowledgments: The authors thank the Analysis and Testing Center (Changzhou University) for
analysis of solid acid with FT-IR, SEM, XRD, BET analysis and TG.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

LCB Lignocellulosic biomass
RH rice husk
CCB corncob
FAL furfural
OL furfuryl alcohol
ADH aldehyde reductase
GDH glucose dehydrogenase
XRD X-Ray Diffraction
BET Brunner-Emmet–Teller Measurements
TG Thermogravimetric Analysis
SEM Scanning Electron Microscopy
FT-IR Fourier Transform Infrared Spectroscopy
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