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Abstract: Baeyer–Villiger oxidation can synthesize a series of esters or lactones that have essen-
tial application value but are difficult to be synthesized by other methods. Cycloketones can be
oxidized to lactones using molecular oxygen, peroxy acids, or hydrogen peroxide as an oxidant.
Hydrogen peroxide is one of the environmental oxidants. Because of the weak oxidation ability
of hydrogen peroxide, Bronsted acids and Lewis acids are used as catalysts to activate hydrogen
peroxide or the carbonyl of ketones to increase the nucleophilic performance of hydrogen peroxide.
The catalytic mechanisms of Bronsted acids and Lewis acids differ in the Baeyer–Villiger oxidation of
cyclohexanone with an aqueous solution of hydrogen peroxide as an oxidant.
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1. Introduction

The oxidation of ketones to lactones using KHSO5 as an oxidant was first reported in
1899 by Adolf Baeyer and Victor Villiger [1]. Lactones have significant commercial mag-
netism in the pharma, food, cosmetics, and perfumery industries [2,3]. The Baeyer–Villiger
(BV) reaction can synthesize a series of esters or lactones that have essential application
value but are difficult to be synthesized by other methods [4,5]. The BV reaction has been
widely used in perfumes, pesticides, medicines, sterols, antibiotics, and pheromones, and
for the synthesis of polymerized monomers, etc. [6–9].

Various oxidants and catalysts have been developed to improve BV oxidation. Peroxy
benzoic acid, 3-chloroperbenzoic acid, pentafluoroperbenzoic acid, and trifluoroperacetic
acid were the oxidants in traditional BV oxidation [10,11]. Peroxy acids produce one
molecule of organic acid, the atom utilization rate is low, and the waste acid produced is
difficult to handle and pollutes the environment. Current researches are focusing more
attention on the replacement of the organic peroxy acids by more atom-efficient and
environmental oxidants to overcome the problems. Molecular oxygen and hydrogen
peroxide are more environmentally friendly oxidants, and they are used as substitutes for
organic peroxy acids [12–14]. Although molecular oxygen and hydrogen peroxide have
environmental advantages, their oxidation capacity is weak. To achieve a high conversion
of ketones and high selectivity of esters or lactones, catalysts are required to catalyze the
occurrence of the BV reaction of ketones [15–18]. The O-O bond in molecular oxygen is
so stable that it is difficult to transfer oxygen atoms directly to ketones to form esters.
Aldehydes were added as co-oxidants. Aldehydes were first oxidized by molecular oxygen
to the corresponding peroxy acid, which oxidizes ketones to esters [19–22]. Although the
O2/aldehydes system could avoid using peroxy acids for BV oxidation, large amounts
of aldehydes were required as pro-oxidants for the oxidation of ketones, leading to the
production of large amounts of organic acid [23,24]. The usage of alcohol and aldehydes is
still the main drawback [25]. Developing highly efficient catalysts and green oxidants is an
important issue. Hydrogen peroxide is one of the environmental oxidants. The product of
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hydrogen peroxide after the oxidation reaction is water. The hydrogen peroxide that does
not participate in the oxidation reaction can be decomposed into water and oxygen. The
oxidation ability of hydrogen peroxide is weak. It is difficult to directly oxidize ketones into
esters with a high conversion rate. A high catalytic activity catalyst is required to activate
hydrogen peroxide and the carbonyl of ketones to increase the nucleophilic performance of
hydrogen peroxide.

The development of environmental chemical processes is required. For recyclable and
high catalytic activity catalysts, Lewis acids and Bronsted acids with high catalytic activity
were used as catalysts in the oxidation of cycloketones to lactones.

2. The Lewis Acid System
2.1. Homogeneous Systems

Markiton M. studied a range of metal triflates in the BV oxidation of 2-adamantanone.
The results showed activity of Sn(OTf)2 was higher than other metal triflates. Both the
conversion of 2-adamantanone and the yield of lactone were higher than 99% (0.67 mmol
2-adamantanone, 1.34 mmol 30 wt% H2O2, 10 mol% Sn(OTf)2, 6 mL toluene, 70 ◦C, 30 min).
To increase the catalytic activity of Sn(OTf)2, it was immobilized on multi-walled carbon
nanotubes (MWCNTs), and then hydrolyzed to triflic acid in the BV oxidation. The catalytic
activity of the recycled catalyst decreased. The participation of both Lewis and Bronsted
acid sites in the conversion of the ketone was postulated [26].

Ionic liquids were easily leached from porous solids during the reaction. The supported
ionic liquid catalyst was prepared by a ship-in-a-bottle technique or organic-additive-instant
seed technology. Modi [27] synthesized [BMIM]BF4@Co/ZSM-5 and [BMIM]BF4@Co/HY.
They were tested in the BV oxidation of cyclohexanone using 30% H2O2 as an oxidant
under solvent-free conditions. [BMIM]BF4@Co/HY showed high catalytic activity with
the conversion of cyclohexanone being 54.88%, and the ε-caprolactone selectivity 86.36%
(50 mg [BMIM]BF4@Co/HY, 0.03 mol cyclohexanone, 0.06 mol 30 wt% H2O2, 75 ◦C, 6 h).
[BMIM]BF4@Co/HY interacts with carbonyl and hydrogen peroxide simultaneously. The
nucleophile BF4

− plays an essential role in the catalytic reaction. The supported ionic
liquid catalysts prepared by the ship-in-a-bottle technique or organic additive-instant seed
methods were unstable [28,29]. Although the selectivity of ε-caprolactone was maintained
at about 80%, the activity loss is considerable after six recycling cycles.

A series of oxo-rhenium complexes were prepared by reacting with Re2O7 using PTA,
mPTA, HMT, Tpm, and Li(Tpms) as raw materials, respectively (Figure 1) [30]. These
oxo-rhenium complexes’ catalytic activity was studied toward the BV oxidation of cyclic
and linear ketones. These prepared oxo-rhenium complexes exhibit higher catalytic activity
in the oxidation of ketones with H2O2 than the simple rhenium oxides K[ReO4] and Re2O7.
The catalytic performances of oxo-rhenium complexes are shown Table 1. Although the
oxo-rhenium complexes have good water solubility and are stable in an aqueous solution,
the selectivity of the corresponding product ester is poor (<36%) when catalyzing the BV
reaction of ketones.
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Table 1. Catalytic performance of Re complexes for the oxidation of cyclic ketones to lactones.

Ketone Product Catalyst Conversion (%) Selectivity (%)
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1.7µmol catalyst (The structures of catalysts a, b, c, d, e, and f are shown in Figure 1), n(ketone)/n(H2O2) = 1.7 mmol/1.7 mmol,
3 mL 1,2-dichloroethane, 70 ◦C, 6 h.

Frisone studied the BV oxidation of cyclic ketones with H2O2 catalyzed by platinum
(II) complexes (Figure 2) [31]. (P-P)Pt(CF3)X (P-P = diphosphine; X = solvent, −OH) showed
high activity for the BV oxidation of ketones using a commercial 32 wt% H2O2 solution. The
conversion of cyclic ketones to the corresponding lactones is shown in Table 2. The solubility
of the bis-cationic PtII catalyst in water led to hydrolysis with the release of one equivalent
of H+. For more acid-sensitive lactones, the formation of the corresponding organic acid
was increased because of H+-catalyzed hydrolysis of the intermediate lactone in water,
higher temperatures, and the high catalyst loading result in lower yields of lactones.
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(C): (P-P)2Pt2(OH)2(BF4)2 (P-P = 1,2-Bis(di-i-propylphosphino)ethane)) [31].
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Table 2. Catalytic performance of (P-P)Pt(CF3)X for the oxidation of cyclic ketones to lactones.

Ketone Product Yield (mmol) Time Solvent
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Reaction conditions: 0.045 mmol Pt; 45 mmol ketone; 22.5 mmol H2O2; N2 l atm; 1 mL solvent (where present).

2.2. Heterogeneous Systems

Sn-containing materials were extensively used as a highly active Lewis acid hetero-
geneous catalyst [32–35]. The catalytic performances of Sn-containing materials for the
oxidation of cyclic ketones are shown Tables 3 and 4. Because of the large specific surface
area and various channel structures, mesoporous materials have attracted much attention
in the field of catalysis. Corma A. synthesized a catalyst (Sn-zeolite beta) that had discrete
and isolated Lewis sites [36]. Sn was incorporated into the zeolite framework as tetra-
hedrally coordinated Sn. The chemoselectivity of Sn-zeolite beta in the BV oxidation of
ketones was high when using H2O2 as an oxidant. The selectivity for lactones was 100%.
The mechanism of the BV reaction of cyclohexanone catalyzed by Sn-zeolite beta using
aqueous hydrogen peroxide as an oxidant is shown in Figure 3. The oxygen atom in the
ketone is coordinated with the Sn (Lewis acid center). Then it was easy for the oxygen
atom of hydrogen peroxide to attack the carbon atom of carbonyl. The catalytic activity of
Sn-zeolite beta in the BV oxidation of adamantanone and cyclohexanone was higher than
the best homogeneous catalytic system. In addition, Sn-zeolite beta was filtered out and
reused four times without special treatment, and its activity did not decrease in the BV
oxidation of adamantanone and cyclohexanone. However, the preparation of Sn-zeolite
beta was complex. The crystallization of Sn-zeolite beta takes 20 days at 140 ◦C in a stainless
steel autoclave.



Catalysts 2023, 13, 21 6 of 18

Catalysts 2023, 13, x FOR PEER REVIEW 5 of 17 
 

 

Reaction conditions: 0.045 mmol Pt; 45 mmol ketone; 22.5 mmol H2O2; N2 l atm; 1 mL solvent 
(where present). 

2.2. Heterogeneous Systems 
Sn-containing materials were extensively used as a highly active Lewis acid hetero-

geneous catalyst [32–35]. The catalytic performances of Sn-containing materials for the 
oxidation of cyclic ketones are shown Tables 3 and 4. Because of the large specific surface 
area and various channel structures, mesoporous materials have attracted much attention 
in the field of catalysis. Corma A. synthesized a catalyst (Sn-zeolite beta) that had discrete 
and isolated Lewis sites [36]. Sn was incorporated into the zeolite framework as tetrahe-
drally coordinated Sn. The chemoselectivity of Sn-zeolite beta in the BV oxidation of ke-
tones was high when using H2O2 as an oxidant. The selectivity for lactones was 100%. The 
mechanism of the BV reaction of cyclohexanone catalyzed by Sn-zeolite beta using aque-
ous hydrogen peroxide as an oxidant is shown in Figure 3. The oxygen atom in the ketone 
is coordinated with the Sn (Lewis acid center). Then it was easy for the oxygen atom of 
hydrogen peroxide to attack the carbon atom of carbonyl. The catalytic activity of Sn-ze-
olite beta in the BV oxidation of adamantanone and cyclohexanone was higher than the 
best homogeneous catalytic system. In addition, Sn-zeolite beta was filtered out and re-
used four times without special treatment, and its activity did not decrease in the BV oxi-
dation of adamantanone and cyclohexanone. However, the preparation of Sn-zeolite beta 
was complex. The crystallization of Sn-zeolite beta takes 20 days at 140 °C in a stainless 
steel autoclave. 

Different tin contents of Sn-Beta zeolites were synthesized by aerosol-seed-assisted 
hydrothermal methods. This method reduced the amount of template and mineralizer 
and the reaction time. The optimal condition was obtained through several synthesis pa-
rameters (1SiO2: 0.4TEAOH: 0.4HF: 5.6H2O with 3 wt% of seeds, 423 k, 6–9 days). The 
synthesized catalyst of Sn-Beta zeolite was tested in the BV oxidation of cyclohexanone 
using H2O2 as an oxidant. With the increase in tin content, the conversion of ketone in-
creased, and the selectivity of ε-caprolactone decreased. The amount of the extra frame-
work Sn sites increased with the increase in tin content, which may cause the oxidation of 
ε-caprolactone to acid. [37]. 

 
Figure 3. Mechanism of BV reaction catalyzed by Sn-zeolite beta using aqueous hydrogen peroxide 
as oxidant [36]. 

Different Sn-zeolites (Sn-MCM-68, Sn-BEA, Sn-MWW, Sn-MFI) were synthesized 
and evaluated in the BV oxidation of 2-adamantanone. By comparison, Sn-MCM-68 
possesses more catalytic activity because of its three-dimensional channels and relatively 
higher hydrophobicity [38]. After the reaction, Sn-MCM-68 and Sn-BEA were separated, 
washed with chlorobenzene, and calcined. The catalytic activity of the regenerated 
catalyst was comparable to the fresh catalyst. 

O

O

O O

O
Sn

O

O
O

O

O
Sn

O

O

O
OH

O

O

O

O

O
Sn

O

O

δ+

δ

H2O2

H+

H+

H2O

Figure 3. Mechanism of BV reaction catalyzed by Sn-zeolite beta using aqueous hydrogen peroxide
as oxidant [36].

Different tin contents of Sn-Beta zeolites were synthesized by aerosol-seed-assisted
hydrothermal methods. This method reduced the amount of template and mineralizer and
the reaction time. The optimal condition was obtained through several synthesis parameters
(1SiO2: 0.4TEAOH: 0.4HF: 5.6H2O with 3 wt% of seeds, 423 k, 6–9 days). The synthesized
catalyst of Sn-Beta zeolite was tested in the BV oxidation of cyclohexanone using H2O2
as an oxidant. With the increase in tin content, the conversion of ketone increased, and
the selectivity of ε-caprolactone decreased. The amount of the extra framework Sn sites
increased with the increase in tin content, which may cause the oxidation of ε-caprolactone
to acid [37].

Different Sn-zeolites (Sn-MCM-68, Sn-BEA, Sn-MWW, Sn-MFI) were synthesized and
evaluated in the BV oxidation of 2-adamantanone. By comparison, Sn-MCM-68 possesses
more catalytic activity because of its three-dimensional channels and relatively higher
hydrophobicity [38]. After the reaction, Sn-MCM-68 and Sn-BEA were separated, washed
with chlorobenzene, and calcined. The catalytic activity of the regenerated catalyst was
comparable to the fresh catalyst.

Han Y. synthesized a series of Mg-Sn-W composite oxides with different W contents.
These catalysts were tested in the BV oxidation of cyclohexanone. The tests of BV oxidation
with Mg-Sn-W oxide catalysts showed high activity, and the selectivity of caprolactone
approached 90%. The tungsten oxide was the main active component. Mg-Sn-W oxide
was separated by filtration and used again immediately. The catalytic activity decreased
significantly (conversion of cyclohexanone is 37%, selectivity of ε-caprolactone is 75%).
Mg-Sn-W oxide was separated, washed with water and ethanol, and calcined at 400 ◦C.
Although the structure of the recycled catalyst was not destroyed, the catalytic activity
was still slightly worse than the fresh catalysts. (conversion: 59% (second), 55% (third),
50% (fourth); selectivity: 83% (second), 80% (third), 76% (fourth)) [39]. A series of
magnesium–aluminum hydrotalcite-like compounds were prepared to catalyze the BV oxi-
dation of cyclohexanone using H2O2 as oxidation. The results showed that the crystal size
affected the catalytic activity. Enhanced hydrophilicity of poorly crystalline HT samples
facilitates the approach and activation of H2O2 on basic surface centers. The catalytic activ-
ities of HT samples were different. The conversion of cyclohexanone increased from 30 to
37%, while the selectivity of ε-caprolactone decreased from 100 to 70% [40]. In addition,
a series of tin-containing compounds of Sn-MCM-56 [41], Sn/HT [42], Sn-MCM-41 [43],
Sn-palygorskite [44], P-PAMAM-HBA-Sn [45], Sn[N(SO2C8F17)2]4 [46], and Sn (salen)-
NaY [47] were prepared. The catalytic activity tested in the BV reaction showed as being
high. They are all heterogeneous catalysts and can be regenerated. Sn-MCM-56 was sepa-
rated, washed with chlorobenzene, and calcined at 500 ◦C for 6 h. The catalytic activity of
the regenerated catalyst was almost back to the initial level (conversion of 2-adamantanone:
40% (fresh), 38%(fifth)) (0.04 g Sn-MCM-56, n(adamantanone)/n(H2O2) = 2 mol/4 mol,
56 wt% H2O2, 4.5 g chlorobenzene, 90 ◦C, 2 h) [41]. Sn/HT was separated, and calcined
at 400 ◦C for 2 h. The catalytic activity of the recycled Sn/HT was the same as that of the
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fresh one [42]. The catalytic activity of the regenerated P-PAMAM-HBA-Sn was lower
than the fresh one (conversion of 2-adamantanone: 100% (fresh), 95 (second), 90 (third),
85 (fourth), 80% (fifth)) [45]. The catalytic activity of the regenerated Sn[N(SO2C8F17)2]4 was
almost back to the initial level (conversion of 2-adamantanone: 93% (fresh), 92% (second),
90% (third), 90% (fourth)) [46]. Sn (salen)-NaY was separated by filtration and washed with
1,4-dioxane. The catalytic activity of the recycled Sn (salen)-NaY was the same as that of
the fresh one (conversion of cyclohexanone: 75% (fresh), 74% (second), 75% (third)) [47].
The catalytic activity of Sn-bentonite formed by a simple procedure is low. It is necessary
to add additives to improve the yield of lactones [48]. In addition, the toxicity of organotin
compounds and tin chloride is high, and can induce DNA lesions. Although the toxicity of
inorganic tin is low, its preparation uses tin chloride as a raw material [49]. Therefore new
active, selective, and recyclable catalysts are still required, and a heterogeneous catalyst is
an excellent option.

Table 3. Catalytic performances of Sn-containing materials for the oxidation of cyclohexanone
and adamantanone.

Ketone Product Catalyst Reaction Conditions Conversion (%) Yield (%) Selectivity (%) Ref.
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Sn-zeolite beta n(cyclohexanone)/n(H2O2) = 1.5 mol/1 mol,
35 wt% H2O2, 90 ◦C, 3 h - 52 98 [36]

Sn-Beta-166
(Si/Sn = 166)

50 mg catalyst; n(cyclohexanone)/n(H2O2) =
2 mol/3 mol, 30 wt% H2O2, 8 mL

1,4-dioxane, 80 ◦C, 3 h.
29 - 68 [37]

Sn-Beta-125
(Si/Sn = 125)

50 mg catalyst; n(cyclohexanone)/n(H2O2) =
2 mol/3 mol, 30 wt% H2O2, 8 mL

1,4-dioxane, 80 ◦C, 3 h.
36 - 66 [37]

Sn-Beta-100
(Si/Sn = 100)

50 mg catalyst; n(cyclohexanone)/n(H2O2) =
2 mol/3 mol, 30 wt% H2O2, 8 mL

1,4-dioxane, 80 ◦C, 3 h.
39 - 62 [37]

Mg-Sn-W
96 g acetic acid, 75 g butyl acetate, 57 g

cyclohexane, 54 g H2O2 (50 wt%), 60
◦C—0.05 MPa, 5 h

90 - 90 [39]
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Sn-zeolite beta n(adamantanone)/n(H2O2) = 1 mol/1 mol,
35 wt% H2O2, 56 ◦C, 6 h - 94 98 [36]

Sn-MCM-68 0.05 g catalyst; n(adamantanone)/n(H2O2) =
2 mol/4 mol, 30 wt% H2O2, 90 ◦C, 1 h 78.1 - 99 [38]

Sn-BEA 0.05 g catalyst; n(adamantanone)/n(H2O2) =
2 mol/4 mol, 30 wt% H2O2, 90 ◦C, 1 h 65.2 - 99 [38]

Sn-MWW 0.05 g catalyst; n(adamantanone)/n(H2O2) =
2 mol/4 mol, 30 wt% H2O2, 90 ◦C, 1 h 32 99 [38]

Sn-MFI 0.05 g catalyst; n(adamantanone)/n(H2O2) =
2 mol/4 mol, 30 wt% H2O2, 90 ◦C, 1 h 20.1 - 99 [38]

Sn-MCM-56
0.04 g Sn-MCM-56,

n(adamantanone)/n(H2O2) = 2 mol/4 mol,
56 wt% H2O2, 4.5 g chlorobenzene, 90 ◦C, 4 h

55 - - [41]

Table 4. Catalytic performances of Sn-containing materials for the oxidation of cycloketones.

Ketone Product Reaction Conditions Conversion
(%) Selectivity (%)
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0.25 g catalyst; n(ketone)/n(H2O2) = 12.5 mol/50 mol, 30
wt% H2O2, 10 mL acetonitrile, 70 ◦C, 4 h [42]. 100 [42] 16 [42]

3 mg catalyst, n(ketone)/n(H2O2) = 0.1 mmol/0.15 mmol,
30% H2O2, 3 mL 1,4-dioxane, 70 ◦C, 24 h [44]. 81 [44] 100 [44]

3 mg catalyst, n(ketone)/n(H2O2) = 0.1 mmol/0.2 mmol,
30% H2O2, 3 mL 1.2-dichloroethane, 70 ◦C, 15 h [45]. 99 [45] 100 [45]

0.03 mol catalyst, n(ketone)/n(H2O2) = 2 mmol/2 mmol,
35% H2O2, 3 mL 1.2-dichloroethane, 50 ◦C, 5 h [46]. 70 [46] 82 [46]

50 mg catalyst, 1 g ketone, 2 mL tert-BuOOH; 5 mL
1,4-dioxane, 70 ◦C, 12 h [47]. 100 [47] 99 [47]
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under the solvent-free condition at room temperature [51]. The Ag-NPs@mont nanocata-
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3 mg catalyst, n(ketone)/n(H2O2) = 0.1 mmol/0.15 mmol,

30% H2O2, 3 mL 1,4-dioxane, 70 ◦C, 24 h [44]. 16 [44] 90 [44]

3 mg catalyst, n(ketone)/n(H2O2) = 0.1 mmol/0.2 mmol,
30% H2O2, 3 mL 1.2-dichloroethane, 70 ◦C, 15 h [45]. 70 [45] 100 [45]

0.01 mol catalyst, n(ketone)/n(H2O2) = 2 mmol/2 mmol,
35% H2O2, 3 mL 1.2-dichloroethane, 25 ◦C, 4 h [46]. 73 [46] 66 [46]

50 mg catalyst, 1 g ketone, 2 mL tert-BuOOH; 5 mL
1,4-dioxane, 70 ◦C, 24 h [47]. 75 [47] 90 [47]

The synthesis of pyridinium perrhenate is shown in Figure 4 [50]. PyHReO4 was used
to catalyze the BV oxidation of 2-adamantanone using 30% H2O2 as an oxidant, and the
catalytic activity was high (yield: 90.02%; selectivity > 99%). PyHReO4 was separated
by silica gel column chromatography. The catalytic activity of PyHReO4 in the oxidation
of 2-adamantanone is attributed to the interaction between Re and hydrogen peroxide
(Figure 5).
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Silver supported on montmorillonite clay (Ag-NPs@mont) was synthesized and used
as active catalysts in the BV oxidation of ketones with hydrogen peroxide as an oxidant
under the solvent-free condition at room temperature [51]. The Ag-NPs@mont nanocatalyst
was separated by filtration, washed with acetone, and dried. The recycled Ag-NPs@mont
nanocatalyst was reused four times without significant loss of catalytic activity under
the same conditions. The conversion of cyclohexanone was 99% under solvent-free con-
ditions. The results in the oxidation of various ketones showed that the conversion of
cyclic ketones was higher than aromatic ketones because aromatic ketones are more stable
than cycloketones.

The magnetic composite Fe3O4@I-SR was prepared by loading Fe3O4 nanoparticles
onto a porous illite silicon slag (I-SR) [52]. Fe3O4 nanoparticles were evenly distributed over
the I-SR. Fe3O4@I-SR showed high catalytic activity in the oxidation of cyclohexanone. The
conversion of cyclohexanone and the selectivity of ε-caprolactone were higher than 99%.
Fe3O4@I-SR was separated, washed with acetone and ethanol, and dried. The catalytic
activity of the recovered Fe3O4@I-SR was almost the same as that of the fresh one (conver-
sion of cyclohexanone: 99% (fifth); selectivity of ε-caprolactone: 99% (fifth)). Fe3O4@I-SR
can activate both the ketone group and H2O2, which can be used as catalysts to improve
oxidation efficiency. Fe3O4@GO also showed high catalytic activity and selectivity for the
BV oxidation of cyclohexanone without solvent [53].

Priya prepared mixed oxides of MoLaCeSm-Si [54]. MoLaCeSm-Si catalyst showed
good activity and selectivity simultaneously in the oxidation of cyclohexanone to
ε-caprolactone at room temperature. MoLaCeSm-Si was washed with acetone, dried,
and activated at 400 ◦C for 1 h. The activity of the recovered MoLaCeSm-Si was not lost
after six cycles. The conversion of cyclohexanone in the first cycle was 83.1%, and the
selectivity of ε-caprolactone was 88.9%. The conversion of cyclohexanone was 79.1%, and
the selectivity of ε-caprolactone was 81.2%, with the catalyst of MoLaCeSm-Si recovered
from the sixth cycle. MoO3, La2O3, CeO2, and Sm2O3 in MoLaCeSm-Si each contribute
their characteristic properties to increase the catalytic activity towards the oxidation of
cyclohexanone at room temperature. Mo6+ in MoLaCeSm-Si provides the Lewis acidic
center, [55] lanthanum induces primary sites on MoLaCeSm-Si [56], and ceriasamaria in-
creases the oxygen vacancies [57] and performs the role of oxygen carrier between H2O2
and cyclohexanone.

Furia [58] studied the BV reaction of ketones catalyzed by transition metals. They
used a 70% hydrogen peroxide solution as an oxidant and a molybdenum peroxy com-
plex as a catalyst to oxidize cyclopentanone to δ-valerolactone (Figure 6). The maximum
conversion of cyclopentanone is 65%, and the maximum yield of δ-valerolactone is 54%.
(0.09 M catalyst, 1.4 M cyclopentanone, 2.2 M H2O2, 70 ◦C, 6 h)
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Figure 6. Oxidation of cyclic ketones catalyzed by molybdenum peroxy complex [58].

MoO3, WO3, and [{γ-SiW10O32(H2O)2}2(µ-O)2]4− have high catalytic activity and
selectivity in the BV oxidation of cyclic ketones [59,60]. The catalytic activity of the recycled
[{γ-SiW10O32(H2O)2}2(µ-O)2]4− was the same as that of the fresh one (yields of lactone: 99%
(third run)). The conversion of cyclic ketones and the yields of corresponding lactones are
shown in Table 5. Cyclic ketones with tertiary carbon atoms adjacent to the ketone carbonyl
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group are more likely to undergo the BV reaction than cyclic ketones with secondary
carbon atoms adjacent to the ketone carbonyl group, and the selectivity for the formation
of corresponding lactones is also higher.

Table 5. Catalytic performances of different catalysts for the oxidation of cyclic ketones to lactones.

Ketone Product Reaction Conditions Conversion
(%)

Selectivity
(%)
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25 mg catalyst, n(ketone)/n(H2O2) = 2 mmol/20 mmol, 30%
H2O2, 25 ◦C, 4 h [51]. 90 [51] 100 [51]

catalyst/substrate = 20 wt%, n(ketone)/n(H2O2) = 2.5
mmol/6.25 mmol, 50% H2O2, 3.5 mL dioxane, 40 ◦C, 12 h [59]. 83 [59] 15 [59]

1.25 µmol catalyst, n(ketone)/n(H2O2) = 1.25 mmol/2.5 mmol,
80% H2O2, 1.0 mL MeNO2, 60 ◦C, 45 min [60]. 99 [60] 99 [60]
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25 mg catalyst, n(ketone)/n(H2O2) = 2 mmol/20 mmol, 30%
H2O2, 25 ◦C, 4 h [51]. 89 [51] 94 [51]

0.02 g Fe3O4@GO, n(ketone)/n(H2O2) = 2 mmol/12 mmol, 30%
H2O2, solvent free, 25 ◦C, 5 h [53]. 89 [53] 84 [53]

catalyst/substrate = 20 wt%, n(ketone)/n(H2O2) = 2.5
mmol/6.25 mmol, 50% H2O2, 3.5 mL dioxane, 40 ◦C, 12 h [59]. 99 [59] 96 [59]
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0.02 g Fe3O4@GO, n(ketone)/n(H2O2) = 2 mmol/12 mmol, 30%
H2O2, solvent free, 25 ◦C, 5 h [53]. 97 [53] 95 [53]

catalyst/substrate = 20 wt%, n(ketone)/n(H2O2) =2.5
mmol/6.25 mmol, 50% H2O2, 3.5 mL dioxane, 40 ◦C, 12 h [59]. 99 [59] 93 [59]

1.25 µmol catalyst, n(ketone)/n(H2O2) = 1.25 mmol/2.5 mmol,
80% H2O2, 1.0 mL MeNO2, 60 ◦C, 15 min [60]. 99 [60] 99 [60]
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0.04 g catalyst, n(ketone)/n(H2O2) = 0.05 mol/0.18 mol, 30%

H2O2, 25 ◦C, 4 h [51]. 99 [51] 100 [51]

25 mg catalyst, n(ketone)/n(H2O2) = 2 mmol/20 mmol, 30%
H2O2, 25 ◦C, 45 min [51]. 99 [51] 99 [51]

0.02 g Fe3O4@GO, n(ketone)/n(H2O2) = 2 mmol/12 mmol, 30%
H2O2, solvent free, 25 ◦C, 5 h [53]. 90 [53] 52 [53]

catalyst/substrate = 20 wt%, n(ketone)/n(H2O2) = 2.5
mmol/6.25 mmol, 50% H2O2, 3.5 mL dioxane, 40 ◦C, 12 h [59]. 92 [59] 22 [59]

The high catalytic activity of MoO3 is due to its reaction with hydrogen peroxide to
form peroxy acids. The possible reaction process is shown in Figure 7.
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Figure 7. A possible mechanism for Baeyer–Villiger oxidation over transition metal oxides [59]. 
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The catalytic mechanisms of Bronsted acids and Lewis acids are different. The good
catalytic performance of transition metal oxides can be attributed to the coordination of the
Lewis acid center of metal with carbonyl oxygen, and the reaction with hydrogen peroxide
to form peroxy acids.

3. The Bronsted Acid System
3.1. Homogeneous Systems

Bronsted acid showed high catalytic activity in the BV oxidation. The conversion
of 2-heptylcyclopentanone to δ-dodecalactone was catalyzed by different Bronsted acids
(CH3COOH, CF3COOH, CH3SO3H, TsOH, H3PW12O40, and H3PMo12O40) using aqueous
hydrogen peroxide (30 wt%) as oxidant [61]. The catalytic activity of H3PW12O40 was
higher than the other acids. Although the catalytic activity was affected by acid strength,
it was not the only factor. Although the conversion of cyclopentanone, cyclohexanone,
and cycloheptanone was high, the selectivity for the corresponding lactones was very
poor. The low selectivity of H3PW12O40 was ascribed to its acid sites, which catalyzed the
hydrolysis and oxidation of lactones, leading to the formation of acids. It is difficult to
separate H3PW12O40 from the reaction system.

The study by Mouheb L. found the Keggin-type polyoxometalates H3PMo12O40,
H2.98Sn0.1PMo12O40, Cs1.5Sn0.75PMo12O40, Cs2.14Sn0.43PMo12O40, and Cs3PMo12O40 in-
volve acidic sites of the Bronsted and Lewis type [62]. The catalytic activity of POMs
was tested in the homogenous oxidation of cyclohexanone using hydrogen peroxide as
an oxidant. The products of the reaction are adipic (AA), glutaric (GA), succinic (SA)
acids, butane-1,3-diol (Diol), and ε-caprolactone (ε-CL). The results showed that the whole
Keggin-type polyoxometalates have a high catalytic activity (conversion of cyclohexanone is
98–100%) (Table 6) [62]. The substrate was activated by the Bronsted acidity [63]. H3PMo12
was oxidized to {PO4[MoO(O2)2]4}3

−, {PMo3Om}n− and {PO4[MoO(O2)2]2}2−, peroxo
species in the presence of H2O2 [64]. POM oxygen atoms were replaced by the “peroxo”
(O2

2−) from the hydrogen peroxide, Peroxo ions are distributed in the Keggin anion with-
out disturbing its structure. The good catalytic performance of POMs was attributed to the
formation of Peroxo-POM.

Table 6. Catalytic performances of POMs for cyclohexanone oxidation.

Catalysts Conversion
(mol%)

Selectivities (Yields) (%)
Adipic Acid Glutaric Acid Succinic Acid ε-Caprolactone

H3PMo12 100 31 7 1 7
Cs3PMo12 98 09 5 1 11
CsSnPMo12 100 50 9 2 18
HSnPMo12 100 59 13 4 13
Cs2Sn0.5PMo12 100 55 16 3 14

3.2. Heterogeneous Systems

KHPW was prepared with a potassium content of 1.3 wt%. Although the chemical
structure of KHPW was similar to that of HPW, it has better thermal stability and can be
separated from the reaction solution by filtration. After repeated use three times in the
oxidation of 2-heptylcyclopentanone, the catalytic activity of KHPW did not decrease sig-
nificantly. In the BV oxidation of 2-adamantanone and cyclododecanone, the corresponding
lactones are obtained in good yields [65]. The oxidation of cyclic ketones to corresponding
lactones with 30% H2O2 in the presence of HPW and KHPW is shown in Table 7.
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Table 7. Catalytic performances of HPW and KHPW for the oxidation of cyclic ketones to lactones.

Ketone Product Catalysts Temperature
(◦C) Time (h) Conversion

(%) Selectivity (%)
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Reaction conditions: substrate (2.5 mmol), catalyst/substrate = 20 wt%, H2O2 (30 wt%) (6.25 mmol).

Keggin-type heteropolyacids (HPAs) always show higher catalytic activity than com-
mon acids. HPAs have strong acidity and redox capacity, and their crystal structures are
adjustable [66]. HPAs have been used in many reactions such as hydrations [67], isomeriza-
tion [68,69], esterification [70], Fries rearrangement [71], Friedel–Crafts acylation [72], and
etherification [73], etc. Three mesoporous materials were prepared by loading silicotungstic
acids on SBA-15, MCM-41, and MCM-48 [66]. These prepared materials can be recycled
and showed excellent catalytic activity in the BV oxidation of cyclic ketones using 30%
H2O2 aqueous solution as oxidant. The conversion of cyclic ketones to the corresponding
lactones was up to 90% under the optimum reaction conditions. Cyclic ketones were easily
introduced into the hole of MCM-41 and SBA-15, so the catalytic activity of HSiW/MCM-41
and HSiW/SBA-15 was higher than HSiW/MCM-48 in the BV oxidation.

Ionic liquids are often used as green solvents or catalysts because of their low volatility,
good thermal stability, good solubility, and convenient separation at room temperature.
Bronsted acidic heteropolyanion-based ionic liquid ([MIMPS]3PW12O40) exhibited higher
catalytic activity in the BV reaction of cyclohexanone to produce E-caprolactone. The phos-
photungstic anion (PW12O40

3−) was successfully modified by the organic precursor MIMPS,
and SO3H was introduced into the catalyst ([MIMPS]3PW12O40). MIMPS]3PW12O40 could
be dissolved in the reaction system as a liquid, then precipitated after the reaction [74].
The conversion of cyclohexanone was 93.51%, the yield of E-caprolactone was 93.26%, and
the selectivity of E-caprolactone was 99.73% under optimum reaction conditions (0.8 g
[MIMPS]3PW12O40, n (H2O2): n (cyclohexanone) = 6: 1, 25 g cyclohexane, 70 ◦C, 1 h). Tung-
sten and SO3H play a very crucial role in promoting the yield of E-caprolactone because
tungsten and SO3H are oxidized to peroxyacid in the existence of H2O2. The W element in
[MIMPS]3PW12O40 showed a noticeable loss after several cycle tests. This leads to catalyst
deactivation. Stabilizing the active components of the catalyst is a critical problem to be
solved in catalyst preparation.
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Yu F.L. synthesized a series of amino-acid-based ionic liquids. (Figure 8) [75] They
were used as catalysts for the BV oxidation of cyclopentanone. The proline-based ionic
liquid [ProH]CF3SO3 showed the best catalytic activity. Under the optimum conditions
(n(cyclopentanone):n(catalyst):n(H2O2) = 1:0.06:4, 60 ◦C, 6 h), the conversion of cyclopen-
tanone was 96.57%, and the selectivity for δ-valerolactone was 73.01%. The catalytic activity
of [ProH]CF3SO3 in the BV oxidation of cyclopentanone increases with increasing acidity,
but the increase in acidity can lead to the hydrolysis of δ-valerolactone. The carbonyl was
activated by H+ to facilitate the oxidation of hydrogen peroxide. The possible reaction
process is shown in Figure 9.
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Bronsted acid catalysts of silica/A153–SO3H [76], silica-VTMO–OSO3H [77], and Fe–
Co/SPS [78] were prepared. The acidity of silica/A153–SO3H was 2.34 mmol g−1. The
acidity of silica-VTMO–OSO3H was 1.39 mmol g−1. The catalytic activity of [ProH]CF3SO3,
silica/A153–SO3H, silica-VTMO–OSO3H, and Fe–Co/SPS in the BV oxidation of various
cyclic ketones with 30% H2O2 is shown in Table 8.
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4. Conclusions 
The BV oxidation of cycloketones could be catalyzed by Bronsted acids and Lewis 

acids. The obtained catalysts have different catalytic activities in the BV oxidation of cy-
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the toxic tin chloride, the preparation is complex, and it is not economical to use Ag-
NPs@montnano as a catalyst. Fe3O4@I-SR is a better choice in the BV oxidation of cyclo-
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Table 8. Cont.

Entry Ketone Product Conversion (%) Yield (%)
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