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Abstract: Biomass-derived carbons are emerging materials with a wide range of catalytic properties,
such as large surface area and porosity, which make them ideal candidates to be used as heterogeneous
catalysts and catalytic supports. Their unique physical and chemical properties, such as their
tunable surface, chemical inertness, and hydrophobicity, along with being environmentally friendly
and cost effective, give them an edge over other catalysts. The biomass-derived carbon materials
are compatible with a wide range of reactions including organic transformations, electrocatalytic
reactions, and photocatalytic reactions. This review discusses the uses of materials produced from
biomass in the realm of heterogeneous catalysis, highlighting the different types of carbon materials
derived from biomass that are potential catalysts, and the importance and unique properties of
heterogeneous catalysts with different preparation methods are summarized. Furthermore, this
review article presents the relevant work carried out in recent years where unique biomass-derived
materials are used as heterogeneous catalysts and their contribution to the field of catalysis. The
challenges and potential prospects of heterogeneous catalysis are also discussed.

Keywords: catalysis; surface modification; biomass-derived carbon materials; organic reactions;
electrocatalysis; photocatalysis

1. Introduction

Over the years, catalysis scientists have long been interested in creating new, cutting-
edge approaches to deal with problems related to pollution, sustainable energy, and climate
change. In order to produce the desired product and achieve chemical specificity, catalysis
makes it feasible to alter the speeds at which chemical bonds are created or broken [1].
Heterogeneous catalysis, which is one of the significant wings of catalysis, is the engine that
powers numerous significant industrial processes due to its excellent capacity to accelerate
the reaction at a low cost, high conversion rates, higher selectivity, easier separation, and
recyclability. Since the heterogeneous catalysts possess these unique properties, a lot of
importance is given to their tuning to make them better as they enable the green and
sustainable manufacturing of more than 80% of the world’s chemicals [2–4]. The first few
reported heterogeneous catalysts that were of industrial significance were those used in the
Haber–Bosch process for the formation of ammonia, with iron as a catalyst; in the Ostwald’s
process for the preparation of nitric acid, with platinum as a catalyst; and in the contact
process for the formation of sulfuric acid, with vanadium pentoxide as a catalyst [5–7].

Beginning with using metal and metal oxides as heterogeneous catalysts, the use of
nanomaterials since the 21st century has brought a real breakthrough in heterogeneous
catalysis. In recent years, biowastes have been regarded as the most suitable material
that can be used as carbon precursors for synthesizing a variety of highly valuable carbon
structures, thereby turning waste into wealth. These materials are environmentally friendly
and cost effective. Moreover, considering resource recycling and sustainability, natural
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biowaste serves as a promising material as compared to other carbon-rich precursors such
as polymers, organic complexes [8], and carbohydrates [9]. The physical and mechanical
characteristics of the bioprecursors will be reflected in the carbon-based materials that
are produced: soft, compressible, and low-density biowastes, such as rice husks, ground
nuts, peanut shells, soybean shells, etc., will produce low-density and flexible carbons;
hard and dense biowastes, such as nut shells and fruit stones, will produce hard, high-
density carbons [10]. Despite the fact that various carbon-based materials derived from
lignocellulosic biomass, such as carbon nanospheres, activated carbon, porous carbons,
carbon nanotubes, and so on are currently being investigated as heterogeneous catalysts
in the fields of electrocatalysis, photocatalysis, and organic transformation (Figure 1),
research in this area has a wide scope in terms of exploration specially in the domain of
organic reactions.

Activated carbon is the most widely used carbon support derived from biomass to
bring about various organic transformations on both the research and industrial scale.
Other recently developed biomass-derived materials such as porous carbons and carbon
nanotubes possess a better surface area, thermal stability, greater adsorption capacity, and
electrical conductivity due to their small size and enhanced porosity, and they are still very
new in the field of heterogeneous catalysis and need more optimization to replace their
contemporaries, which are derived from synthetic carbon precursors [11]. However, since
biomass is a renewable material, it is important to merge the gap between commonly used
synthetic carbon precursors such as polymers with the biomass to synthesize materials
such as porous carbon spheres and carbon nanotubes and utilize them in heterogeneous
catalysis as the step towards sustainability. In this review, we will discuss the developments
that took place in the area of biomass-derived materials in heterogeneous catalysis, starting
with the various carbon materials designed and synthesized; the various techniques used
in the catalyst preparation; their applications as heterogeneous catalysts in the organic
transformation reaction, electrocatalysis, and photocatalysis; and also their future prospects.
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2. Potential Biomass-Based Materials for Heterogeneous Catalysis

A wide range of functionalized heterogeneous catalysts, such as carbon materials,
zeolites, metal-oxide-supported metals, magnetic iron oxides, metal–organic frameworks,
solid phase ionic liquids, mesoporous silica, and organic polymers, have been created [14].
Carbon materials have been actively investigated over the last three decades in the disci-
plines of nanotechnology, materials science, and as support for active phases in catalysis
due to its fascinating features relating to texture, conductivity, stability, and hydrophobicity.

Carbon materials have shown promise as both catalytic supports and metal-free
active phase catalysts. A wide range of essential catalytic properties are present in them,
including (i) a sizable high surface area, (ii) outstanding hydrothermal stability, (iii) effective
crosslinking, (iv) adaptable surface composition and porous structures, and (v) chemical
resistance in an acidic or alkaline medium [15]. Catalytic active phases have been stabilized
using a variety of common carbon materials, including carbon black, carbon nanotubes,
pyrolytic carbon, activated carbon, and carbon generated from polymers. The production
of highly distributed metallic particles (Pd, Cu, Ni, Fe, Ag, Ru, etc. [16]) all across the
catalytic matrices is made possible by the rich surface chemistry and large specific area of
these carbon materials, which increase resistance to sintering even at high temperatures.

In view of sustainability, since biomass is a natural and renewable source of carbon,
it can be extensively used to synthesize carbon structures that are potential candidates
to bring about catalysis. Figure 2 illustrates the various carbon materials produced from
biomass as precursors. Activated carbon, biochar, carbon nanotubes, carbon nanospheres,
etc. are such carbon materials that are now being synthesized from biomass and finding
their application in various reactions as catalysts and catalyst supports.

Catalysts 2023, 13, x FOR PEER REVIEW 3 of 38 
 

 

A wide range of functionalized heterogeneous catalysts, such as carbon materials, 

zeolites, metal-oxide-supported metals, magnetic iron oxides, metal–organic frameworks, 

solid phase ionic liquids, mesoporous silica, and organic polymers, have been created [14]. 

Carbon materials have been actively investigated over the last three decades in the disci-

plines of nanotechnology, materials science, and as support for active phases in catalysis 

due to its fascinating features relating to texture, conductivity, stability, and hydrophobi-

city. 

Carbon materials have shown promise as both catalytic supports and metal-free ac-

tive phase catalysts. A wide range of essential catalytic properties are present in them, 

including (i) a sizable high surface area, (ii) outstanding hydrothermal stability, (iii) effec-

tive crosslinking, (iv) adaptable surface composition and porous structures, and (v) chem-

ical resistance in an acidic or alkaline medium [15]. Catalytic active phases have been sta-

bilized using a variety of common carbon materials, including carbon black, carbon nano-

tubes, pyrolytic carbon, activated carbon, and carbon generated from polymers. The pro-

duction of highly distributed metallic particles (Pd, Cu, Ni, Fe, Ag, Ru, etc. [16]) all across 

the catalytic matrices is made possible by the rich surface chemistry and large specific area 

of these carbon materials, which increase resistance to sintering even at high tempera-

tures. 

In view of sustainability, since biomass is a natural and renewable source of carbon, 

it can be extensively used to synthesize carbon structures that are potential candidates to 

bring about catalysis. Figure 2 illustrates the various carbon materials produced from bi-

omass as precursors. Activated carbon, biochar, carbon nanotubes, carbon nanospheres, 

etc. are such carbon materials that are now being synthesized from biomass and finding 

their application in various reactions as catalysts and catalyst supports. 

 

Figure 2. Schematic representation of the natural precursors, eatable food, and waste hydrocarbons 

used for the synthesis of various carbon-based materials. Adapted with permission from ref. [17]. 

2.1. Activated Carbon 

It is challenging to produce heterogeneous catalysts from activated carbon generated 

from biomass. Activated carbon made from biomass has a significant specific surface area, 

a very porous structure, and high stability. The high porosity, excellent electrical conduc-

tivity, surface oxygen functional groups, and heteroatoms of activated carbons derived 

from biomass feedstocks make them desirable as catalyst supports for use in sensors, en-

ergy storage, catalysis, and other applications in addition to being affordable and 
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used for the synthesis of various carbon-based materials. Adapted with permission from ref. [17].

2.1. Activated Carbon

It is challenging to produce heterogeneous catalysts from activated carbon generated
from biomass. Activated carbon made from biomass has a significant specific surface
area, a very porous structure, and high stability. The high porosity, excellent electrical
conductivity, surface oxygen functional groups, and heteroatoms of activated carbons
derived from biomass feedstocks make them desirable as catalyst supports for use in
sensors, energy storage, catalysis, and other applications in addition to being affordable



Catalysts 2023, 13, 20 4 of 36

and environmentally friendly [18,19]. By chemically activating carbonized materials with
chemicals such as ZnCl2, H3PO4, KOH, or NaOH, they can be made.

Based on activated carbon from biomass, magnetic copper catalysts showed good
catalytic activity in base-free Chan–Lam coupling and oxidations, Figure 3. Here, Shally
Sharma et al. reported that abundant waste biomass (dead neem leaves) were carbonized
to create biomass-derived activated carbon, which was then chemically activated with
KOH. For the creation of affordable and ecologically friendly magnetic catalysts [Cu@KF-
C/MFe2O4, M = Co, Cu, Ni, and Zn], such a porous carbon material was used as a low-cost
and highly effective support material. Additionally, a KF modification was carried out
to give the catalyst a basic character so that it could perform C-N coupling in base-free
settings.
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Figure 3. Magnetic catalyst based on biomass-derived activated carbon. Adapted with permission
from ref. [20].

Samira Bagheri et al. proposed the significance of biomass conversion, and catalytic
pathways that include deoxygenation and -C-C coupling reactions have both been found
to be efficient for converting biomass into chemicals and fuels, Figure 4. By using a
catalytic approach, biomass is typically converted to carbon materials. Typically, this
process begins with the hydrolysis of dehydrated cellulose chains [21] and proceeds to
break down cellulose into monomer-soluble products [22]. As a result of linking and species
transport from the solution to the nucleus, the soluble products undergo condensation or
polymerization, aromatization of the resultant polymers, and growth.
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2.2. Biochar

Biochar is a carbon-rich pyrogenic substance derived from carbon-neutral sources. It
provides important CCS (carbon capture and storage) solutions and is a sustainable method
of soil amendment. Preliminary studies into biochar’s catalytic potential and mechanistic
procedures have been spurred by the recent identification of biochar as a flexible media for
catalytic applications. Highly porous biochar with structurally bonded nitrogen groups
are excellent supercapacitor electrode materials according to research [24]. However, the
catalytic efficiency of biochar is significantly impacted by its inherent inorganics, matrix
makeup, and surface functionality.

Biochar is an excellent option for many catalytic applications because it offers many
advantages as a heterogeneous catalyst or support, including a wide surface area, cheaper
cost, functional group tailoring, etc. The efficiency of biochar as a catalyst is influenced by a
number of its inherent qualities. It comes from biomass and has an excellent thermal, stable
structure as well as mechanical stability, and is structurally hierarchical. Catalysts made of
biochar have the distinguishing qualities of (i) heterogeneity, which refers to the ability to
separate the reaction mixture from the other reactants; (ii) bifunctionality, which refers to
the involvement of transesterification and esterification; (iii) being recyclable; (iv) being
porous; and (v) being nongraphitable, which refers to the fact that it does not crystallize
at high temperatures [25]. When compared to other solid-based catalysts, biochar-based
catalysts have the advantages of being affordable, environmentally beneficial, and simple
to manufacture.

Xuefei Cao, et al. (Figure 5) reported the application of biochar-based catalysts in the
upgrading of biomass, such as biochar solid acids for dehydration and biomass hydrolysis,
biochars as catalyst supports for biomass pyrolysis, and biochar-based catalysts for the
generation of biodiesel and bio-oil upgrading and gasification.

The activated biochar can be further enhanced with additional functional groups or
compounds to give it unique qualities such as adsorption on the surface and catalysis.
They have been effectively employed in the production of biodiesel, biomass pyrolysis,
gasification, and bio-oil upgrading. Biochars that have been activated and functionalized
have enormous potential for usage as flexible catalysts and/or catalytic supports in biomass
upgrading. However, the feedstock type, processing conditions, and activation or function-
alization requirements all have a substantial impact on the physicochemical characteristics
of the biochars. Future research should be conducted on the manufacturing of biochars
with stable characteristics on an industrial scale.
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2.3. Carbon Nanotubes

The Cinnamomum camphora tree’s crystalline latex was the first known renewable
feedstock utilized to create CNTs [27]. Since then, a variety of items have been utilized,
including solid biomasses such as grass and leaves, biodiesel, and plant oils. Recently,
animal-sourced materials such as chicken fat and feathers have been used to create CNTs
in addition to plant-based materials as an efficient carbon source.

Gao et al. successfully synthesized nitrogen-doped carbon nanotubes. The first step
was to autoclave chicken feathers with NiAcTa (C4H14NiO8) and dry ice in a small pressure
vessel for 2 h at 650 ◦C to produce N-doped carbon nanotubes. Ni3S2@CNF, or Ni3S2-carbon
coaxial nanofibers, were created as a result. The second step involved treating the produced
Ni3S2@CNF with hydrochloric acid at an ambient temperature for 12 h to eliminate the
Ni3S2 particles that caused the N-doped carbon nanofibers to develop. Figure 6 shows a
schematic illustration of the many steps involved in producing CNTs from chicken feathers.
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Figure 6. The several steps involved in creating CNTs from chicken feathers are represented schemat-
ically. Photograph of chicken feathers (a) in white and black products created in the autoclave in (b)
and (c). Ni3S2@C and N-CNT images captured with a FESEM in (d) and (e), respectively. (f) The
catalytic reaction of the synthesized Ni3S2@ C or N-CNTs. Adapted with permission from ref. [28].

The CNTs were produced by raising the reaction temperature to between 750 and
800 ◦C with the smallest diameters of 19.8–31.7 nm, 91% purity, and greater crystallinity;
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the 800 ◦C treatments generated the best yield. The reaction temperature was raised further
(to 850–900 ◦C) and the diameters of the nanotubes increased while the quality of the CNTs
decreased. The N content in the N-CNTs reached as high as 6.43%, which was responsible
for the excellent catalytic performance of the material.

2.4. Carbon Nanospheres

The gold nanocatalysts intercalated into the nanospherical mesoporous carbons
(Figure 7) displayed great activity and selectivity when hydrogenating nitroarenes into the
respective amines by employing H2 as a reduction agent.
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Figure 7. As a heterogeneous catalyst for the selective reduction of aromatic nitro compounds, ther-
mally reduced gold nanocatalysts were made by carbonizing ordered mesoporous carbon. Adapted
with permission from ref. [29].

When using previously used Au/MCN catalysts, the initial reaction rate for 4-NP
conversion and the product yields over a given period of time were equivalent to those
obtained with a newly made catalyst, Figure 8. The initial reaction rate and product
yield were sustained after five cycles, demonstrating the stability and reusability of the
recycled catalyst. The amount of gold in the liquid phase that was collected after the solid
catalyst separation was always below the instrument’s detection limit, suggesting that
there was very little gold detachment during the recycling cycles for the catalyst. Here, a
hydrothermal synthesis method was used for the first time to obtain ordered, mesoporous
carbon nanospheres with dispersed gold nanoparticles (Au-NPs) of about 2.8 nm in size
that had a diameter of about 90 nm.
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A similar application of carbon nanospheres obtained from biomass was reported,
where S Supriya et al. proposed immobilizing Pd on carbon nanospheres made from areca
nut kernels as a new heterogeneous catalyst was created (CNSs). Without any additional
activation procedures, the CNSs could hold 3% of Pd on their surface. The Suzuki–Miyaura
coupling of bromoarenes with aryl boronic acids and the reduction of nitroarenes both
utilized the novel Pd/CNS material [30].

In Figure 9, under catalyst-free conditions, just 4% of nitrobenzene was converted to
aniline, highlighting the role of the Pd/CNS catalyst in the process. Interestingly, when
nitrobenzene was reduced using bioderived CNSs (in the absence of Pd), a 31% conversion
was observed, most likely due to the porous nature of CNSs, which act as the reduction
surface for the -NO2 group. Figure 9 also demonstrates the different catalytic loading of
the Pd/CNS and the corresponding product conversion obtained. The Suzuki–Miyaura
reactions produced conversions up to 98% at 150 ◦C with 10 mol% of the Pd/CNS catalyst
under microwave irradiation. In addition, the Pd/CNS catalyst was found to be superior
with respect to having a low catalytic loading (3% Pd on CNSs) in all the reactions compared
to the commercially available 10%Pd on the activated carbon.
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3. Methods of Preparation of Carbon-Based Heterogeneous Catalysts and Its
Importance

The method involved in catalyst preparation plays an important role in developing
efficient catalysts. This is due to the fact that the catalyst preparation stage is very so-
phisticated and comprises numerous details that one must be aware of and understand.
The preparation stage involves a lot of details, and these details surely have an impact
on the catalyst’s final qualities, particularly its selectivity and catalytic efficiency. There
are numerous preparation techniques that result in the same catalysts but with distinctive
features linked to a specific preparation process, despite the fact that the precise details
of the preparation process differ [31]. The catalyst preparation process as illustrated in
Scheme 1 also includes certain crucial variables that fundamentally affect the different
catalytic qualities, including precursors, composition, mixing outcomes, and so on. The
economic value of catalysts is thus greatly influenced by these variables, which also have
an impact on industrial and environmental applications.
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Carbon-supported catalysts have been made from a variety of carbon materials, in-
cluding carbon black, activated carbon (AC), glassy carbon, pyrolytic carbon, and carbon
produced from polymers. Due to their large surface areas, the ACs and carbon black are
the carbon-based materials that are most frequently utilized as the supports of the active
phases [32]. Because of the great selectivity and activity of the catalyst, the main goal of the
catalyst preparation process is to create a catalyst with precise specifications to carry out a
particular catalytic reaction that would boost industrial or environmental productivity. The
following are the general procedures for producing a heterogeneous catalyst: (a) choosing
the necessary ingredients (support, precursors of the active components and promoters and
water or solvent); (b) combining them (by coprecipitation, deposition, or impregnation); (c)
drying; (d) blending with a forming agent, lubricant, or binder; (e) shape development; (f)
canning; (g) the desired oxidation state is activated or reduced. Ceramic, precipitation or co-
precipitation, ion exchange, adsorption, sol-gel, impregnation, and deposition–precipitation
processes are the most frequently used (conventional) catalyst synthesis techniques. New
techniques are also employed to manufacture catalysts, including the plasma processes,
microemulsion, combustion, and electrospinning techniques [33].

3.1. Carbon-Supported Metal Catalyst

The most researched carbon-based material for supporting noble metals is activated
carbon (AC). Large surface areas of ACs make it possible for the metallic phases to have
excellent dispersion and stability. It has been common practice to use metal-supported ACs
for C-C coupling processes, hydrogenations, oxidations, or carbonylations. In synthetic
organic chemistry, the reactions that produce C-C bonds are crucial and useful transforma-
tions. Apart from this, Pd/C is also frequently used as a catalyst for many reactions. In
order to make such carbon-supported catalysts economical and environmentally friendly,
research is proceeding in the direction where carbon materials are developed from natural
biomass precursors. The various techniques involved in the preparation of supported
catalysts include impregnation, metal deposition, etc.
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3.1.1. Impregnation

Impregnation is the easiest way to make supported metal catalysts out of all the
preparation techniques [34]. In impregnation, a solution of a metal salt is applied to the
support at a concentration that will provide the appropriate loading, as shown in Figure 10.
The system is then aged, typically for a brief period of time, dried, and calcined. Wet
impregnation (WI) refers to the process of producing a thin slurry by using a quantity of
the precursor solution greater than the support’s pore volume. Dry or incipient wetness
impregnation (DI) is the process of limiting the solution to merely fill the pore volume [35].
To achieve a uniform distribution of the catalyst precursor over the support, it is crucial to
agitate the slurry continually throughout drying unless the catalyst precursor is heavily
adsorbed on the support.
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3.1.2. Reductive Deposition

Nanoparticles can be produced directly from a number of precursor molecules that
are soluble in a specific solvent; hence, the liquid phase reduction process is one of the
simplest approaches for creating nanometer-sized particles [37]. In contrast to the deposi-
tion precipitation approach, reductive deposition occurs when precipitation is induced in
the solution phase but near the surface rather than on the surface. Metal precursors are
often reduced by utilizing a variety of reducing agents, including sodium borohydride,
hydrazine, ethylene glycol, and ascorbic acid, through electrochemical processes, chemical
pathways, and thermal degradation at high temperatures. The fact that the majority of
powerful reducing agents are poisonous is one of this method’s drawbacks. Additionally,
electrochemical approaches call for an additional electrochemical apparatus. As a result,
easy and sustainable methods of reducing metal precursors are greatly wanted to increase
productivity and ensure the sustainability of metal-based nanomaterial synthesis processes.

3.1.3. Deposition Precipitation

A highly soluble metal salt precursor is changed in the deposition precipitation ap-
proach into a less soluble compound that only precipitates on the support and not in the
solution [38]. This procedure is typically accomplished by altering the pH of the solution,
adding a precipitation agent, adding a reducing agent, or altering the concentration of a
complexation agent. To guarantee that precipitation only happens on the support and not
in the solution, two key requirements must be met: concentrations of the precursor in the
solution must be regulated to prevent spontaneous precipitation and a robust interaction
must occur between the soluble metal precursor and the surface of the support. The biggest
flaw in this approach is the lack of adequate control over the metal distribution and surface
composition, which makes it challenging to create real bimetallic catalysts with precise
compositions. The precipitant must be added gradually and with vigorous mixing in order
to prevent the creation of areas with a high local pH and to slow down rapid nucleation and
growth in the majority of the solution. The optimum approach would seem to be to actively
stir the suspension while slowly injecting the alkali solution through a hypodermic needle
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beneath the liquid’s surface. However, this situation offers an upscaling issue because
highly effective mixing is challenging to implement on a wide scale [39].

3.1.4. Colloidal

Colloidal synthesis is a multistep “three-dimensional” process that includes the fol-
lowing: (a) the preparation of catalyst precursors in a solvent with a protective agent, such
as a surfactant (e.g., cetyltrimethylammonium bromide-CTAB); (b) the deposition of the
colloids into the support, and (c) the reduction of the mixture using chemicals. The colloidal
approach can produce very fine particle sizes, but it requires the use of surfactants and pro-
tective agents, which means the catalyst must be repeatedly washed in the proper solvent
or subjected to high temperatures in an inert environment to breakdown or eliminate these
foreign chemicals. In order to avoid the accumulation of metal nanoparticles, the catalyst
must first be adsorbed into the support. Therefore, using a different method to make small
nanoparticles without the use of protective chemicals is preferable because it will make the
process easier and prevent contamination [35].

3.2. Carbon Catalysts

Carbon-based compounds have long been recognized as valuable catalytic materials,
either as catalysts themselves or as substrates for other catalysts. These carbon-based
materials have several benefits for catalytic applications, including: (i) high thermal stability;
(ii) easy recovery from the reaction mixture; (iii) high chemical stability in acid or basic
media; (iv) hydrophobic nature; (v) low corrosion capability; and (vi) from an economic
standpoint, their lower price.

Amorphous carbon, carbon fibers, activated carbon, ordered mesoporous carbon,
graphene oxide, carbon black, carbon nanotubes, and carbon nanodots are just a few
examples of the carbon-based materials that present new opportunities for the develop-
ment of numerous catalytic supports and catalytic performances (Figure 11). Most often,
graphitic or porous carbons are used in sorption, sensors, and catalysis. In addition, the
regulated pore structure of carbons and the surface chemistry of carbons (surface oxygen,
other heteroatoms, amphoteric character, and hydrophobicity) are crucial for catalysis
applications [40].
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3.3. Anchored Metal Complexes on Carbon (Heterogenized Homogeneous Catalysts)

Homogeneous catalysts, typically organometallic complexes, have demonstrated great
activity and selectivity while remaining active under mild reaction conditions. They fall
short, however, in terms of the simplicity with which the catalyst can be removed from
products. The heterogenization of homogeneous catalysts is currently cheap economically,
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but it is also a toxicological and environmental concern [42]. Thus, there is a drive for
metal complexes to be heterogenized, as this will combine the advantages of homogeneous
and heterogeneous catalysts [43]. In contrast to homogenous systems, the activity and
selectivity of the attached complexes may even be increased. This could be due to a site
isolation effect in which the anchored complexes are prevented from reacting with one
another as they might in a homogeneous medium, resulting in the formation of inactive
dimeric species, or it could be due to a confinement effect, in which the interactions between
the catalyst and reactant are enhanced when confined to the pore system of the support.
Covalent bonding is the most popular method for heterogenizing metal complexes out of
all the available techniques, especially when it comes to porous carbons. The metal complex
may interact directly with the support’s surface functional groups [44] or indirectly through
a spacer that has already been grafted. This approach results in the formation of a strong
chemical bond to the support, which will prevent the leaching of the catalyst to the reaction
medium [45].

4. Surface Modification of the Carbon Materials to Enhance Their Catalytic Property

Porous carbons have attracted a lot of attention because a large range of materials can
be produced from relatively inexpensive and low-cost precursors. Due to their diverse
porous structure, low cost, accessibility, good recyclability, surface hydrophobicity, resis-
tance to acidic and basic environments as compared to silica and alumina supports, low
density, and—most importantly—the ability to introduce various functionalities using a
variety of activation, functionalization, and carbonization techniques, porous high-surface
area carbons are typically used as good catalyst supports. Additionally, the textural and
structural adaptability of carbon-based materials enables the development of distinctive
adsorption sites [46].

In carbon-based materials, agglomeration results from high van der Waals forces
between carbon particles. This tendency toward aggregation has hindered its applica-
tion in numerous fields. Researchers have successfully developed a variety of surface
modification/functionalization technologies in an effort to reduce this tendency toward ag-
glomeration and to investigate potential application areas [47]. Surface modification refers
to the process of changing a material’s surface by adding physical or chemical properties
that are not currently present. The creation of functional groups on the surfaces of carbon-
based materials is known as functionalization. Increased matrix–solvent interactions and a
reduction in the long-range van der Waals force of interactions are two ways that functional
groups contribute to a homogeneous dispersion. As a result, functionalization makes a
material more reactive, tends to make carbon-based materials more soluble, and creates
opportunities for additional chemical changes including the adsorption of ions, deposition
of metal, grafting reactions, etc. Additionally, the functional groups have the capacity to act
as anchoring groups, which allows for the bonding of two moieties followed by subsequent
derivatization with other functional groups via chemical interactions [48]. In this regard,
the chemical functionalization of porous carbons turns into a crucial technique for adding
evenly distributed anchoring points, as shown in Figure 12. Meanwhile, as illustrated in
Table 1, surface-modified carbon materials frequently show reduced aggregation compared
to the pristine form, increasing dispersibility and improving catalytic activity [49].
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Table 1. Property enhancement due to surface modification.

Carbon Precursor
Synthesized

Carbon-Based
Material

Method of Surface
Modification Property Enhanced Reference

Bottlebrush flower Functional N-doped
porous carbons

One-pot thermal
activation using

NaHCO3 and
dicyandiamide

Enhanced catalytic activity in both
single and binary systems for the
degradation of aqueous phenol and
p-hydroxybenzoic acid (HBA)
degradation.

[50]

Erodium
cicutarium harvest

Functionalized carbon
microfibers

Sonochemical
functionalization

Bi2S3 nanoparticles anchored on the
functionalized microfibers narrowed the
band gap of the material to 1.35 eV and
improved the polarizability of the
nanocomposite, which is essential for
dielectric attenuation.

[51]

Coffee grounds Amino-functionalized
porous carbon

Facile chemical
modification method

Adsorption rate constant was greatly
enhanced for sulfonamide antibiotics
removal upon amino modification.

[52]

Egg Heteroatom-doped
mesoporous carbon

Carbonization
technique using
g-C3N4 as both

template and nitrogen
source

Delivered comparable ORR activity,
relatively high power density, and
provided a low-cost solution to the
commercial Pt/C reference
electrocatalysts.

[53]

Disposal dipping
syrup solution

(DDS)

Carboxyl, hydroxyl,
and amino

functionalized
microporous
carbonaceous
nanospheres

Hydrothermal method Improved adsorption performance of
Sulfadiazine. [54]

Biomass-derived
glucose

Cobalt embedded
within biomass-derived
mesoporous N-doped

carbon

One-pot carbonization
with melamine

(1) The aggregation of NPs is rigorously
regulated by a N-doped carbon shell.
(2) Metal is shielded from poisoning or
leaching by a N-doped carbon shell that
physically isolates Co from the acid
environment.
(3) For the hydrodeoxygenation of
vanillin to 2-methoxy-4-methylphenol
(MMP) employing FA as a reductant,
this catalyst demonstrates a high yield
and outstanding chemoselectivity
(usually 100%).

[55]
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Table 1. Cont.

Carbon Precursor
Synthesized

Carbon-Based
Material

Method of Surface
Modification Property Enhanced Reference

Cedar tree N-doped graphitized
carbon Pyrolysis

The electrocatalyst possessed super CO2
reduction reaction activity with a high
Faradaic efficiency of 91% at a low
applied potential of 0.56 V (vs. RHE)
and a long-term stability for at least 20
h.

[56]

Corncob Acid functionalized
activated carbon Acid treatment

(1) The carbon percentage increased by
13% after acid functionalization of the
NaOH-activated carbon.
(2) Acid functionalized carbon
possessed a higher surface area, pore
volume, and strong acidic sites that
catalyzed the ketalization reaction as
compared to alkali-activated carbon.

[57]

The surface properties influence the nature of the carbon materials in catalysis, which
are in turn impacted by their structure. Since the porous carbons employed in catalysis
have a graphitic structure, there are sp2 hybridized carbon atoms along the margins of the
graphene layers and in basal plane defects. These atoms are highly susceptible to react
with oxygen or nitrogen compounds and give rise to various surface functional groups, as
illustrated in Figure 13 [58]. Additionally, these functionalities might operate as active sites
for specific catalytic reactions.
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Owing to this, the surface modification techniques can be broadly classified into two
types: covalent functionalization or chemical functionalization and noncovalent function-
alization or physical modification. In the covalent functionalization technique, various
functional groups are introduced on the surface of the carbon materials through covalent
bonds, while in noncovalent functionalization, van der Waals interactions, π-π interactions,
etc. are the driving force for the modification, and as the result the native structure and
properties of the material is retained. The various techniques to noncovalently modify the
surface include metal deposition, polymer wrapping, metal encapsulation, etc. [60].

4.1. Functionalization with Oxygen-Containing Groups

The oxygen-containing functionalities can be introduced on the carbon materials
through a wet oxidation process or gas phase oxidation. In the wet oxidation process,
the materials are chemically treated with strong oxidizing agents such as HNO3, HNO3 +
H2SO4, H2SO4 + KMnO4, and H2SO4 + H2O2 [61]. The degree of oxidation is influenced by
the oxidant as well as its concentration, temperature, and reaction time. Hydroxyl groups
such as phenols often result from a lower degree of oxidation, whereas carboxyl groups
are more likely to arise from higher degrees of oxidation. Wet oxidation is undesirable
for industrial scale functionalization due to its risk to the environment and human health.
The chemicals employed in this process are extremely toxic and challenging to work with;
however, the oxidation of the carbon materials can be performed in the gas phase in the
presence of oxygen, ozone, or plasma treatment [62], which is called dry oxidation or
gas-phase oxidation. The most common oxidant in the gas phase is air, which is employed
at temperatures between 473 K and 673 K. At lower temperatures, the oxidation effects
are hardly noticeable; however, at higher temperatures, a degradation of the functional
groups occurs.

4.2. Functionalization with Nitrogen-Containing Groups

Ammonia is frequently used in the gaseous phase to introduce amino functionalities
to carbon materials. Amidation (materials containing oxidized carbon undergo amidation
either through direct interactions with amine-containing molecules or through an inter-
mediate reaction with thionyl chloride or a coupling agent) and ammoxidation, which is
the reaction with ammonia/oxygen mixtures at temperatures between 200 ◦C and 450 ◦C,
have also been utilized. In the liquid phase, porous carbon is more often treated with a
nitrogen precursor such as urea [63], amines [64,65], melamine, etc. and is subsequently
treated at elevated temperatures; a better outcome is typically obtained if the carbon has
already undergone oxidation. After nitrogen functional groups such as amines, amides,
pyrroles, and pyridines are produced, they often have a basic nature, which raises the pH
of the carbon material at the point of zero charge [66]. Nitrogen can also be added to the
surface of carbon-based materials via an HNO3 treatment. A similar result was seen upon
oxidation in the gas phase with N2O.

4.3. Functionalization with Sulfur-Containing Groups

Carbon materials can be functionalized with sulfur-containing groups in the solid,
gaseous, and liquid phase. In the gas phase, the carbon material is commonly heated in
the presence of a sulfur-containing gas, primarily H2S; however, sulfonation can also be
achieved using SO3 in the gas phase by heating fuming H2SO4 (a 50% SO3/H2SO4 solution)
in an autoclave. This technique has been employed to sulfonate magnetic Fe3O4@carbon
nanoparticles [67]. Another method, which eliminates the use of highly concentrated (or
fuming) sulfuric acid, is the generation of SO3 via plasma by an electric discharge into a
diluted sulfuric acid solution. This approach has been used for the sulfonation of carbon
black [68]. While in the solid phase, carbon is usually heated in the presence of elemental
sulfur. The carbon material can also be sulfonated by the reduction of a diazonium salt
such as 4-benzene-diazoniumsulfonate with H3PO2 [69] or by using concentrated sulfuric
acid [70]. Additionally, organic molecules with SO3H functions, such as p-toluenesulfonic
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acid (TsOH) and hydroxyethylsulfonic acid, can be used for sulfonation [71,72]. It is
also reported that sulfur-functionalized carbon dots were produced utilizing a one-step
hydrothermal process with an aqueous turmeric solution that contained ammonium per-
sulfate as a sulfur source [73]. Similarly, carbon materials can also be functionalized with
phosphorous [74,75], boron [76], or halogen functionalities [77].

Heteroatom functionalization on carbon materials can also be achieved by the method
of doping. This type of doping can be conducted either in situ by mixing the carbon
precursor and the dopant or by using a heteroatom-rich carbon precursor such as a pomelo
peel [78] or fish waste.

5. Application of Biomass-Derived Materials in Various Heterogeneous Catalytic
Systems
5.1. Biomass-Derived Carbon Materials in Electrocatalysis

Sustainable and clean energy generation depends heavily on the conversion and
storage of electrochemical energy. Fuel cells and metal–air batteries, among other elec-
trochemical systems, exhibit significant potential [79]. The most efficient catalysts for
electrocatalytic reactions are those based on platinum, which has long been known. How-
ever, the expensive cost of Pt, the absence of long-term stability, and the susceptibility to
surface poisoning by various compounds such as methanol and carbon monoxide enable
the development of non-Pt group metal catalysts [80]. By doping carbon with different het-
eroatoms such as N, S, P, or B, or by codoping with N and Fe or N and Co, a range of non-Pt
group catalysts have been developed to address these difficulties [81,82]. When doped
with nitrogen, depending on the doping procedure, the nitrogen moieties may include
graphitic-N along with pyrrolic and pyridinic nitrogen. Among these bonding configura-
tions, graphitic-N induces an n-type doping effect, whereas pyrrolic-N and pyridinic-N
may result in either weak n-type or p-type doping [83]; however, among all the possible
nitrogen-doping configurations, the graphitic N doping could preserve the high carrier
mobility due to minor distortion of the graphene lattice [84]. Moreover, it was also reported
that N doping resulted in a shift of the conduction band to the fermi level, increasing
the electrical conductivity of the material [85]. Hence, given the enormous capability of
these catalysts, it is crucial to investigate the methods for producing them sustainably
from biomass, which is an appealing renewable natural resource due to its characteristic
abundance in carbon and nitrogen [86] and the presence of metal elements such as iron in
some forms [87].

Soybeans and earth-abundant molybdenum were used to create a highly active elec-
trocatalyst for hydrogen evolution by Wei-Fu Chen and colleagues. This catalyst drives the
hydrogen evolution process (HER) with low overpotentials and is extremely durable in a
corrosive acidic solution for more than 500 h. It is made up of a catalytic β-Mo2C phase and
an acid-proof γ-Mo2N phase. The MoSoy catalyst, when supported on graphene sheets,
displayed extremely fast charge transfer kinetics, and its performance was comparable to
that of noble metal catalysts such as Pt for the generation of hydrogen. These findings chal-
lenge the dominance of platinum catalysts in the hydrogen economy by demonstrating that
high-protein biomass, such as soybeans, may be used to make catalysts that incorporate an
abundant transition metal [88]. It was observed in various studies of HER electrocatalysis
that when carbon atoms of the carbon-based materials are replaced by heteroatoms, they
modulate the charge distribution over the carbon network [89]. Additionally, changes in the
crystal structure will cause defects and provide more adsorption sites and activity centers
for HER intermediates. With the introduction of defect structures such as atom vacancies
and heteroatom doping [90], the electron configuration of the catalyst site is efficiently mod-
ulated to promote the formation and transformation of intermediate states, thus facilitating
specific electrochemical reactions [91]. In most cases, due to the modulation of the local
regional electronic and surface configuration, defects are generally considered the active
sites for electrocatalytic processes [92,93]. Additionally, these modifications may lead to
the formation of a heterointerface, which will optimize the adsorption energy, regulate
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the electronic interactions, and expose more active sites, leading to a high electrochemical
performance [94].

As illustrated in Figure 14, Jinghan Li and colleagues developed a low-cost and metal-
free porous electrocatalyst for oxygen reduction reactions (ORR) using plum blossom, an
environmentally friendly precursor, as a carbon source that is extremely effective and stable.
The electrocatalysts demonstrated excellent stability with a current retention of 91.2% after
50,000 s, high catalytic activity (E1/2 = 0.82 V and JL = 5.96 mA cm−2), and methanol
tolerance in alkaline media. When porous carbon materials are synthesized, they provide a
larger surface area while inducing the defect sites. However, the size of the pore and the
pore structure is also of importance, as smaller pores are responsible for providing a higher
effective surface area that acts as active sites in enhancing the performance of the electrodes.
Hence, increasing the surface area by optimizing the porosity in order to have more defect
sites is key [95,96]. Furthermore, the extension of pore size could decrease the adsorption
capability by decreasing the charge storage [97].
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Figure 14. Illustration of a nitrogen-doped porous carbon material prepared from fallen plum blossom
via chemical activation and post-treatment and studied as the electrocatalyst for oxygen reduction
reaction. Adapted with permission from ref. [98].

Xiaojun Liu and colleagues developed a biomass-derived electrocatalyst where spinach
was used as the precursor, melamine was used as a nitrogen promoter, and the combination
of NaCl/KCl was used as the pore producer, and they successfully obtained a multielement-
doped carbon with high ORR activity through pyrolysis at 900 ◦C under Ar. The resulting
carbon composites exhibited a sheet-like shape, a specific area of 289.6 m2 g−1, and a high
density of ORR (oxygen reduction reaction) active sites, as shown in Figure 15 [99]. The
electrocatalytic oxidation of pyridyl carbinol at MnO2-Pi-PCN/CFP electrode with TEMPO
as the mediator was studied by Mathew et al. in an aqueous–acidic medium. They synthe-
sized porous carbon nanospheres from monkey pods as the carbon precursor and created
a modified carbon fiber paper (CFP) electrode by electrodepositing manganese dioxide-
phosphate (MnO2-Pi) on porous carbon nanospheres. The electrocatalytic efficiency of the
MnO2-Pi-PCN/CFP electrode towards pyridyl carbinol oxidation significantly increased
when evaluated utilizing CV. The study found that the MnO2-Pi-PCN/CFP electrode is
superior to the bare CFP electrode in terms of effectiveness [100].
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Figure 15. Schematic procedure for preparation of carbon nanosheets derived from spinach as
electrocatalysts for ORR. Adapted with permission from ref. [99].

Cobalt-catalyzed carbonization of biomass chitosan was described by Zhang et al.
as a technique for producing cobalt and nitrogen codoped carbon nanotubes (Co-NCNT)
exhibiting high activity for oxygen reduction reactions (ORR), as shown in Figure 16. In
comparison to commercial Pt/C catalysts, the Co-NCNT catalyst with optimized synthetic
conditions demonstrated an attractive ORR activity. This work also offers an effective
synthetic method for the production of highly effective carbon-based ORR catalysts gen-
erated from biomass [101]. For a sustainable upgrading of oxygen reduction to hydrogen
peroxide in UV-assisted electro-Fenton water treatment, Giorgia Daniel and colleagues
developed a Chitosan-Derived Nitrogen-Doped Carbon Electrocatalyst. This research
looked at the synthesis of N-doped mesoporous carbon produced from chitosan in both
the absence (MC-C) and presence (N-MC-C) of 1,10-phenanthroline, a substance that acted
as both a porogen and a second nitrogen source. N-MC-C had more significant surface
N-functionalities than commercial carbon black, including the pyrrole group, as well as a
higher level of graphitization and surface area (63 vs. 6 m2g−1). These qualities contributed
to the high oxygen reduction reaction activity of N-MC-C [102].

In a study by Ma et al., heteroatom tridoped porous carbon was synthesized from fish
waste using pyrolysis to create Pt-free electrocatalysts with a high catalytic activity and
low cost for triiodide reduction. The carbon materials were naturally doped with nitrogen,
phosphorus, and sulfur and had a remarkable BET surface area of 2933 m2 g−1 as the result
of its porous structure. Additionally, the improved dye-sensitized solar cells (DSC) with a
tridoped porous carbon electrode demonstrated a power conversion efficiency of 7.83%,
which is comparable to the system with a Pt-based counter electrode with an efficiency of
8.34% [103].

Carbon-based electrocatalysts with intrinsic defects can be created for the effective
and long-term electroreduction of CO2 using a straightforward two-step carbonization
technique, according to the study by Mengjie Chen and colleagues. They used a nitrogen-
rich silk cocoon as a precursor. The resulting electrocatalyst maintained good selectivity
for around 10 days and catalyzed the CO2 reduction to CO with a Faradaic efficiency of
89% [104].
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Figure 16. TEM images of (A) NCNS-T800, scale bar 50 nm, and (B) Co-NCNT-T800, scale bar 50 nm;
(C) high-resolution TEM image of Co-NCNT-T800, scale bar 10 nm; (D) high-angle annular dark-field
scanning transmission electron microscope (HAADF-STEM) image and element mapping of (E)
carbon, (F) nitrogen, and (G) cobalt for Co-NCNT-T800, scale bar 50 nm. Adapted with permission
from ref. [101].

Consequently, there has been significant progress in recent years toward the develop-
ment of carbon materials produced from biomass as electrocatalysts to fulfill the demands
of high performance and as a potential replacement for costly noble metal-based electrocat-
alysts.

5.2. Biomass-Derived Materials in Photocatalysis

Heterogeneous photocatalysis is a viable technique in environmental remediation.
Due to the abundance and environmental friendliness, carbon-based materials generated
from biomass are thought to be a green and promising substitute for conventional photocat-
alysts, as shown in Figure 17 [105]. Photocatalysis is the term used to describe a chemical
reaction that is photoactivated and occurs on a semiconductor surface. Titanium dioxide
(TiO2), tungsten trioxide (WO3), zinc oxide (ZnO), iron oxide (Fe2O3), zirconia (ZrO2), and
vanadium oxide (V2O5) are a few popular semiconductors that have been widely used.
However, the majority of semiconductors have significant band gap energy (Eg), such as
3.37 eV and 3.2 eV for ZnO and TiO2, respectively, which indicates that they can function
properly only when exposed to ultraviolet light. The rapid recombination of charge carriers
may also limit these materials’ ability to act as photocatalysts. Hence, recent advance-
ments in the doping and designing of hybrid material with carbon compounds sourced
from biomass offer one practical and creative solution to these problems [106]. Moreover,
the carbon-based nanostructured materials also feature good BET surface areas, tunable
topologies, excellent charge carrier mobility, favorable recycling characteristics, excellent
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stability, and a high degree of porosity, which makes them suitable support frameworks for
catalysts [107].
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5.2.1. Doped Carbons

One of the most popular methods for enhancing the photocatalytic activity of the
carbon compounds obtained from biomass is atom-doping modification. This implies that
the surfaces of carbon materials are modified with chemical functional groups comprising
oxygen, nitrogen, or sulfur atoms. It has been demonstrated that surface functionalization
with atoms of oxygen, sulfur, and nitrogen has a significant effect on the surface properties
of the carbon material, increasing the surface area and subsequently improving the ability
to adsorb contaminants [108,109].

As illustrated in Figure 18, Zhou et al. developed a nitrogen and phosphorus self-
doped porous carbon material using lotus pollen and a two-step calcination process. The N
and P elements can significantly improve the photocatalytic H2 generation when exposed
to visible light. It was also reported that the pollen carbon samples had special photo-
electrochemical (PEC) characteristics after being annealed at 600 ◦C. Under a 0.8 V bias,
LP-C-600 produced the most hydrogen (the hydrogen generation rate approached 3.5 µmol
g−1h−1) and had the highest photocurrent (5.8 µA cm−2). The photo response range of
the LP-C-600 was also very broad (300–600 nm), and its IPCE value achieved its greatest
value of 0.11% at 350 nm under a 0.8V bias. The incident monochromatic photon current
conversion efficiency (IPCE) of the sample increased sharply as the applied bias voltage
increased, while its bandgap was noticeably reduced [110].

Cristina Lavorato and colleagues demonstrated the synthesis of N-doped graphene de-
rived from chitosan biomass using the technique of pyrolysis as a visible-light photocatalyst
for hydrogen generation from water/methanol mixtures. The N-doped graphene exhibits a
nearly neutral absorption spectrum, and the material demonstrates photocatalytic activity
upon irradiation with UV- (355 nm) and visible light (532 nm), and can also generate
hydrogen upon simulated sunlight illumination. In contrast to graphene, (N)G behaves
like a semiconductor and demonstrates great efficiency for the photocatalytic synthesis of
hydrogen from water/methanol mixtures without the use of Pt or any other metal and has
a similar efficiency as utilizing UV or visible light. Additionally, this result is in complete
contrast to the reported behavior of GO, which is exclusively active in UV light. One area
in this study that deserves further attention is to increase the photostability of the material,
which otherwise tends to deactivate upon extended irradiation [111].
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(f1,f2) LP-C-800. (g–j) Element mapping images of C, N, O, and P in LP-C-600. (k) Linear sweep
voltammogram (LSV) curves, (l) photoelectric conversion efficiency, and (m) photocurrent density
time plot at applied voltage of 0.8 V of samples under test conditions with 0.1 M Na2SO4. Adapted
with permission from ref. [110].

5.2.2. Biomass-Derived Carbon-Based g-C3N4

A green technique that has recently demonstrated tremendous potential for enhancing
the performance of g-C3N4 as a photocatalyst is the pairing of nontoxic and abundant
biomass-derived carbon sources with g-C3N4 [112].

Li et al. reported that g-C3N4 and Ag nanoparticles combined with biomass-derived
carbon from puffballs that have a hollow bird’s-nest-like shape and are produced using a
one-step pyrolysis technique demonstrated notable photocatalytic activity towards the re-
duction of CO2 to CO under visible light. The Ag-g-C3N4/BN-C exhibited an impressively
improved yield of 166.5 µmolg−1 for the total CO evolution, with an average evolution
rate of 33.3 µmolg−1h−1 without the addition of any type of sacrificial reagents and pho-
tosensitizers, which was found to be superior to the pristine g-C3N4 and many reported
g-C3N4-based counterparts [113].

Bin He and colleagues demonstrated the one-pot construction of chitin-derived
carbon/g-C3N4 heterojunction for the enhancement of visible-light photocatalysis, as
shown in Figure 19. According to the studies, the heterojunction performs a variety of
functions, including increasing the photocatalytic performance by lowering the band gap
and increasing the recombination rate. In addition, during the thermal polymerization
of urea, chitin could act as a doping precursor and modify the terminal group and mi-
crostructure of g-C3N4, which results in the unbalanced electron density in the modified
g-C3N4; additionally, it could lead to the tube structure of the g-C3N4 sheets and a sub-
sequent increase in its surface area (49.1 m2/g) by almost ten times, which is attributed
to the decomposition of chitin, which produced more pore structures during the process
of urea thermal polymerization and thus facilitated the improved adsorption of the re-
actants. Subsequently, the visible-light-induced degradation of a common dye pollutant
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Rhodamine B was studied to examine the catalytic activity, where the modified g-C3N4
showed a considerable improvement of both the photocatalytic activity and reaction rate
when compared to the pristine g-C3N4 [114].
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neously increasing the surface area by in situ constructing chitin-derived carbon/g-C3N4 metal-free
heterojunction. Adapted with permission from ref. [114].

5.2.3. Biomass-Derived Carbon-Based Metal Oxides

Materials formed by the combination of biomass-derived carbon and metal oxides
have the ability to quickly adsorb target pollutants molecules on the surface of the carbon
material, followed by efficient photodegradation in the presence of metal oxides [115].

Wang et al. fabricated a high-performance photocatalyst using the combination of
plane tree fluff (PTF) biomass-derived carbon and TiO2, which possessed trilevel hierar-
chical pores from the organic–inorganic network for organic dye degradation as well as
water splitting for hydrogen production (Figure 20). In comparison to the benchmark
photocatalyst P25, TF3 with a 1:3 proportion of titanium oxo acetate (TOA) and plane tree
fluff (PTF) demonstrated 3.5 and 3.1 times the photocatalytic reactivity for the oxidation
of organic dyes and the production of hydrogen for the splitting of water under UV light,
respectively. With a photocurrent value of 11.3 mA cm2 under visible light irradiation,
superior photoelectrochemical performances were also attained in TF3. TF3 loaded with
5 wt% Mo2C showed the highest hydrogen generation rates of 5.4 (UV) and 0.09 (vis) mmol
g−1 h−1, which were significantly better than the same sample loaded with Pt [116].

Faisal et al. designed a unique ternary material via the combination of semiconducting
metal oxide (ZnO), activated carbon (AC) derived from date seeds, and noble metallic
AuNPs to further explore the possibilities to improve the efficacy of ZnO in the visible light
region. In this work, for the first time, AuNPs and ZnO were developed as smart photo-
catalysts and used to help destroy the drugs gemifloxacin mesylate and methylene blue
(MB) dye with the use of visible light illumination. With 98.0% of the target gemifloxacin
mesylate drug molecule destroyed after 35 min of visible light irradiation and nearly all of
the target MB molecule removed in just 30 min, the Novel AC@Au/ZnO photocatalyst was
shown to be extremely effective [117].
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5.2.4. CdS/Biomass-Derived Carbon Nanocomposites

Cadmium sulfide (CdS) has recently been used to design nanomaterials that are
extensively utilized in photocatalysis. CdS possesses an optimum band gap energy of
2.4 eV, indicating its excellent activation capacity in the visible range [118,119]. However,
since CdS is unstable, it gets converted to toxic Cd2+ ions through photocorrosion, thereby
minimizing its practical usage. Recent research has shown that producing highly stable CdS
composite nanomaterials by depositing CdS on natural-biomass-based carbon materials is
an efficient method for overcoming this limitation.

Chen and colleagues prepared a CdS supported on carbon as a photocatalyst with
a high performance of dye photodegradation using cadmium-enriched Perilla frutescens
biomass. It was observed that the CdS@CP included cubic and hexagonal mixed-phase
CdS nanoparticles. The estimated band gap energy of CdS@CP (2.21 eV) was significantly
lower than that of pure CdS (2.57 eV), indicating that the proposed synthesis of CdS@CP
could be stimulated by visible light more readily and requires less energy. Additionally,
Rhodamine B (RhB) was photodegraded by CdS@CP at a rate of nearly 98% in 90 min,
and its photocatalytic effectiveness was almost 22 times higher than that of pure CdS.
The fact that the photocatalytic activation could continue to be over 75% even after four
cycles of testing and that the structure of CdS remained essentially constant supported the
photostability and reusability of CdS@LAC-800 [120].

Huang et al. developed the activated carbon materials (denoted as LAC–T), which
were derived from the lotus leaf at different temperatures (T = 600, 700 and 800 ◦C). This
resulted in carbonaceous materials with various microstructures and porosity. Through the
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deposition of nano-CdS precursors on LAC-T supports (CdS@LAC-T), these microporous
carbonaceous materials were subsequently developed as excellent platforms for cadmium
sulfide (CdS) composite photocatalysts. It was identified that the CdS@LAC-T nanocompos-
ites showed an improved photocatalytic efficacy toward the degradation of several organic
dyes under visible light as compared to the nano-CdS. The best photocatalytic efficiency
was provided more particularly by CdS@LAC-800, which was made from a carbonaceous
support with the highest BET. Compared to nano-CdS (2.22 eV), the estimated band gap
energy for CdS@LAC-800 was much lower (2.01 eV). Additionally, a significant portion
of the outstanding photocatalytic ability of CdS@LAC-800 was due to the generation and
transportation of photogenerated carriers (h+, e−), as well as catalytically free radicals
(OH• and O2

•−) [121].
As illustrated in Figure 21, Li et al. recycled cadmium from wastewaters using Pistia

stratiotes, first through phytoaccumulation and then through carbonization and a hydrother-
mal reaction that produced a carbon-supported cadmium sulfide photocatalyst (CdS@C).
A blend of cubic and hexagonal CdS with a reduced band gap energy (2.14 eV) and a good
electron hole separation efficiency made up the CdS@C photocatalyst, which suggests that it
has an outstanding photoresponse and catalytic efficiency. The effective photodegradation
of organic contaminants showcased that CdS@C has remarkable stability and photocat-
alytic efficiency. The main active species for the breakdown of organic contaminants during
CdS@C photocatalysis were confirmed to be •OH and O2

•-. After exposure to visible light
for 90 min during the experiment, the extent of degradation of RhB in the presence of
CdS was 32%, while in the presence of the CdS@CP photocatalyst, the rate of degradation
was close to 99%, which was much higher than the single-CdS degradation efficiency.
Recycling studies that tested the efficiency of the CdS@CP catalyst revealed that it could
maintain a photocatalytic efficiency of more than 75% of the initial value even after four
consecutive treatments. These results indicated that the photocatalyst had a considerably
stable photocatalytic performance and reusability [122].
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5.3. Biomass-Derived Carbon Materials in Organic Reactions

Homogeneous catalytic reactions are considered commercially nonviable compared
with heterogeneous catalysis owing to the tedious processes involved in the catalyst recov-
ery. Noble metals have thus been extensively immobilized on solid supports in order to act
as heterogeneous catalysts for a variety of organic processes. Since biomass-derived carbon
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has several advantages over commercially available, highly expensive carbon materials
(graphene, carbon nanotubes, etc.), including low cost, ease of availability, high quality, and
environmental suitability, biomass-derived carbons have been widely investigated recently.
The biomass-derived carbons have been successfully used as heterogeneous catalysts in
various organic transformation reactions such as oxidation reactions, reduction reactions,
and cross-coupling reactions to name a few.

5.3.1. Oxidation and Reduction Reaction

Biomass-derived heteroatom-doped carbon materials and metal-deposited carbons
have been reported to bring about the oxidation of alcohols, reduction of olefins, nitro-
amine reduction, etc. The most advanced research in catalytic science prefers these forms
of catalysts because they can address energy and environmental crises by substituting
metal-based catalysts and have a catalytic performance that is on par with or even better
than that of these metal catalysts.

In this regard, Liu et al. developed a N-doped porous carbon (NKC) made from
readily available, inexpensive radish, which can be used as adaptable, effective bifunctional
catalysts for both the oxidation of styrene (SOR) and the catalytic reduction of 4-nitrophenol
(NRR), as illustrated in Figure 22. Using radish as the carbon source and varied urea dosages
(mass ratio of urea to carbon precursor 1:1:x (x = 1, 2, 3)) and carbonization temperatures
(y = 700, 800, 900), multiple NKC catalysts were developed in this study. The obtained
catalysts were used as attractive bifunctional catalysts for the NRR and SOR. To find the
ideal reaction conditions and better comprehend the catalytic process, a number of reaction
parameters, including reaction temperature, reaction time, catalyst dose, and amount of
reactants, were thoroughly examined. It was observed that the carbon framework with
graphitic N content was crucial for both reactions. The NKC-3-800 is the catalyst that is best
suited for these two reactions out of the other NKC catalysts, providing appealing catalytic
results that are on par with many metal or even precious metal catalysts. In this study, it
was encouraging to observe that the TOF value in the NRR could reach up to 1.67 × 10−4

mmol mg−1 min−1, while the SOR achieved a high SO (styrene oxide) yield of 64.0% with
a styrene conversion of 83.5% and an SO selectivity of 76.7% [123].

A carbon material doped with phosphorus possessing a highly porous structure and
an appreciable surface area (>1600 m2 g−1) was reported by Xiwei Hu and colleagues.
It was made by utilizing a practical and scalable method employing readily available
soluble starch and phosphoric acid. First, a number of catalysts were prepared and tested
for their ability to catalyze the oxidation of a variety of alcohols, including those that
were only nitrogen doped (NC-700) with urea, those that were only phosphorus doped at
various pyrolysis temperatures (PC-500, PC-600, PC-700, and PC-800), and those that were
codoped with nitrogen and phosphorous (NPC-700). During the oxidation of benzyl alcohol
under aerobic conditions, the as-fabricated PC-700 demonstrated excellent efficiency as
a metal-free catalyst with full conversion (>99%) and impressive selectivity (>99%). The
phosphorous-doped sites were shown to be the active sites for the oxidation reaction in
this work based on the associated characterizations and experimental results. Additionally,
the PC-700 exhibits exceptional performance in terms of its recyclability and stability, and
it continues to maintain a high level of reactivity even after eight cycles according to the
recycling test and characterizations of the used catalyst [124].

Qingjie Tang and colleagues created a carbon-supported Ni catalyst generated from
biomass that is an efficient heterogeneous catalyst containing non-noble metal for nitro
compound hydrogenation. In this study, a one-pot pyrolysis method was used to easily
prepare a carbon-material-supported Ni catalyst (Ni/C) using medical absorbent cotton as
the carbon precursor. The as-prepared Ni/C catalyst showed a noticeable catalytic activity
for the hydrogenation of nitro compounds into primary amines even at room temperature.
Additionally, the Ni/C catalyst proved to be extremely stable throughout the recycling
trials without losing its catalytic activity [125].
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As demonstrated in Figure 23, Zhu Yin and colleagues developed a P-doped porous
carbon with inherent N functionality from waste peanut shells using phosphoric acid
(NPC-T/NPC-800) and tested their application as heterogeneous catalysts in the metal-free
aerobic oxidation of alcohols. The study also revealed a synergistic effect of N and P
species on the catalytic efficiency of carbon materials. The amount of graphitic N and
C3PO species on the surface of NPC-T were shown to be correlated with catalytic activity.
NPC-800 achieved 100% conversion and 99.7% selectivity along with a high TOF value
(2.49 × 10–3 mol·g–1·h–1) for the oxidation of benzyl alcohol (BA) to benzaldehyde (BAD).
Even when applied to various alcohols, the NPC-800 showed good catalytic activity [126].

A biowaste chitosan-derived heterogeneous catalyst with cobalt for the hydrogenation
of terminal and internal olefins was reported by Florian Korbinian Scharnagl and his team.
When this non-noble metal composite was used, the hydrogenation of terminal C=C double
bonds was achieved under incredibly moderate and safe conditions (methanol or water,
40 to 60 ◦C). The efficacy of Co@Chitosan-700 was demonstrated through its effective
hydrogenation of the commercially important compounds of diisobutene, fatty acids, and
their triglycerides. Additionally, the substance exhibited magnetic properties, and because
water served as the solvent, the process of product separation and catalyst recycling was
also made simpler [127].
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5.3.2. Coupling Reactions

In recent years, a number of heterogeneous catalytic systems have been developed
and put forth for the coupling reactions with the goal of minimizing the loss of extremely
valuable palladium while simultaneously making the separation of the catalyst from the
reaction mixtures simpler.

Patel et al. produced chemically activated graphitic mesoporous carbon (RAGC)
from rice husk and then immobilized it with palladium nanoparticles (Pd NPs). The
material was ascertained to have a hollow mesoporous structure, high surface areas (1019
m2g−1), and pores with an average size of 3.5 nm. As shown in Figure 24, the hybrid nano-
Pd@RAGC material’s catalytic applications in significant carbon–carbon bond formation
processes, such as Suzuki/Mizoroki–Heck/Sonogashira cross-coupling reactions in the
absence of a ligand under microwave conditions, were investigated. In cross-coupling
reactions, the RAGC gives exceptional stability to Pd NPs. Additionally, as green solvents,
ethanol or water were used in all reactions. The nano-Pd@RAGC catalyst was also easily
separated from the reaction mixture by filtration and was utilized for at least ten consecutive
reactions [128].
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Figure 24. (A) Fabrication of nano-Pd@RAGC (from rice husk biomass-derived chemically activated
mesoporous graphitic carbon) and its applications in cross-coupling reactions; (B) FESEM images
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EDAX image of nano-Pd@RAGC. Adapted with permission from ref. [128].
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The preparation of palladium deposited on the waste-derived pine needle biochar
(PiNe) and the use of cyclopentyl methyl ether (CPME) as a solvent produced from petro-
chemical waste that forms a heterogeneous aqueous azeotrope and boils at 83 ◦C as a
heterocatalytic system was reported by Francesco Ferlin and colleagues (Figure 25). A
Pd/PiNe catalyst was used to study the continuous-flow copper-free Sonogashira reaction,
enabling a multigram-scale production that not only optimized the recovery and reuse
of the catalytic system and reaction media but also reduced the amount of waste created.
With an average throughput of 0.95 mmol per hour, the flow reactor demonstrated steady
efficiency and negligible metal leaching during its 15 days of continuous operation [129].

Catalysts 2023, 13, x FOR PEER REVIEW 29 of 38 
 

 

absence of a ligand under microwave conditions, were investigated. In cross-coupling re-

actions, the RAGC gives exceptional stability to Pd NPs. Additionally, as green solvents, 

ethanol or water were used in all reactions. The nano-Pd@RAGC catalyst was also easily 

separated from the reaction mixture by filtration and was utilized for at least ten consec-

utive reactions [128]. 

 

Figure 24. (A) Fabrication of nano-Pd@RAGC (from rice husk biomass-derived chemically activated 

mesoporous graphitic carbon) and its applications in cross-coupling reactions; (B) FESEM images 

of biomass-derived carbon (a) before KOH activation and (b) after KOH activation, and (c) FESEM-

EDAX image of nano-Pd@RAGC. Adapted with permission from ref. [128]. 

The preparation of palladium deposited on the waste-derived pine needle biochar 

(PiNe) and the use of cyclopentyl methyl ether (CPME) as a solvent produced from pet-

rochemical waste that forms a heterogeneous aqueous azeotrope and boils at 83 °C as a 

heterocatalytic system was reported by Francesco Ferlin and colleagues (Figure 25). A 

Pd/PiNe catalyst was used to study the continuous-flow copper-free Sonogashira reaction, 

enabling a multigram-scale production that not only optimized the recovery and reuse of 

the catalytic system and reaction media but also reduced the amount of waste created. 

With an average throughput of 0.95 mmol per hour, the flow reactor demonstrated steady 

efficiency and negligible metal leaching during its 15 days of continuous operation [129]. 

 

 

Figure 25. Features of the Pd/PiNe-catalyzed continuous-flow Sonogashira reaction [129]. 

Aminosilane-functionalized low-cost mesoporous biomass carbon (BC) from waste 

radish leaves was synthesized for the first time with a specific surface area of 703.99 m2 g−1 

Figure 25. Features of the Pd/PiNe-catalyzed continuous-flow Sonogashira reaction [129].

Aminosilane-functionalized low-cost mesoporous biomass carbon (BC) from waste
radish leaves was synthesized for the first time with a specific surface area of 703.99 m2

g−1 by Kempasiddaiah and colleagues. The heterogeneous catalyst was prepared by first
chemically oxidizing the biomass carbon (BC) with hydrogen peroxide (H2O2) followed
by treatment with N-[3-(trimethoxysilyl)propyl]ethylenediamine (TPEA); then, it was em-
ployed as support in the preparation of the palladium-based (BC-TPEA@Pd) heterogeneous
catalyst. Here, a greener reaction technique was used for Suzuki–Miyaura cross-coupling
reactions employing the basic extract of radish leaves (BERL) under base, ligand, promoter,
and additive-free reaction conditions. The recyclability studies demonstrated that recycling
and reusing the BCTPEA@Pd catalyst is very efficient up to the sixth recycle under opti-
mal circumstances, but somewhat reduced yields were achieved after the seventh recycle.
According to recyclability studies, a BCTPEA@Pd catalyst may be recycled and reused
up to six times under ideal conditions. Unfortunately, yields started to decline after the
seventh recycle. In addition, the BC-TPEA@Pd catalyst was recovered after the reaction
was finished, and an ICP-OES analysis of the reaction mass revealed a less than 0.1 ppm
Pd concentration. This demonstrated that the Pd NPs are securely attached to the catalyst
support, making them less vulnerable to the leaching of Pd NPs from the support surface
during the reaction [130].

5.3.3. Specific Organic Reactions

In a solvent-free Henry reaction carried out at room temperature, Musa acuminata
(banana) peel ash (MAPA) was used as a heterogeneous catalyst for the production of
C-C bonds. Rajkumari et al. studied the Henry reactions of several aromatic and aliphatic
aldehydes with nitroalkanes in this work and achieved a great yield of β-nitroalcohols with
no dehydrated product within 15–30 min. Through a series of reactions, the recyclability of
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the MAPA catalyst was investigated, and even after the tenth cycle, 95% of the product was
generated. A hot filtering method was also used to evaluate the catalyst’s heterogeneity,
and the results showed that none of the active metallic sites of the catalyst leached into the
reaction media [131].

Ojer and colleagues reported, for the first time, acid biomass-derived carbons from
vegetal biomass Hedychium gardnerianum through chemical activation with H3PO4 with
impregnation ratios (g biomass: g H3PO4) of 1:1 and 3:1; i.e., RCB2 and RCB1 possessed a
highly developed porosity obtained through the combination of pyrolysis and surface phos-
phonation. With a BET area of 2197 m2 g−1 and a pore volume of 1.39 cm3g−1, the obtained
carbon material (RCB2) demonstrated highly promising textural properties comprising
both micro- and mesopores. Under aerobic conditions, the material produced was able to
efficiently catalyze the synthesis of quinoxalines from 1,2-diamines and ∝-hydroxy ketones,
as shown in Figure 26. The results indicated that the combination of the acid function
strength and textural properties were the main factors that influenced the conversion and
selectivity towards the reaction. In the synthesis of quinoxaline from o-phenylendiamine
and benzoin, these biomass-derived carbons demonstrated exceptional activity and selec-
tivity, with a 94% conversion and 83% selectivity. Additionally, recycling experiments were
carried out using an RCB2 sample, and the authors observed a diminished conversion
values of around 10% for the second and third cycles with maintained selectivity (first run:
82%; second run: 72%; third run: 74%) [132].
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Figure 26. Acid biomass-derived carbons from Hedychium gardnerianum biomass efficiently catalyze
the synthesis of quinoxalines. Adapted with permission from ref. [132].

Bio oil, which is a condensable liquid obtained during the pyrolysis of the biomass,
not only serves as a feedstock for the biofuel production, but it can also be used for the
synthesis of functional carbon materials [133]. One such work was conducted by Ballotin
and colleagues. They synthesized an amphiphilic carbon catalyst using the reaction of bio
oil with sulfuric acid and used it for the room temperature, solvent free ketalization reaction
of glycerol with 2-propanone to produce solketal (2,2-dimethyl-1,3-dioxolane-4-methanol)
with a high catalytic activity of 93 ± 5%. The reuse reactions suggested that the material
possessed a heterogeneous nature, as the material was stable under the reaction medium
even after four uses [134].

Supriya and coworkers reported that the porous-nanocarbon spheres (PNCSs) can
break down metal and oxidant-free azo compounds. These PNCSs were made from kitchen
waste. The PNCSs produced by the pyrolysis of an onion peel at 1000 ◦C were discovered to
be efficient catalysts for the reductive degradation of azo dyes in the presence of hydrazine



Catalysts 2023, 13, 20 30 of 36

hydrate, as shown in Figure 27. Under the influence of microwave radiation, azo linkages
(-N=N-) were reductively cleaved. UV–visible spectroscopy was used to monitor the
degradation process, which required 10 to 40 min to complete. It is interesting to note that
the reductive degradation of the azo dyes led to the formation of corresponding amines,
which were successfully employed to manufacture new azo compounds [135].
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Figure 27. Porous nanocarbon spheres derived from kitchen waste for metal-free azo dyes degrada-
tion. Adapted with permission from ref. [135].

In a one-pot microwave-induced pyrolysis process using a corn stover as a carbon
precursor, Zhang and colleagues reported the synthesis of activated carbons (ACs) with
P-containing functional groups. These ACs were then tested as the heterogeneous catalyst
for selective monophenol production from cellulose pyrolysis, as shown in Figure 28. It
was found that the porosity and peak intensities of the P-containing functional groups in
the resulting ACs increased along with the phosphoric acid to corn stover ratios. Based
on various mass ratios of phosphoric acid to corn stover, four distinct activated carbons
were produced; these were designated as AC1, AC2, AC3, and AC4. The obtained ACs
had an outstanding catalytic performance in the production of phenol, but when catalytic
performance and phosphoric acid consumption were considered, the acid-to-biomass ratio
of 0.85:1, i.e., AC3, was regarded as the optimal ratio [136].
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6. Conclusions and Future Prospects

Carbon-based catalysts have recently become a research study focus due to their low
cost, simple synthesis method, and ecologically friendly nature. Given that biomass is
a renewable, abundant, and affordable precursor, it is reasonable to presume that mak-
ing carbonaceous compounds directly from biomass would have a potential advantage.
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In addition to choosing the right biomass precursor, the synthesis method plays a sig-
nificant role in producing carbon materials with superior physicochemical qualities. To
develop biomass-derived carbon compounds with the characteristics required for future
catalysis-related applications, it is necessary to put more effort into the development of
greener synthetic methods. Hydrothermal carbonization is a new emerging method of
the synthesis of biomass-derived carbons along with the considerably older technique
of the controlled pyrolysis process. These synthetic techniques will assist in preserving
the inherent, ordered porosity structure of the natural raw biomass, which can contribute
distinguished textural qualities to the finished carbon materials and meet the high demands
of numerous potential technological applications which otherwise are difficult to achieve in
synthetic carbon precursors. There is a need to promote the synthesis of various other struc-
tural carbon materials such as carbon nanotubes, carbon nanospheres, etc. from biomass
feedstock, which is now commonly made from synthetic sources that are comparatively
expensive. The preparation of heterogeneous catalysts from biomass-derived carbons plays
a significant role in the efficiency of the catalysts as it influences the uniform distribution
of deposited metal or the number of the active sites that will be made available during
the reaction. Surface-modified or -functionalized carbonaceous materials have already
been demonstrated in a wide range of advanced catalytic applications. Hence, newer and
simpler methods need to be developed that can consistently modify the surface of biomass-
derived carbon and make them more effective as catalysts. Various examples of catalytic
applications of carbonaceous materials derived from biomass illustrate their potential in
the area of heterogeneous catalysis. The future of a more sustainable and benign-by-design
processing of carbon materials as a potential replacement for current industrial catalytic
systems will benefit from the development of nanomaterials and nanocomposites from
biomass for a variety of applications in catalysis.
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