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Abstract: Nowadays, heterogeneous photocatalysis for water treatment and hydrogen production
are topics gaining interest for scientists and developers from different areas, such as environmental
technology and material science. Most of the efforts and resources are devoted to the development of
new photocatalyst materials, while the modeling and development of reaction systems allowing for
upscaling the process to pilot or industrial scale are scarce. In this work, we present what is known
on the upscaling of heterogeneous photocatalysis to purify water and to produce green H2. The types
of reactors successfully used in water treatment plants are presented as study cases. The challenges
of upscaling the photocatalysis process to produce green H2 are explored from the perspectives of
(a) the adaptation of photoreactors, (b) the competitiveness of the process, and (c) safety. Throughout
the text, Green Chemistry and Engineering Principles are described and discussed on how they are
currently being applied to the heterogeneous photocatalysis process along with the challenges that
are ahead. Lastly, the role of automation and high-throughput methods in the upscaling following
the Green Principles is discussed.

Keywords: automation; green chemistry principles; green engineering principles; heterogeneous
photocatalysis; hydrogen production; upscaling; water treatment

1. Introduction

There are two milestones in heterogeneous photocatalysis [1]. First, the group of
Muller successfully degraded isopropanol using ZnO under UV irradiation in 1969. Later,
in 1972, the group of Fujishima and Honda were able to produce hydrogen via the water
splitting reaction by irradiating TiO2 with UV light. From 1975 to 1985, the first generation
of photocatalysts (most of them TiO2-based) was developed for H2 production via the
water splitting reaction, aiming at studying the semiconductor/solution interface under
UV irradiation and looking for new and more efficient semiconductors. During the second-
generation of photocatalysts (1986–2000), the investigation on modified semiconductors
for a better response under visible light irradiation began [2], which was continued in
the third generation that started in 2001 [3]. The corpus of literature was focused on
modifying the photocatalysts by doping or coupling with other semiconductors to form
heterostructures, including the S- and Z-schemes [4,5]. In environmental engineering,
heterogeneous photocatalysis has been identified as a promising alternative for water
purification and H2 production [6–8]. Upon the irradiation of the semiconductor with
light of proper energy, the electrons at the highest occupied molecular orbital (HOMO, the
valence band) are excited and thus promoted to the lowest unoccupied molecular orbital
(LUMO, the conduction band), resulting in the generation of the charge carriers known as
the hole/electron pair (Equation (1)). Then, the charge carriers migrate to the surface of
the crystalline semiconductor (Figure 1). Once there, the photo-holes (h+) react with the
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adsorbed molecules, producing oxidative species. As shown in Equations (2) and (3), water
molecules are oxidized to produce •OH species that react with organic pollutants resulting
in intermediates and, at the best conditions, reaching the mineralization. In some cases,
photo-holes can directly react with the adsorbed organic molecules (Equation (4)), although
it depends on the nucleophilic nature of the reagents (e.g., the occurrence of aromatic rings
or resonance structures within the molecule). The reactive oxygen species are able not only
to degrade recalcitrant organic pollutants but also kill pathogens, oxidize heavy metals,
and destroy antibiotic resistance genes (Figure 1) [9].

Semiconductor + hv → h+ + e− (1)

h+ + H2O → •OH + H+ (2)

•OH + Organic molecules → Intermediantes → CO2 + H2O (3)

h+ + Organic molecules → Intermediates (4)
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greenhouse gases [14]. Most of the commercially available H2 is produced from different 
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development of cleaner processes to produce green H2, with lower emissions and reduced 
energy inputs by harnessing the renewable sources and thus generating multiple desired 
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production through the water splitting reaction.

The photo-electrons in the conduction band react with the dissolved oxygen adsorbed
on the surface of the photocatalyst, producing the superoxide species (•O2

−), which are
capable to oxidize organic pollutants (Equations (5)–(6)). Additionally, photoelectrons can
directly react with pollutants to generate intermediates (Equation (7)); this process will
depend on the electrophilic nature of the organic molecules (e.g., sulfonic moieties). Under
reductive conditions, the photoelectrons are able to produce H2 through the water splitting
reaction (Equation (8) and Figure 1).

e− + O2 → •O2
− (5)

•O2
− + Organic molecules → Intermediates → CO2 + H2O (6)

e− + Organic molecules → Intermediates (7)

e− + 2H2O → 2H+ + 2OH− → H2 (8)

To achieve this, the potential of the conduction band must be higher than that necessary
for the H+ reduction (i.e., 0 eV vs. NHE at pH = 0), plus an overpotential [10]. This
condition constrains the number of semiconductors that can be used for H2 production,
with nitrides, halides, and calcogenides (e.g., metal sulfides) as the most commonly chosen
materials [3,11]. In the photocatalytic water splitting reaction, the photo-holes in the valence
band must be scavenged by nucleophilic molecules, known as sacrificial agents, in order
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to avoid the re-oxidation of the produced hydrogen. The most commonly used sacrificial
agents are light alcohols and carboxylic acids, sulfates, and other inorganic ions [10].

Overall, the photocatalytic process comprises three fundamental steps: (a) the absorp-
tion of light by the semiconductor producing the charge carriers; (b) the migration of the
charge carriers to the surface of the crystal; and (c) the reaction of the reactive oxygen
species and/or charge carriers with the adsorbed species to degrade organic pollutants and
produce hydrogen (Figure 1). These steps are significantly affected by intrinsic material
conditions, such as crystallinity, particle size, surface area, superficial charge, and opto-
electronic properties, as well as the characteristics of the reaction medium, including pH,
light penetration, composition, etc. Detailed information on these topics can be found in
previous extensive reviews [12,13].

For benchmarking purposes, the International Organization for Standardization (ISO)
has established five types of tests to assess the photocatalytic activity of ceramic materials,
which are briefly described in Table 1.

Table 1. Recommended tests for photocatalytic materials according to the International Organization
for Standardization.

Photocatalytic Test ISO Reference

Anti-bacterial activity ISO 27447:2019
Air purification

Removal of NO ISO 22197-1:2016
Removal of acetaldehyde ISO 22197-2:2019
Removal of toluene ISO 22197-3:2019

Self-cleaning performance ISO 27448:2009
Water purification

Generation of active oxygen species ISO 10676:2010
Degradation of methylene blue ISO 10678:2010
Dissolved oxygen consumption in a

phenol solution ISO 19722:2017

Through these tests, it is possible to compare the activity of photocatalysts under
standardized conditions. However, some parts are severely outdated, since using the
degradation of azo dyes is not completely appropriate to measure the photocatalytic
efficiency, as this type of organic molecules can sensitize the semiconductor, resulting in
an experimental artifact. To date, the list of standard tests does not include photocatalytic
H2 generation, although some documents (ISO 22734) suggest that some related tests are
nearly ready.

Hydrogen is considered as a clean energy source due to its superior energy conversion
compared to natural gas, while its combustion produces zero emissions of greenhouse
gases [14]. Most of the commercially available H2 is produced from different feedstocks,
such as electricity, biomass, and fossil fuels [15,16]. It has made room for the development
of cleaner processes to produce green H2, with lower emissions and reduced energy inputs
by harnessing the renewable sources and thus generating multiple desired outputs [14].
In this sense, producing green H2 through the photocatalytic water splitting reaction is a
cleaner process compared to other sources [17]. Moreover, wastewater can be valorized as
a raw material for hydrogen production. This can be achieved either through the aqueous
reforming process that converts light hydrocarbons and water into CO and H2 at low
temperatures [18,19] or by the heterogeneous photocatalysis process. For the latter, the
dissolved organic matter, especially the light compounds, are used as sacrificial agents that
impede the recombination of the photo-produced charge carriers at the time photo-electrons
reduce the water molecule [20]. Even when the efficiency of the H2 production is low, the
conjunctive action of the oxidation—reduction reactions to purify water while producing
green H2 results in significant valorization of wastewater that is worth further investigation.

Currently, H2 is mainly produced from fossil fuels and the cost is from 2 to 4 times
less than H2 production through the water splitting process [15]. For example, the costs
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of producing hydrogen from conventional fossil fuels varies between 1.34–2.27 USD kg−1,
while using biomass as raw material costs between 1.77 and 2.05 USD kg−1 [21]. Conversely,
the levelized cost of photocatalytic H2 production was estimated as 18.32 USD kg−1 in
2021 (making some important assumptions, such as the remarkedly high performance
of the photocatalysts) [22]. To date, the efficiency of the photocatalytic water splitting
reaction is below 1% (measured as the sun to hydrogen conversion, STH). Remarkable
investigations are advancing to surpass this threshold and achieve more than 5% of STH
conversion and, under this scenario, the cost in the production of green H2 would decrease
to 1.6–3.5 USD kg−1 [23].

Current research has been focused on the synthesis of highly efficient photocatalysts
to remove organic pollutants from water and to produce green H2 using low energy or
renewable light sources, such as sunlight. We consider it is time to migrate from laboratory
tests to upscaled systems, which include reaction systems testing real water and wastewater
and microplant, pilot-plant, or industrial-scaled systems. As shown in Figure 2, through the
last decade, most of the research has been centered on the synthesis of new photocatalysts,
while the development of new photoreactors and the upscaling of the heterogeneous
photocatalysis process have been left out.

Catalysts 2023, 13, x FOR PEER REVIEW 4 of 34 
 

 

H2 at low temperatures [18,19] or by the heterogeneous photocatalysis process. For the 
latter, the dissolved organic matter, especially the light compounds, are used as sacrificial 
agents that impede the recombination of the photo-produced charge carriers at the time 
photo-electrons reduce the water molecule [20]. Even when the efficiency of the H2 
production is low, the conjunctive action of the oxidation‒reduction reactions to purify 
water while producing green H2 results in significant valorization of wastewater that is 
worth further investigation. 

Currently, H2 is mainly produced from fossil fuels and the cost is from 2 to 4 times 
less than H2 production through the water splitting process [15]. For example, the costs of 
producing hydrogen from conventional fossil fuels varies between 1.34–2.27 USD kg−1, 
while using biomass as raw material costs between 1.77 and 2.05 USD kg−1 [21]. 
Conversely, the levelized cost of photocatalytic H2 production was estimated as 18.32 USD 
kg−1 in 2021 (making some important assumptions, such as the remarkedly high 
performance of the photocatalysts) [22]. To date, the efficiency of the photocatalytic water 
splitting reaction is below 1% (measured as the sun to hydrogen conversion, STH). 
Remarkable investigations are advancing to surpass this threshold and achieve more than 
5% of STH conversion and, under this scenario, the cost in the production of green H2 
would decrease to 1.6–3.5 USD kg−1 [23]. 

Current research has been focused on the synthesis of highly efficient photocatalysts 
to remove organic pollutants from water and to produce green H2 using low energy or 
renewable light sources, such as sunlight. We consider it is time to migrate from 
laboratory tests to upscaled systems, which include reaction systems testing real water 
and wastewater and microplant, pilot-plant, or industrial-scaled systems. As shown in 
Figure 2, through the last decade, most of the research has been centered on the synthesis 
of new photocatalysts, while the development of new photoreactors and the upscaling of 
the heterogeneous photocatalysis process have been left out. 

 
Figure 2. Comparison of the number of published studies on the synthesis of new photocatalysts 
(green bars), the development of photoreactors (blue bars), and the upscaling of the heterogeneous 
photocatalysis process (yellow bars). The search of the publication was performed in Scopus using 
the keywords “photocatalysis” + “synthesis”, “photocatalysis” + “reactors”, and “photocatalysis” + 
“reactors” + “scaling”. 

Figure 2. Comparison of the number of published studies on the synthesis of new photocata-
lysts (green bars), the development of photoreactors (blue bars), and the upscaling of the het-
erogeneous photocatalysis process (yellow bars). The search of the publication was performed
in Scopus using the keywords “photocatalysis” + “synthesis”, “photocatalysis” + “reactors”, and
“photocatalysis” + “reactors” + “scaling”.

Indeed, the discovery of new and highly effective photocatalysts through optimum
synthetic routes and using high-throughput methods is a fertile field with new materials
awaiting to be discovered. Nevertheless, the upscaling of photocatalytic reactors from the
laboratory and pilot-scale is essential to globally implement these technologies, especially
in regions with high sunlight irradiation. Mild and eco-friendly conditions must be prior-
itized to obtain sustainable upscaled systems, integrating Green Engineering and Green
Chemistry Principles (GEP and GCP, respectively) to address environmental pollution and
energy demand from a Life Cycle Analysis perspective [24], as these principles can be
applied from the synthesis steps to the applications. Chemicals are unavoidable to achieve
economic and social development, but their nature and mode of production can be tuned
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in accordance to the Green Principles, paving the way for sustainable development and
aiming at improving the productivity of the processes by minimizing their harm [25].

The main objective of this review is to explore the current state of the art on the
upscaling of the heterogeneous photocatalysis process, as well as to identify the integration
of the Green Principles for the discovery and synthesis of new photocatalysts and the
upscaling itself. The currently identified and foreseen challenges in the upscaling of green
heterogeneous photocatalysis process are described and briefly discussed.

2. Integrating the Green Principles to the Heterogeneous Photocatalytic Process

The concept of green chemistry was introduced by the United States Pollution Pre-
vention Act (1990) and the Green Chemistry Principles (GCP) were presented by Paul
Anastas and John Warner in their search for a safer synthesis method (Figure 3). On the
other hand, the Green Engineering Principles (GEP) were developed in 2003 by Anastas
and Zimmerman to complement the 12 GCPs with important concepts on environmental
impact, providing with a life cycle perspective [25,26]. The current scenario of environmen-
tal pollution and the need for eco-friendly actions have promoted the infusion of the Green
Principles in various scientific fields, intending to limit the excessive use of resources and
hazardous chemicals and abolish any potentially harmful by-products or reduce their harm-
fulness. Considering the economic and environmental impacts, the Green Principles are
employed in governmental monetary policies, industrial and technological management,
and educational systems and practices [27–29]. For heterogeneous photocatalysis, the main
objective of the GCPs is the production of eco-friendly photocatalysts that display a wide
range of light absorption and high reaction performance, using soft synthetic processes.
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Heterogeneous photocatalysis to treat water and to produce green H2 has the potential
to be in line with some GCPs. For example, using minimal amounts of photocatalysts
to achieve the complete mineralization of organic matter in water and to continuously
produce green H2 prevents waste rather than treating residues (GCP 1), which are actually
produced in other process, such as adsorbents used in water treatment. Additionally, sev-
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eral photocatalysts are produced using soft processes, generating less hazardous chemical
syntheses (GCP 3). In fact, green chemistry is embedded in the synthesis of new photocat-
alysts [31] to achieve safer materials (GCP 4). The development of mild-conditions and
soft synthesis process are comparatively less energy-consuming and sometimes they use
renewable feedstocks, such as sunlight or microbial biomass [32–34] (GCPs 6 and 7). Lastly,
some photocatalysts are designed to be safely disposed after they are exhausted (GCP 10);
bismuth-based and iron-based materials are good examples of this [35–38]. When we think
about an upscaled photoreactor, the synthesis of the adequate amount of catalyst must be
considered [37]. The use of safer chemicals for the large-scale synthesis of photocatalysts
with harmless by-products is the primary factor to be investigated. [39]. All the GCPs are
interconnected and the basic idea is to adhere to environmentally friendly and energy-
efficient approaches to prevent pollution and ensure a safer implementation of the process.
This may constitute the commercialization of the photocatalytic processes without harming
the environment. Additionally, the GCPs contribute to the circular economy that indicates
the efficient use of resources from the production to recycling, with zero waste due to
100 percent utilization of the resources. Practicing the GCPs may stabilize the circular
economy, balancing the environment with economic and society development [40]. By
joining the GCPs with a circular economy, it is possible to achieve sustainable development
goals [41].

Green Engineering Principles (Figure 4) provide a framework for scientists and en-
gineers to design effective, ecologically intelligent materials, products, and systems in
conjunction with GCPs. So far, the published works on the application of GEPs are very
scarce compared to those focused on the synthesis and reaction processes adopting the
GCPs. We consider that upscaling the heterogeneous photocatalysis process should be
performed under both Green Principles.
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As mentioned above, heterogeneous photocatalysis prevents wastes instead of treating
them (GEP 2). In terms of the degradation of organic pollutants in water, photocataly-
sis looks for the complete mineralization of the organic matter, transforming complex
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molecules into CO2, H2O, and other mineral compounds. By achieving this, more reactants
are converted to the desired products (minerals) and less in undesired products (potentially
toxic intermediates), addressing GEP 2. New photocatalysts are created for using less mate-
rial to achieve the maximum conversion, such as ultrathin films [42,43], quantum dots, and
highly efficient powder catalysts [44]. Additionally, one of the main goals of heterogeneous
photocatalysis is to produce sunlight active materials, thus maximizing the mass, energy,
space, and time efficiency of the whole process (GEP 4). To design photocatalytic reactors,
the maximum utilization of light sources is crucial. Most photocatalytic reactors use electric
light sources [45]; in this concern, electric lamps can be replaced by renewable energy
harvesting modules, such as solar panels. Heterogeneous photocatalysis has evolved for
the last 20 years to minimize energy consumption in separation and purification operations
(GEP 3) by the implementation of (a) immobilized photocatalysts (including supported
materials and thin films), (b) magnetic materials, and (c) photocatalytic membranes, among
other strategies. When the lifetime of photocatalysts is over, some of them can be potential
pollutants, flouting GCPs 1 and 4, as well as GEPs 1, 2, and 11. Hence, new photocatalysts
should designed with an afterlife perspective, using non-hazardous materials to encourage
their reuse when they are exhausted or designing materials able to be reactivated after
several reaction cycles. The latter is especially useful for green H2 production as cost-
effectiveness of the material increases with the number of cycles they can be used without
significant performance decreases. Although some metals are abundant on the Earth’s
crust, others are considered endangered and critical, as shown in Figure 5.
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The availability and recyclability of raw materials must be considered when design-
ing new photocatalysts for any purposes. For example, Pt is considered as a critical raw
material for the European Commission, hence its utilization is restricted despite its out-
standing properties as co-catalyst for green H2 production [46]. The photocatalysts must be
designed and synthesized for being recovered after their utilization. Different processes
such as solvent extraction, precipitation, ion exchange, crystallization, electrowinning, and
electrodeposition are plausible methods for recovery. For example, electrodeposition is a
low-cost, scalable, and straightforward method to recover bismuth-based semiconducting
materials [47].

Developing new photocatalysts or upscaling the photocatalytic process must be per-
formed following a life cycle perspective, which includes the analysis of the environmental
risks carried by the synthesis, the usage, and the disposal of photocatalysts, the effluents
produced after water treatment, the emissions from cradle to grave, and the overall upscal-
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ing. Life Cycle Analysis also covers the economic sustainability of the process, considering
the use of electric energy and the embedded energy costs of consumable chemicals. We
consider that integrating Green Principles to the synthesis of new photocatalysts will make
room for a new generation of photocatalysts where Life Cycle Analysis will provide a wider
picture of the photocatalytic water treatment and green H2 production systems, causing the
process to be more attractive for commercialization. So far, very few works have reported
the implementation of Green Principles and Life Cycle Analysis in the development of
the green photocatalysis process to shed light on the current bottlenecks to implement
these approaches. Therefore, further discussion must be focused on the attempts to upscale
heterogeneous photocatalysis from a perspective that includes the Green Principles and
Life Cycle Analysis.

3. Upscaling Heterogeneous Photocatalysis for Water Purification and Green H2 Production

Significant efforts have been undertaken for upscaling the heterogeneous photocataly-
sis process. The first requirement to achieve this goal is the availability of highly efficient,
cost-effective, and stable photocatalysts. In this regard, a plethora of photocatalysts have
been tested for the degradation of organic pollutants in water and for green H2 produc-
tion since the late 1990s. Metal oxides, such as TiO2, CeO2, WO3, and bismuth-based
oxides, are the most used materials (Table 2). TiO2 is the most popular material in hetero-
geneous photocatalysis, as it is cheap, innocuous, stable, and highly efficient. However,
it is photo-excited under UV light illumination (λ < 380 nm), which limits its use in solar
plants. Different strategies have been implemented to increase the photocatalytic perfor-
mance of TiO2 under visible light irradiation, including doping with non-metal atoms
and coupling with low bandgap semiconductors [48]. Doping semiconductors results in
the formation of inter-band states, reducing the bandgap energy and thus the activation
energy. However, it also increases the recombination rate of the charge carriers, which can
be managed by the decoration of the semiconductor surface with nanoparticles of noble
metals (e.g., Au, Pt, or Pd) [49]. For semiconductor—semiconductor junctions, type-II
heterostructures are sought to boost the separation of the charge carriers. In the case of
TiO2 type-II heterostructures with low-bandgap semiconductors, such as WO3, CdS, CeO2,
bismuth-based, and iron-based oxides are the most reported [50]. Through the aforemen-
tioned modifications, different TiO2-based materials are currently used in sunlight-driven
photocatalysis systems, displaying outstanding results [51]. In the case of WO3, CeO2, and
bismuth-based semiconductors, these materials have lower bandgap values hence they
are photoactive under visible light irradiation. However, the recombination of the charge
carriers is considerably higher than that of TiO2, making necessary the modification of these
materials. The insertion of inter-band orbitals by doping with non-metal and transition
metal atoms is widely used to achieve this. Additionally, the synthesis of secondary and
ternary heterostructures to transport the charge carriers from one semiconductor to another
is a common way to foster the separation of charge carriers, resulting in highly efficient S-
and Z-schemes. Such strategies are detailed reviewed elsewhere [52–54]. Different prop-
erties of the metallic oxides should be considered when they are used as photocatalysts.
For example, the particle size of WO3 is normally obtained in ranges near its Bohr radius,
which results in quantum confinement effects, such as a blue shift in the bandgap [55]. For
tungsten- and bismuth-based materials, photocatalysis under UV light irradiation should
be avoided, as these are highly reducible ions that are converted to their metallic state after
few reaction cycles.
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Table 2. Selected examples of photocatalyst materials commonly synthesized for water treatment and green hydrogen production.

Water Treatment

Photocatalyst Model Molecule Light Source Reaction Time Outcomes Reference

TiO2

TiO2 Degussa P-25
Acridine orange and ethidium

bromide Solar light - At pH = 10, it achieved the highest
degradation rate [56]

Organic matter in petroleum
wastewater 3 h At pH = 6.8, the reduction in chemical

oxygen demand was of 76% [57]

Sol-gel TiO2 Rhodamine B Visible light 3.5 h 60% of degradation rate [58]
TiO2/perlite Furfural UV light 2 h 99.6% of degradation rate [59]
TiO2/cork Congo red UV light 2 h 85% of degradation rate [60]

TiO2/expanded polystyrene Drimaren red, indigo carmine,
and methylene blue Solar light 4 h Almost 100% of degradation rate [61]

TiO2/low density polyethylene Methylene blue UV light
4 h

35% of degradation rate [62]Solar light 30% of degradation rate
TiO2/LECA Ammonia Solar light 72 h 96.5% of degradation rate [63]

Nano flower-like rutile TiO2 Methylene blue Solar light 3 h 99% of degradation rate [64]

Multi-walled carbon nanotube/TiO2 2,4-dichlorophenol UV light
2 h

93% of degradation rate [65]Solar light 87% of degradation rate
Bi-doped TiO2 nanotubes Rhodamine B Solar light 4 h 100% of degradation rate [66]

N-doped TiO2 nanotubes sintered at 350 ◦C Methyl orange Visible light 4 h 96.3% of degradation rate [67]
B,N-codoped TiO2 supported on pearlstone Diesel oil Visible light 9 h 48% of degradation rate [68]

Fe,N-codoped TiO2/fly ash cenospheres Rhodamine B Visible light 4 h 89% of degradation rate [69]

C,N-codoped TiO2
Rhodamine B Visible light 1 h 99% of degradation rate [70]
Chlorpyrifos 2.5 h 84% of degradation rate [71]

TiO2 S-triazine herbicides Visible light 3 h 65% of degradation rate [72]
N-doped TiO2 Crystal violet dye UV light 3 h ~100% of degradation rate [73]
Ag-TiO2/cork Rhodamine B Solar light 4 h 60% of degradation rate [74]

Fe3O4-TiO2

Rhodamine B
Visible light 1 h

100% of degradation rate
[75]Methylene blue 75% of degradation rate

Congo red 81% of degradation rate
Bi-doped TiO2 Methyl orange UV-visible light 2 h 94% of degradation rate [76]

TbxOy-TiO2 Phenol Visible light 3 h At pH = 4, 100% was degraded [77]

Graphene oxide based TiO2
2-chlorophenol Solar light 4 h 80% of degradation rate [78]

Bisphenol A Visible light 3 h 67.6% of degradation rate [79]
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Table 2. Cont.

Water Treatment

Photocatalyst Model Molecule Light Source Reaction Time Outcomes Reference

ZnO

ZnO
RR141 azo dye UV light 4 h 95% of degradation rate [80]

Ofloxacin
UV light 5 h 100% of degradation rate [81]

Solar light 3.5 h 82% of degradation rate
[82]Ag-ZnO Ofloxacin Solar light 3.5 h 98% of degradation rate

Ag3PO4/ZnO nanowires Ofloxacin UV light 0.5 h 89% of degradation rate [83]
MnFe2O4-ZnO Congo red Visible light 3.5 h 54% of degradation rate [84]
ZnO@g-C3N4 Sulfamethoxazole UV light 0.5 h 60% of degradation rate [85]

ZnO-SnO2 Methylene blue UV light 1 h 95% of degradation rate [86]
ZnO/C3+-CeO2 Methylene blue Visible light 6 h 97% of degradation rate [87]
ZnO-Graphene Methyl orange UV light 4 h 96% of degradation rate [88]

ZnO/PANI Methylene blue UV light 3 h 99% of degradation rate [89]

CeO2

CeO2-CuO Methylene violet Visible light 1.5 h 93% of degradation rate [90]
CeO2/g-C3N4 Sulfamethoxazole Visible light 1 h 99% of degradation rate [91]

CeO2/TiO2 Tetracycline Visible light 1.3 h 100% of degradation rate [92]
Ag2O/CeO2 Enrofloxacin Visible light 2 h 87% of degradation rate [93]

Ag/CeO2 Rose bengal dye Visible light 3 h 96% of degradation rate [94]
Pt/CeO2/ZnO Phenol Visible light 1 h 64% of degradation rate [95]

Co/CeO2 Methylene blue Visible light 6 h 96% of degradation rate [96]
Cr/CeO2 Methylene blue UV light 1.6 h 56% of degradation rate [97]
Fe/CeO2 Methylene blue Visible light 3 h 97% of degradation rate [98]
Zr/CeO2 Methylene blue Visible light 2.5 h 75% of degradation rate [99]

WO3

ZnS-WO3-CoFe2O4 Methylene blue Visible light 3 h 98% of degradation rate [100]
AgBr/WO3 Rhodamine B Visible light 2 h 100% of degradation rate [101]

WO3/Bi2WO6 Salicylic acid Visible light 6 h 75% of degradation rate [102]

BiVO4

BiVO4
Oxytetracycline

Visible light 2 h 52% of degradation rate [103]
BiVO4/TiO2/RGO Visible light 2 h 68% of degradation rate [104]

AgI/BiVO4 Visible light 1 h 80% of degradation rate [105]
Co-Pd/BiVO4 Phenol Visible light 3 h 90% of degradation rate [106]

BiVO4/P-doped C3N4 Tetracycline Visible light 1 h 97% of degradation rate [107]
RGO-TiO2/BiVO4 Methylene blue Visible light 2 h 100% of degradation rate [108]

BiVO4/Bi2S3/MoS2

Rhodamine B
Solar light 5 h

97% of degradation rate
[109]Methylene blue 93% of degradation rate

Malachite green 94% of degradation rate
Bi2S3/BiVO4 Oxytetracycline Visible light 16 h 67% of degradation rate [110]

Ag/Ag2S/BiVO4 Visible light 2.5 h 100% of degradation rate [111]
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Table 2. Cont.

Water Treatment

Photocatalyst Model Molecule Light Source Reaction Time Outcomes Reference

Green hydrogen production through the water splitting reaction

Photocatalyst Sacrificial agent Light source Reaction time Outcomes Reference

TiO2 Mesoporous N-TiO2 calcined at 250 ◦C Methanol (25% v/v) Visible light 5 h 31.5 µmol h−1 g−1 [112]
Core shelled N-TiO2−x Methanol (20% v/v) Sunlight 3.5 h 15 mmol h−1 g−1 [113]

Pt/N-TiO2 Formic acid (10−3 mol L−1) Visible light 6.5 h 50.46 µmol h−1 g−1 [114]
Ag/TiO2 Ethanol UV and visible light 6 h 1.34 µmol h−1 cm−2 [115]

Ag/Ce-TiO2 Ethanol (10% v/v) UV and visible light 6 h 1.47 mmol h−1 cm−2 [116]
Fe,Ni-doped TiO2 Ethanol (95% v/v) UV and visible light 4 h 24.3 mmol h−1 g−1 [117]

Fe-doped and Cr-doped TiO2 thin films - Visible light 6 h 15.5 µmol h−1 cm−2 [118]
Co-doped TiO2 Glycerol (5% v/v) UV and solar light 10 h 11,021 µmol h−1 g−1 [119]
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Photocatalytic reactors have been developed and tested for many years, using several
configurations and materials. Different optimization strategies have been used to increase
the efficiency of these systems at higher scales. Reactor configuration/geometry is a
crucial factor to be considered when upscaling at microplant, pilot plant, or industrial
levels [120–122]. Additionally, optimizing the operational parameters of the reactor can
be performed using the desirability function method, which helps to achieve the efficient
target response proportional to the efficiency of the upscaled system [123].

In laboratory and higher scale reaction systems, the photocatalyst is present either
suspended, supported on inert particles, or as thin films; for the latter, the photocatalyst can
be supported on glass, quartz, ceramics, or metallic substrates [124]. Glass is regularly used
as substrate for thin films, while metallic substrates, such as stainless steel, are preferred
for full-scale processes as they can cope with high mechanical stress and are inert to the
reactive species produced upon the irradiation of the semiconductor [124]. On the other
hand, plastic materials, such as polythene, poly acrylate, or PVC tubes are also used as
substrates of thin films as they are flexible and cheap [123,125]. However, polymers can
be etched by the reactive oxygen species, releasing the catalyst to the aqueous phase. This
drawback can be addressed by coating the polymeric substrate with an inert layer, such as
SiO2 [126]. Supporting the photocatalyst facilitates the recovery of the material to further
reaction cycles, in the case of batch systems, or allows for a continuous process in H2
evolution. Removing the unitary operation to recover the catalyst leads to a more efficient
use of energy, which is in line with GEP 3. However, when the photocatalyst is supported,
a considerable fraction of the surface area is lost due to the agglomeration of the particles
on the support, resulting in a drop of the reaction efficiency. The synthesis of photocatalytic
thin films requires the deliberately production of material in excess, which is a flaw in
accordance with GEP 8. Recent research has focused on the development of ultrathin films
supported on different substrates, aiming at increasing the efficiency in material usage to
achieve high performances in the removal of organic pollutants from water and the water
splitting using less material [42,127]. Even when the immobilization of the photocatalyst
can provide advantages, slurry reactors are preferred in research laboratories and mild-scale
plants [128] for practical and cost-effective reasons. According to the perspective study of
Toe et al. [129], a photocatalytic slurry system is nearly 12% more cost-effective compared
to a panel photoreactor to produce green H2 under the case scenario of producing 10 kg H2
per day. In addition, slurry photoreactors provide better light penetration and scattering,
superior mass transference, and easier installation and maintenance compared to photore-
actors where the catalyst is deposited as thin films [128,129]. Conversely, using an excess
of the powder photocatalyst leads to the decrease in the reaction performance because of
over light scattering, causing a reduction in the quantum efficiency [130], light screening
effects, and increased costs associated with the separation of the solid material. The latter
is a crucial step in water treatment systems, as the remaining particles of the photocatalyst
impact the quality of the effluent, especially when the semiconductor is made up by toxic
elements, such as Cd, Pb, or some halides. The catalyst recovery can be performed using
membranes that act as filters for the further retrieval of the solid. On the other hand, the
photocatalyst can be supported on the membranes, resulting in reactive photocatalytic fil-
ters for the degradation of contaminants. In this scheme, the filtration cake formed through
the process is simultaneously degraded with the dissolved contaminants [64,131]. The
utilization of photocatalytic membranes and thin films synthesized by different chemical
methods (e.g., dip coating, chemical vapor deposition, pulsed laser deposition, and ultra-
sound process) are mostly preferred over slurry photoreactors at microplant or industrial
scales [128–130]. However, they are yet to be commercially established due to the difficulty
of immobilizing the nanomaterials over large surfaces [132]. For green H2 production, the
recovery of the catalyst is not necessary as the photocatalytic system is kept functioning
as much as possible while the main gaseous products are recovered at the upper part of
the reactor. Contrary to the definition, photocatalysts normally deteriorate as they are
reused due to (a) poisoning with dissolved minerals, (b) photo-corrosion, and (c) solvation.
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Hence, powder and immobilized photocatalysts must be highly reusable to be considered
as cost-effective materials in heterogeneous photocatalysis. According to Uekert et al. [133],
a lifetime of at least one year is essential for a photocatalyst to be considered for practical
application at higher scale.

So far, different reactors have been tested for upscaling purposes. The parabolic
trough concentrator (PTC) was the first reactor for sunlight-driven photocatalytic water
treatment [134]. Even though it has the advantages of harvesting sunlight and high mass
transfer, the heating in the system is a disadvantage that may diminish the process efficiency,
given that the adsorption of organic molecules on the catalyst decreases as the temperature
rises. Additionally, their apertures collect only the direct incident rays, which may question
the practicality of the PTCs in various climatic conditions [134]. The implementation of sun
tracking systems increases the performance of the photocatalytic process, raising the prices
of the whole system. Later, non-concentrating collectors (NCC), without the necessity of
tracking systems, were introduced [128]. Flat plate collectors are typically used in NCCs,
on which the catalyst is supported, and the liquid phase reaction mixture is directly in
contact with the support before it reaches the catalyst. The NCCs are cost-effective and
function in all climatic conditions as they use the sunlight beam from all directions and
the tracking system is unnecessary, causing the system to be cost-effective. Compound
parabolic concentrators (CPCs) are the next generation of photoreactors, combining NCC
and PTC advantages. CPCs are alternatives to the reactors with the tracking system as they
can collect both direct and indirect radiation due to their architecture, being an energy-
saving type depending on the availability of sunlight irradiation [135]. Non-collecting
reactors, such as tubular, shallow ponds, and falling film reactors have been utilized for
photocatalytic water treatment [128,134,136]. Reactors using lamps as light sources have
also been tested, with annular reactors as an example, and systems with lamps around
the reactor chamber instead of inside [134]. So far, these systems are limited to pilot and
demonstration-scale plants [128]. Overall, the upscaling process has been a challenge
compared to the development of new photocatalysts (see Figure 2). This trend of being
in the comfort zone of laboratory-scale synthesis and applications must be changed to
boost the application of material science and thus develop the technology for upscaling
photoreactors looking for the best conditions and further commercialization.

Selected Upscaling Case Studies

Upscaled photocatalytic systems have been tested mostly for water treatment world-
wide. The distribution of this kind of treatment plants mainly depends on the ambient
conditions, with sunlight irradiation being the most important parameter. Many of the
upscaled systems are in the sunbelt region, in locations such as Tabernas in Spain, Arica
in Chile, and Doha in Qatar. Some other sites, such as the Sonora and Atacama deserts,
Sub-Saharan Africa, and West Australia reportedly have higher photovoltaic power po-
tential and global horizontal sunlight irradiation (Figure 6), with a great potential for
testing photocatalytic plants. Upscaled photocatalytic reactors located in high sunlight
irradiation regions are greatly effective, although the economic and design parameters vary
considering the inter-day and seasonal oscillations of sunlight irradiation [137].

In the National Renewable Energy Laboratory (Albuquerque, USA), six aligned PTCs
were tested. The devices were modified with a UV-light transparent pipe and the reactors
were irradiated with sunlight concentrated 50 times. The light reached the 450 m2 parabolic
collector using a movable collector aperture perpendicular to the incident sunlight and the
reflected rays were concentrated to an absorber tube aligned to the parabolic concentrator.
Using this device, it was demonstrated that 1,2,3,4-tetrachloro-p-dibenzodioxin can be
photocatalytically degraded using the full solar spectrum, compared to that observed
when the 450 nm cutoff filter was adapted. This was the first attempt toward an upscaled
photocatalytic system and the first known outdoor plant [138]. Other PTCs were reportedly
installed at the Lawrence Livermore National Laboratory (Livermore, CA, USA) to treat
groundwater contaminated with trichloroethylene, using a TiO2-based solar plant [139]. In
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this 158 m2 parabolic concentrator, 570 L of groundwater were irradiated with an effective
sunlight concentration ratio of approximately 20, achieving a degradation yield of 90% in
single pass experiments at neutral pH. The reaction efficiency increased to 100% under
acidic conditions (pH = 5.6). The optimal concentration of TiO2 in the slurry reactor
was 1 mg L−1, while increasing the flow rate marginally improved the degradation of
trichloroethylene.
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In the Plataforma Solar de Almería, Spain, some PTCs were built to detoxify water. The
consortium of six parabolic modules was designed to treat up to 419 L of water, at flow
rates from 250 to 3500 L h−1, which has been the first engineering-scale solar photochemical
facility in Europe for such a purpose [140]. Most recently, a Non-Concentrating Collector
(NCC), consisting of a rectangular staircase vessel with 21 steps, covered by a Pyrex
glass screen to avoid evaporation, was also tested to remove 4-chlorophenol from water
(Figure 7). Commercially available TiO2 was coated on non-woven paper using SiO2
as a binder agent and the surface-modified sheets were deposited on the steps of the
photoreactor [141]. Different experiments were performed to treat a maximum volume
of 35 L of wastewater effluent. The complete degradation of the target molecules was
achieved upon 5 h of sunlight irradiation at a flow rate in the range from 1 to 7.5 L min−1,
although the mineralization yield was below 100%. Still, the conversion achieved using
the non-concentrating collector was slightly higher than that attained with a compound
parabolic collector. Moreover, the detoxification of water containing the Congo red and
indigo carmine dyes was reported in terms of the degradation of the molecules and their
mineralization. This was one of the first reaction schemes demonstrating that supported
photocatalysts can efficiently remove organic pollutants in water, avoiding the unitary
operation of separating the solid from the liquid phase.
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In recent years, different efforts to harness the abundant sunlight irradiation in Spain
have been performed. For example, a flow-through reactor using stainless steel wires to
support nanosized ZnO was tested at the Instituto Nacional del Carbón to remove methylene
blue (10 mg L−1) from water using UV irradiation [142]. In laboratory scale experiments,
a flow of 20 mL h−1 were passed through the photocatalytic mesh as the UV light source
(300–400 nm, 10 mW cm−2) was 26.6 cm above. From 50 to 60% of the methylene blue
was degraded after 3 h of irradiation, depending on the amount of ZnO deposited. On
the other hand, the mineralization was modest, from 20 to 30% after 17 h of irradiation.
Some release of ZnO from the stainless-steel mesh was observed, necessitating an increase
in the adherence of the semiconductor to the support to avoid posing risks on the aquatic
organisms receiving the effluents when this system is scaled.

The SOWARLA demonstration plant at the German Aerospace Center is planned to
be capable of purifying water polluted with rocket fuels (some of them containing cyanide,
nitrite, and hydrazine derivatives) using a new configured solar reactor, with a cost five
times lower than a conventional UV-light harvesting reactor (Figure 8) [143–145].
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A prominent example of an industrial scale photocatalysis plant to treat water using
compound parabolic concentrator is SOLARDETOX, which was developed by the European
Industrial Solar Consortium. With a parabolic mirror and a series of Pyrex tubes, the plant
collects irradiation over 100–150 m2 to treat large volumes of water using TiO2 to remove
dichloroacetic acid and cyanide [139,146]. Unfortunately, this technology has not been used
to treat real wastewater streams yet.

In the United States of America, a pilot-scale photocatalytic membrane reactor (PMR)
was used to remove 32 endocrine disrupting compounds at ng L−1 levels in water from
the Colorado River. This patented configuration uses UV/TiO2 photocatalysis, followed
by filtration through a ceramic microfiltration membrane to recover and recycle the pho-
tocatalyst [147]. In this reactor, 50 mg L−1 of the photocatalyst was exposed to UV light
(λ = 185 and 254 nm) from a set of 32 lamps through very short timespans (below 30 s), at a
flowrate of 24 L min−1. Steroid hormones were completely removed from water, along with
most of the tested pharmaceuticals, including diclofenac, sulfamethoxazole, and fluoxetine,
while flame retardants, especially perfluorooctanesulfonic acid, remained in the water.

The PMR technology has also been used in the Planta Solar de Almería, which was
adapted to a compound parabolic concentrator using a TiO2 P25 suspension (0.2 g L−1) to
remove lincomycin (from 10 to 50 µmol L−1) in 40 L of water at a flow rate of 10 mL s−1 and
displaying promising results. The system can be used either as a batch or continuous reactor,
finding the complete degradation and high mineralization of the antibiotic regardless of
its initial concentration [148]. The use of membranes in the system significantly reduced
the presence of degradation byproducts and photocatalyst in the effluent, resulting in a
safer process.

In Japan, a Rotating Advanced Oxidation contactor (RAOC) using TiO2 supported on
zeolite particles was used to remove sulfonamide pharmaceuticals from water (Figure 9). A
zeolite/TiO2 composite sheet was attached to a rotating wheel and researchers were able to
remove up to 96% of sulfamonomethoxine after 180 min under UV-light irradiation [149,150].
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A reactor functioning with solar batteries and a Bi2O3/TiO2 thin film as photocatalyst
was used to purify 40 L of wastewater from aquaculture effluents in China. The photocata-
lyst was able to degrade organic nitrogen compounds from water using sunlight irradiation
(from 55 to 70 mW cm−2) and, during the night, UV light lamps (λ = 254 nm) were activated
using batteries. After 24 h of water recirculation, the organic nitrogen compounds were re-
moved, while the content of NH4

+ and NO3
− decreased by 30% and 50%, respectively [151].

In the same line, a pilot-scale Thin-Film Fixed-Bed Reactor (TFFBR) was tested to inactivate
the aquaculture pathogen Aeromonas hydrophila under sunlight irradiation, using a sloping
flat plate coated with TiO2 as the photocatalyst. In this homemade system, 200 mL of water
was in contact with a thin film of the photocatalyst (20.5 g m−2) and exposed to sunlight
for 2.5 min. At a flowrate of 4.8 L h−1, the inactivation of 1.3 log units of bacterial cells
was achieved in a single pass of spring water through the reactive bed. The bacterial cells
displayed injuries due to the attack of the reactive oxygen species [152].

In the African continent, the effluent from a textile factory in Menzel Temime (Tunisia)
was treated in a solar pilot plant with two Flow Film Reactors (FFR), with an illumi-
nated surface area of 50 m2 and a photonic efficiency of 15%. This reactor was designed
for treating up to 1 m3 h−1 of effluent and removing recalcitrant contaminants, such as
dichloroacetic acid. This scheme was chosen considering the low investment costs and
energy consumption requirements [153]. According to the authors, high removal of chemi-
cal oxygen demand and total organic carbon was achieved after few reaction cycles under
sunlight irradiation. The optimized scheme was planned to remove an average of 405 mg
of carbon h−1 m2. Unfortunately, no reports on the functioning of this plant were found
beyond 2004.

The Ramadan City in Egypt, which has many industries and obtains sunlight almost
all over the year, has been recently equipped with semi-industrial constant flow photo-
voltaic reactors that utilize the direct sunlight irradiation to purify treated wastewater.
Nanocomposites comprised by SiO2/TiO2 (2:1) supported on polymeric membranes were
used as photocatalysts to degrade methyl orange and phenol (10 mg L−1, each one) as
model molecules. Degradation rates of 54% and 41% were obtained for phenol and methyl
orange, respectively, after 3 h under autumn sunlight irradiation (868 W m−2) [154]. Ac-
cording to the authors, using this system lowers the operation costs of treating 0.5 m3 d−1

of water to a third of the cost of a small photoreactor using electricity. On the other hand,
in Alexandria, Egypt, where the sewage water is deposited mainly through public sewers,
a homemade CPC was proposed to treat industrial effluents. In this system, TiO2 was
deposited on recycled polymeric substrates (cotton, polyamide, and PET, among others)
and tested to remove acid yellow 28 and methylene blue (5 mg L−1 each one) as well as
chemical oxygen demand. In this scaled system, 3 L of wastewater effluent were pumped at
a flow rate of 1.2 L min−1 and sunlight was irradiated (2.74 mW cm−2) all day long, starting
at 9:00 AM. The complete degradation of both dyes was achieved after 8 h of irradiation
using TiO2 supported on PET; however, the performance of the photocatalyst dropped
with the reuse, most likely due to the affectation of the polymeric substrate [155].

Regarding the production of green H2, Schroder et al. [156] made the first attempt
at a large-scale with water splitting photoreactors using natural sunlight, graphitic car-
bon nitride as photocatalyst, and triethanolamine as the sacrificial agent. The authors
reported producing around 18 L of green H2 in one month at a hydrogen evolution re-
action rate of 0.22 L kW h−1 and a maximum solar-to-hydrogen conversion of 0.12%. In
another study, Maldonado et al. [157] proposed a pilot-scale solar photoreactor with 2.6%
conversion efficiency using Cu/TiO2 as the photocatalyst. The system was tested using
different aqueous matrices, such as water/methanol, water/glycerol, and wastewater
effluents. Glycerol was the best sacrificial agent, while the poorest yields were obtained
using wastewater, due to the complexity of the matrix and the hydrogen—oxygen back
reaction [157]. Villa et al. [158] compared the performance of Pt/N-TiO2 and Pt/CdS-ZnS
in a pilot-scale plant (25 L of capacity) for water splitting, using formic acid and organic
matter in municipal wastewater as sacrificial agents. Moderate conversions were obtained
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using wastewater, highlighting the possibility of valorization of this waste as raw material
to produce green hydrogen. After 5 h of sunlight irradiation, around 3000 µmol L−1 of H2
was produced using 0.2 g L−1 of platinized N-TiO2 and formic acid as the sacrificial agent.
The yield dropped to 220 µmol L−1 when the photocatalytic process was performed using
wastewater and 5 g of Pt/(CdS-ZnS) as the catalyst. Overall, the conversion efficiencies
were 2.5% for Pt/N-TiO2 and 1.6% using the Pt/(CdS-ZnS) material. Almomani et al. [159]
tested a solar pilot plant using carbon-doped TiO2 nanotubes as the photocatalyst under
sunlight irradiation. Using 50 mg of the photocatalyst, the average rate of hydrogen pro-
duction was 38.66 mmol h−1 g−1 through 50 h of sunlight irradiation, which is 1.5 times
higher than the maximum rate reported for other TiO2-based photocatalysts at a lower
scale so far. Ren et al. [160] tested a CPC-based photocatalytic reactor for water splitting,
with a volume of 11.4 L, having a maximum hydrogen production of 1.88 L h−1 under
direct solar irradiation.

In the Plataforma Solar de Almería, Arzate-Salgado et al. [161] used the Au/TiO2 photo-
catalyst to simultaneously produce hydrogen and degrade organic pollutants in aqueous
solutions under sunlight irradiation at bench scale (27 L of capacity at a flow rate of
20 L min−1). Using a catalyst loading of 0.2 g L−1, the authors obtained 6.5 mmol H2 L−1

after 5 h of irradiation and a STH conversion efficiency of 1.8%. Even when formic acid
demonstrated to be the most efficient sacrificial agent, dissolved organic matter displayed
a positive effect on the photocatalytic water splitting process.

In 2018, the State Key Laboratory of Multiphase Flow in Power Engineering from
the Xi’an Jiaotong University built a pilot-scale system based on CPC reactors (3.6 m2 in
area and 23 L in volume). A sodium sulfate solution was used as the liquid matrix and
Cd(1−x)ZnxS was the catalyst in the slurry reactor, at a loading of 2.77 g L−1 and a linear
velocity of 1.2 m s−1. The average hydrogen production of 184.3 mL min−1 was achieved
when the average solar radiation was 803.8 W m−2 [162].

Most recently, in 2021, Nishiyama et al. [163] built a 100 m2-scale plant for the pho-
tocatalytic water splitting. It consisted of 1600 reactor units and a gas separation facility,
using SrTiO3:Al as the photocatalyst. The active volume of the system was 2.4 L. According
to the authors, the system reached a STH of 0.76% and was operated during a year under
field conditions with no incidents. Still, the STH conversion rate should be from 5 to 10% to
ensure the systems are economically viable, meaning much work to improve the efficiency
remains ahead.

4. The Foreseen Challenges in Upscaling the Heterogeneous Photocatalysis Process for
Green H2 Production

Most of the reported research covers the topics related to heterogeneous photocatalysis
for water treatment, while less reports are on the upscaled green H2 production via the
water splitting reaction. In our opinion, this is the result of (a) the lack of effective and
durable photocatalysts for the water splitting reaction; (b) the complex experimental
setups that are hardly scalable; (c) the safety measures necessary to work with H2; (d) the
challenges related to H2 storage; and (e) the difficulties of handling and distributing
H2 from plants to the final consumer. As mentioned above, the photocatalysts used
for water splitting must have a reduction potential in the conduction band higher than
that necessary for the reduction in H+ into H2. A limited number of metallic oxides
meet this condition and, therefore, surface modified oxides are used. For example, TiO2
and WO3 are modified with noble metal nanoparticles to reduce the recombination of
charge carriers and slightly increase the reduction potential of the photo-electrons. This
leads to highly effective photocatalysts [55,164]; however, the decoration with noble metal
nanoparticles increases the costs of the materials and promotes the use of hazardous
reagents, such as ethylenediamine. Bismuth-based semiconductors are promising materials
for H2 production due to their highly reductive conduction band and the low oxidation
potential of the valence band [165,166]; the latter opens the possibility of high conversion
with no addition of sacrificial agent. WO3 and bismuth-based semiconductors are used in
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heterostructures with TiO2 for H2 production under visible light irradiation [167]. However,
both oxides are readily reducible hence lowering their durability as photocatalysts under
reductive conditions. When other calcogenides, such as sulfides or selenides are used,
photocorrosion significantly reduces the durability of the materials, as occurs with CdS and
Bi2S3. The synthesis of semiconductor—semiconductor heterostructures, removing oxygen
from the photocatalytic system and decoration with noble metal nanoparticles are strategies
to increase the lifetime of these photocatalysts by inhibiting photocorrosion [168]. Multiple
efforts must be performed to obtain durable photocatalysts for green H2 production using
synthesis processes that meet the Green Principles. The typical laboratory scale setup for
the photocatalytic production of green H2 consists of a tightly sealed glass reactor, the light
source, a continuous stirring system, and the gas purge. Batch configuration is mainly used,
where the reagents and the catalyst are introduced into the reactor after the air is purged.
The efficiencies obtained at this scale do not necessarily apply to the upscaled system.
Incorporating the optimized conditions obtained at lab-scale to the upscaled system is
of high importance. Homogeneity of the reaction medium is an essential factor in the
upscaled systems either using slurry rectors or immobilized catalysts, which is possible
through an efficient stirring system. Palette mixing systems for low-density materials and
flotation to maintain a homogeneous loading of denser solids are options in this concern. In
scaled systems, the light source must cover the whole surface of the reactor and guarantee
the maximum number of photons reaching the bottom of the reactor to avoid poorly
illuminated spots. To accomplish this, high-power lamps can be used, with the consequent
increase in the reaction temperature; in such a case, a circulating cooling system is necessary
to dissipate the heat. Even though immobilization is an efficient solution to reduce the
complexity of the process, the fouling of the immobilized catalysts may be an issue that
further affects the efficiency of the system [169].

Boiling point, ignition temperature and energy, density and permeability for different
materials, high diffusion coefficient in air, and latent heat of combustion cause hydrogen
to be an excellent fuel. To use this product to supply clean energy, it is necessary to
consider the risks of leakage, ignition, and explosion. Hydrogen embrittlement consists
of the exposition of metallic and plastic liners to H2, which may change their mechanical
properties, resulting in cracks and blisters on pressurized vessels and pipelines. Leakage is
hardly detected since hydrogen is colorless, odorless, and tasteless [170]. The leakage of
gaseous H2 in closed spaces can cause asphyxia even at low concentrations, as it replaces the
oxygen, while in both open and close spaces it may cause explosions. An initial explosion
or jet fire can trigger a domino effect with nearby vessels by thermal radiation, resulting
in subsequent fireballs or another jet fire. In the case of liquid H2, the main problem is
the change of pressure necessary to liquefy the gas; the difference in temperature of liquid
H2 and the outside evaporates the released fuel in complete or partial form. When total
vaporization of the fuel occurs, it mixes with air creating a flammable cloud. In contrast, in
partial vaporization, a cryogenic pool is formed on the ground surface, absorbing heat from
both the atmosphere and the ground to create a boiling film while the freezing of the solid
occurs followed by the condensation or freezing of the surrounding air [171]. To avoid
hydrogen embrittlement, extensive research is going on over the materials of the pipes and
tanks for synthesis and storage purposes to improve the reactors and devices.

Leakage of liquid H2 can cause a Boiling Liquid Expanding Vapor Explosion (BLEVE)
as the leak changes the inner pressure of the H2 vessel, thus generating an expansion of
the liquid and vapor phases. This causes the rupture of the vessel at atmospheric pressure
and under temperature above the boiling point of the gas, which immediately turns into an
expansive wave of vapor. An example of a BLEVE event and its potential consequences
occurred in the San Juan Ixhuatepec explosions in Mexico in 1984. The gas plant was
destroyed and over 500 persons were killed, 7000 had injuries, and nearly 60,000 people
were evacuated; 149 houses were completely destroyed [172].

In terms of H2 storage, chemical and physical sorption have been studied as alterna-
tives to store this green fuel. Some materials, such as MOFs and carbon porous materials
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have been studied with promising results. On the other hand, the formation of metallic hy-
drides allows for storage at low temperatures and pressure. The most widely tested metal
hydrides are sodium alanate, lithium imide, and lithium and sodium borohydride [173].
Some of the challenges related to chemical sorption are costs, difficulties handling the
storing material, and the occurrence of unwanted gases during desorption. A significant
challenge is how H2 production and storage can meet the GCPs and GEPs (especially GCP
5 and 12 and GEP 1 and 2). The risks of leakage, ignition, and explosion in storage cylinders
can be reduced through the implementation of different measures, such as (a) improving
the design with materials resistant to embrittlement, and (b) using safety devices, such as
Thermal activated Pressure Relief Devices (TPRD) [174].

5. Automation and Machine Learning as Powerful Tools to Upscale Heterogeneous
Photocatalysis following the Green Principles

Automatization refers to the creation and application of a wide range of technological
approaches to monitor and control the production and delivery of products with lower
human intervention, increasing the precision of the process and also the massive produc-
tion [175]. In the field of heterogeneous photocatalysis, automation is mostly used at the
laboratory scale to (a) accelerate the synthesis and characterization of new photocatalysts
and (b) the in situ or in operando monitoring of the photocatalytic reaction [176,177]. So
far, automation is reported in the literature for the control of valves in green H2 production
devices [178,179], the implementation of Cartesian robots in high-throughput synthesis,
characterization and reaction schemes [180,181], and the generation and implementation of
flexible automation tools working on lab benches to synthesize photocatalysts for green
H2 production under optimal conditions [182] (Figure 10). Until 2020, the use of industrial
robots in materials research laboratories was limited because of the high costs, safety issues,
and the necessity of highly specialized personnel for control. However, this situation has
been reverted with the drop of the costs of highly specialized robots [183].
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Through the automation of the synthesis and reaction processes, data sets are rapidly
generated (data mining) and analyzed to achieve the best possible synthesis and reaction
conditions and further upscale the photocatalytic systems. Automation is seen as one of the
bricks to build scaled photocatalysis plants and it is currently used in the first large-scale
photocatalytic solar H2 production plant for the control of valves and pumps as well as to
monitor the water level in the reactor [163]. On the other hand, high-throughput methods
in conjunction with machine learning boost the discovery of highly active photocatalysts for
solar energy application [184]. Through these approaches, some of the Green Principles can
be addressed in the synthesis and characterization of new or improved photocatalysts. In
this section, the applications of automation, high-through methods, and machine learning
applied to heterogeneous photocatalysis are revised on the basis of their contributions to
upscale the process by complying to as many Green Principles as possible.

5.1. High-Throughput Methods for the Discovery of New Photocatalysts at Laboratory Scale

High-throughput or combinatorial methods have been widely used in chemistry since
the 20th century to create new bioactive molecules from a wide range of precursors [185]. In
the late 1990s, high-throughput methods started to be used to discover new photocatalysts
by obtaining libraries of semiconductors. These libraries were constituted of different
compositions of semiconductors, including heterostructures, for screening studies aimed at
finding the optimal compositions to be used in heterogeneous photocatalysis [186]. Sol-
gel and solvothermal routes have been the most commonly used synthesis methods to
obtain powders in high-throughput schemes, due to their simplicity, low cost, and fine
control of the morphology and architecture of the obtained nanoparticles [187,188]. Several
automated devices are currently available to parallelly synthesize and characterize powder
semiconductors at the laboratory scale [189]. On the other hand, research on the synthesis
of thin films through combinatorial methods has been more prolifically explored in the
last two decades, implementing the automation for the synthesis and characterization of
photocatalysts to produce green H2. For example, Kumari et al. [190] used combinatorial
reactive magnetron cosputtering methods to synthesize three libraries (342 materials each
one) of Fe-V-O thin films. By the variation of the composition and thickness of the films,
the highest efficiency for the solar water splitting was achieved with the FeVO4 phase
and a Fe composition from 54 to 66 at.%, finding no effects from the film thickness. More
recently, the libraries of vanadate-based semiconductors were expanded using other metals,
including Cu, Ag, W, Cr, and Co [191]. Different research groups worldwide have adapted
their devices to parallelly synthesize wide libraries of thin film photocatalysts, in most cases
using robotized procedures to significantly reduce the time consumption of the synthesis
and characterization steps while maximizing the accuracy [192]. High-throughput synthesis
at the inter-laboratory level has been developed to boost collaborative—and remote—work
that adds new information for data mining to rapidly discover new photocatalysts while
fostering the independent corroboration of the information generated in other research
groups. In this regard, Hattrick-Simpers [193] reported high reproducibility across different
laboratories for the synthesis of Zn-Sn-Ti-O thin films via high-throughput methods based
on combinatorial physical vapor deposition (cosputtering and pulsed laser deposition).
High-throughput methods can be also applied for the synthesis of micro-photoreactors,
which have proven to efficiently increase the photocatalytic performance compared to
some thin films, providing advantageous fast retrieval of the catalyst from the aqueous
phase [194–196]. Research groups worldwide have proven the efficiency of continuous
flow and immobilized microfluidic-based photo-reactors to degrade organic pollutants
from water [197,198]. Most of the reported studies use bare or doped TiO2 and ZnO,
with different arrays [199–201]. On the other hand, metal-organic cages are combined
with semiconductors, resulting in visible-light active micro-photoreactors for green H2
production [202]. More recently, Claes et al. [195] reported the synthesis of translucent
packed-bed TiO2 based micro-photoreactors achieving an outstanding performance to
degrade methylene blue as well as energy efficiency and displaying a photocatalytic space-
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time yield (PSTY) of 0.657 m3 day−1 m3 reactor KW−1 under visible-light irradiation; such
results are higher than that reported in previous works [196]. To achieve the upscaling of
the micro-photoreactors, high-throughput methods must be used to accurately synthesize
thousands of reactors in parallel for treating high volumes of water.

The miniaturization of the synthesis process in high-throughput methods promotes
the compliance of GCP 1, by reducing the reagent consumption and the generation of
wastes. Additionally, combinatorial methods look for increasing the atom economy (GCP 2)
by optimizing the proportions of the reagents to achieve the finest composition that results
in the highest photocatalytic performance. One example of this is the synthesis of g-C3N4,
with a bandgap energy of ≈2.7 eV, which can be reduced by promoting the occurrence of
nitrogen vacancies [203]. The synthesis of N-defective g-C3N4 is normally achieved using
NH3 in excess [204]. Through combinatorial methods, the optimal composition of g-C3N4
is obtained in a miniaturized scheme, reducing the production of hazardous residues, thus
achieving the atom economy to obtain the most efficient photocatalytic material that can be
directly used in scaled systems.

Regarding the Green Engineering Principles, using combinational methods for the
synthesis of new or improved photocatalysts prevents contamination over treatment (GEP
2) and maximizes the use of reagents and energy (GEP 4), while a minimal quantity of
materials is synthesized to meet the needs of the tests prior to upscaling, thus avoiding the
production of excess (GEPs 5 and 8). Lastly, using micro-photoreactors for the degradation
of pollutants in water streams observes the complying of GEPs 3 and 4, as the operation is
designed to minimize the use of materials and energy in a purification process.

5.2. The Application of Virtual High-Throughput Methods to Migrate from the Edisonian to the
Theoretical Approach

Combinatorial synthesis and characterizations are used in tandem with computational
screening studies to discover new photocatalysts or allow for more in-depth investigation
of existing materials to find better performances [205]. By this approach, researchers evalu-
ate several key parameters of a library of materials using computational tools to find the
best candidates to perform the photocatalytic process. So far, DFT-based high-throughput
calculations are the most commonly used to propose new photocatalysts based on their
physical, chemical, and optoelectrical properties [206]. The application of large-scale com-
putational screening methods to develop nanometric materials is possible by exploiting the
capabilities of supercomputers and using the existing databases of photocatalysts, therefore
this kind of studies has increased in the last decade [207]. Most of the high-throughput
computational screening studies are aimed at the discovery of new photocatalysts for the
water splitting process [208–211] For example, Zhang et al. [208] selected 205 layered mate-
rials over 50,000 inorganic compounds from the Materials Project Database as precursors to
obtain 2D monolayers for green H2 production. By considering the bandgap value and the
potential of the conduction band (0 eV vs. NHE at pH = 0), the authors reported 36 semi-
conductors that satisfied the conditions for photocatalytic water splitting. The list included
calcogenides, arsenides, and halides (e.g., GeAs2, GeTe, TiPbO, and Mo2SBr2). Moreover,
44 type-II heterojunctions were proposed based on the following criterion: (a) the valence
and conduction band position, (b) the activity for water splitting at a range of pH values,
and (c) the lattice parameters of the two semiconductors. Some examples of the selected het-
erostructures are MoS2/MoSe2, WS2/WSe2, and MoS2/WS2. More recently, Liu et al. [212]
developed a first-principles high-throughput screening across more than 1000 potential
bulk piezo-photocatalytic materials for green hydrogen production, proposing a set of
16 highly promising piezo-photocatalysts based on their optoelectronic properties and band
alignment tunability; this group included BiTeCl, GaN, MgTe, and SeBr, among others.

Using high-throughput computational studies, the synthesis of new photocatalytic
materials is dramatically reduced, which results in zero wastes (GCP 1) and the limited
production of potentially hazardous materials (GCP 3). The development of methods
that predict the ab initio properties of the materials allows to look for safer photocat-
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alysts by using less-toxic solvents, increasing the energy efficiency and preventing the
formation of undesirable by-products, thus addressing GCPs 4–6 and 11. By performing
high-throughput computational screening studies, material researchers migrate from the
Edisoninan approach, characterized by the trial-and-error discovery, toward the systematic
theoretical approach. The latter is in line with some of the Green Engineering Principles, by
developing products (materials), procedures (synthesis and characterization), and systems
(photocatalysis tests) output pulled rather than input pushed (GEP 5). This is because
only the most effective—at least theoretically—photocatalysts are synthesized in the exact
amount required to produce the maximum conversion, preventing wastes (GEPs 2 and 8)
and maximizing mass, energy, and time consumption (GEP 4).

Machine learning, a subgroup of artificial intelligence, extracts the data of the synthesis
and characteristics of photocatalytic materials from the high-throughput schemes to feed a
set of algorithms and build models that ultimately make predictions on the performance
of the photocatalysts. The stages for constructing machine learning models are: (a) data
collection to form a training data set; (b) create and choose mathematical descriptors that
encode the characteristics of the materials; (c) select a proper algorithm to build the model;
and (d) to assess the quality and predictive capacity of the model [213]. Machine learning
represents a paradigm shift in how new photocatalysts are designed, synthesized, and
tested at the laboratory scale [214], which inherently covers several of the Green Principles.
Machine learning finds its finest point when is coupled to automation, as it can be jointly
used to upscale the synthesis of photocatalysts. For example, Tao et al. [215] integrated
machine learning and microfluidics to accelerate the identification and optimization of
the reaction conditions to obtain nanosized photocatalysts. The authors performed 160 ex-
periments in a microfluidics platform, using different synthesis protocols to produce Au
nanoparticles by green routes, while machine learning algorithms found the relationship
between the synthesis conditions and the reactivity of the formed nanoparticles. There are
so many challenges to face in the way ahead, but we consider that the next generation of
photocatalyst will be produced, tested, and upscaled following the Green Principles and
with a great support from computational chemistry.

6. Perspectives

Heterogeneous photocatalysis is a promising process in environmental remediation
and energy generation and there are many unexplored possibilities in this area of research.
Through the years, many attempts have been performed to upscale the photocatalytic
water treatment; nevertheless, very few works have been published showing the settlement
of the research in the production of new photocatalytic materials at higher scale. One
reason is the inadequate funding for applied investigation in most countries; changing this
paradigm is one of the most challenging tasks for the future and can be achieved through
the continuous efforts of upscaling in universities and research centers that foster the
interest of governments and funding associations to provide more resources in this matter.
Sunlight harvesting using heterogeneous photocatalysis can be a reality in countries where
sunlight irradiation is available throughout the year; therefore, some funding programs
promoted by developed countries to implement technological advances in developing
countries can aim at using upscaled photocatalytic systems in impoverished zones. Some
upscaled systems have been successfully tested in developed countries such as Germany,
Spain, and China. It is time that this kind of technology reaches densely populated dry
zones where the necessity for safe water is high; this will enable science and technology to
be applied to address social problems related to water scarcity and green fuel production.

Green Principles must be integrated into the heterogeneous photocatalysis process
from a cradle-to-grave perspective, considering the pollution produced from the photocata-
lyst synthesis, its use through several reaction cycles, and its disposal when their lifetime is
over. The GEPs should be especially considered when scaled systems are proposed and
used either for water treatment or green H2 production. Each year more and more publica-
tions include the term “green”; however, this term should be moderated and adjusted only
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for materials that meet most of the Green Principles and Life Cycle Analysis. Following the
GCPs and GEPs is the way ahead, which seems challenging. New problems arrive when
these principles are applied since new variables are integrated. Indeed, more research and
safety measures are necessary to upscale the water-splitting process. Future investigations
should take this process from the laboratory in industrial plants; the potential revenues
foreseen in the green fuel industry could promote new research in this unexplored field.
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