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Abstract: Agarose-vinyl sulfone (VS) beads have proven to be a good support to immobilize several
enzymes. However, some enzymes are hardly immobilized on it. This is the case of penicillin G
acylase (PGA) from Escherichia coli, which is immobilized very slowly on this support (less than 10%
in 24 h). This enzyme is also not significantly adsorbed in aminated MANAE-agarose beads, an
anionic exchanger. In this study, MANAE-agarose beads were modified with divinyl sulfone (DVS)
to produce MANAE-vinyl sulfone (VS) agarose beads. When PGA was immobilized on this support,
the enzyme was fully immobilized in less than 1.5 h. PGA cannot be released from the support by
incubation at high ionic strength, suggesting that the enzyme was rapidly immobilized in a covalent
fashion. Considering that the amount of reactive VS groups was only marginally increased, the results
indicated some cooperative effect between the anion exchange on the amine groups of the support,
probably as the first step of the process, and the covalent attachment of the previously adsorbed PGA
molecules. The covalent reaction of the previously adsorbed enzyme molecules proceeds much more
efficiently than that of the free enzyme, due to the proximity of the reactive groups of the support
and the enzyme. Finally, the steps of immobilization, incubation, and blocking with different agents
were studied to determine the effects on final activity/stability. The stability of PGA immobilized on
this new catalyst was improved with respect to the VS-agarose prepared at low ionic strength.

Keywords: ion exchanger; vinyl sulfone-activated support; heterofunctional supports; synergy in
enzyme immobilization; covalent enzyme immobilization; penicillin G acylase

1. Introduction

The enzyme penicillin G acylase (PGA) from Escherichia coli is one of the most success-
ful examples of industrial biocatalysis [1–5]. This enzyme has been used for decades in
the production of 6-amino penicillanic acid by hydrolysis of penicillin G, a key step in the
production of semi-synthetic β-lactamic antibiotics [6,7]. There are great efforts to use the
enzyme in the amidation step in the production of these drugs via thermodynamically or
kinetically controlled strategies [8–13]. Moreover, the enzyme has been used in the resolu-
tion of racemic mixtures [14–17] and deprotection steps in synthetic processes [18,19], etc.
Due to this, the interest in the industry for this enzyme is quite high.
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For the industrial use of PGA, an immobilized form is preferred to facilitate its recovery
and reuse [20]. Moreover, although the stability of the enzyme in the hydrolytic conditions is
reasonable even to be utilized in industry, for some other uses
(e.g., for thermodynamically controlled synthesis in the presence of high concentrations
of organic cosolvents), the enzyme stability must be much increased, and its immobi-
lization has shown to be a potent tool in this sense [8,21–26]. Enzymes’ stability can be
increased using a proper immobilization protocol, for different reasons, as recently reviewed
(e.g., prevention of intramolecular interactions, multipoint covalent attachment, generation
of hydrophilic environments, etc.) [27]. In this context, PGA has been used as one of the ini-
tial model enzymes in many enzyme immobilization–stabilization strategies: glyoxyl, epox-
ide, CLEAs, etc., and in the coupling of genetic tools for immobilization, trapping of soft
biocatalysts, etc. [20,25,28–46].

Supports activated by reaction with divinyl sulfone (DVS) have been described a long
time ago as a very useful matrix to immobilize biomacromolecules [47–54]. Recently, they
proved to be able to immobilize the enzymes via an intense multipoint covalent attachment
if the immobilization protocol was properly designed [55–58]. Vinyl sulfone (VS) supports
can react with primary amino, thiol, imidazole, phenol, and thiol moieties of enzymes, but
the spacer arm is relatively long (5 atoms plus the arm in the support), and this means that
each covalent attachment introduces a lower rigidity than using other supports, such as
glyoxyl-activated supports [56]. The immobilization protocol using VS-activated supports
must include three different steps, which must be independently studied. The first step is
the enzyme immobilization, which determines the area of the enzyme that interacts with
the support. The second one is the immobilized enzyme incubation, where the researcher
attempts to maximize the enzyme-support reaction, without decreasing in excess the
enzyme activity. The last step is the blocking of the remaining VS groups [56]. To leave the
remaining vinyl sulfone groups in the support without blocking means that uncontrolled
enzyme-support covalent reactions can occur during operation, and that the support can
react (and in this way, can be uncontrolledly blocked) via components of the reaction
media. This step is critical in determining not only enzyme stability, but also activity and
specificity (the enzyme-support interactions can alter the enzyme structure) and even the
enzyme inactivation pathway, becoming one of the central points in the optimization of the
immobilization protocol using these supports [59–61]. Although this means an additional
step, it also opens new opportunities in the biocatalysts’ design, such as the possibility
of immobilizing on the support enzymes via physical adsorption, co-immobilizing these
enzymes with covalently attached ones that should be previously immobilized, which can
be reused after inactivation of the physically immobilized enzymes after their release and
immobilization of new enzyme batches [62,63].

The use of VS-agarose to immobilize PGA has been very recently reported [64]. The
enzyme, which immobilized very rapidly in glyoxyl supports [40], cannot be directly
immobilized in the support at a reasonable rate for some unknown reason [64]. In that
initial paper, the solution applied to solve this drawback was the use of a high ionic
strength to force a preliminary adsorption of the enzyme to the relatively hydrophobic
VS layer, which was followed by a fast covalent immobilization [64]. This apparently
monofunctional support was utilized de facto as a heterofunctional support [65]. However,
the use of high ionic strength may be problematic, as enzyme precipitation can occur under
certain conditions.

In this paper, we propose the use of a heterofunctional support (amino-vinyl sulfone
agarose beads) to achieve PGA immobilization (Scheme 1). This support has already been
utilized to immobilize other enzymes, some of them hardly immobilized on monofunctional
VS-agarose [57,66,67]. The hypothesis is that the ion exchange of the enzyme molecule on
the support will occur, and that the proximity between the reactive VS groups in the support
and the reactive groups in the enzyme will allow the rapid enzyme covalent immobilization.
This support has been prepared by modification of a support previously modified with
ethylenediamine, which means that the spacer arm, already relatively long in this support,
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as stated above, is four atoms longer. This means that the rigidity introduced in the enzyme
structure with each additional enzyme-support bond should be lower than that achieved
using a standard VS-agarose support, even though it may be possible that the enzyme can
be immobilized to the support by more points [27,68].
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Scheme 1. PGA immobilization strategy on heterofunctional MANAE-vinyl sulfone (VS) agarose beads.
PGA cannot be directly immobilized on monofunctional VS-agarose and MANAE-agarose supports.

2. Results
2.1. Immobilization of PGA on Agarose-VS and on Agarose-MANAE

Figure 1 shows that, as recently reported [64], less than 10% of the enzyme is immobi-
lized on agarose-VS after 24 h, even at pH 9.0. This occurred even though the enzyme was
rapidly immobilized in glyoxyl agarose [37,39,40,69–71], a support that requires the estab-
lishment of several amino enzyme- aldehyde support bonds to immobilize the enzyme [72],
only participating in the reaction of the non-ionized primary amino groups of the enzyme.

Figure 2 shows that PGA was not immobilized on agarose-MANAE at any of the as-
sayed pH values (5.0, 7.0, and 9.0). The enzyme PGA presents some protein subpopulations
with an isoelectric point ranging between 6.2 and 6.8 [73]. That is, even though at pH 5.0
this lack of enzyme-support ion exchange may be expected, at pH 7.0 and mainly at pH 9.0,
the enzyme should become immobilized on the cationic support. This lack of adsorption of
PGA on weak ion exchanges may be correlated to the great number of ionic bridges that the
ion groups of the enzyme exhibit in its surface, making it difficult for them to be involved
in the PGA ionic exchange [74]. In this way, it looks like these individual supports were
inefficient to immobilize PGA.
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Figure 1. Effect of the pH in the immobilization courses of PGA on agarose-VS at 25 ◦C using 5 mM
of the corresponding buffer. Data are shown as residual activity in %, considering 100% the initial
activity. (A) Sodium acetate at pH 5.0, (B) sodium phosphate at pH 7.0, and (C) sodium carbonate
at pH 9.0. Empty circles with dashed line: reference suspension. Red triangles: suspension. Blue
squares: supernatant. Other specifications are described in the Methods Section.
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Figure 2. Effect of pH in the immobilization courses of PGA (2.5 mg/g) in agarose-MANAE beads
at 25 ◦C in 5 mM of the corresponding buffer. Data are shown as residual activity in %, consider-
ing 100% the initial activity. (A) Sodium acetate at pH 5.0, (B) sodium phosphate at pH 7.0, and
(C) sodium carbonate at pH 9.0. Empty circles with dashed line: reference suspension. Red triangles:
suspension. Blue squares: supernatant. Other specifications are described in the Methods Section.
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2.2. Preparation of Agarose-MANAE-VS Beads

Agarose-MANAE-VS beads were prepared as described in the Methods Section. The
elemental analyses of the different supports (agarose, agarose-VS, agarose-MANAE, and
agarose-MANAE-VS) are shown in Table 1. The supports were again submitted to a reaction
with ethylenediamine (EDA) to check if the VS groups were reactive.

Table 1. Amounts of nitrogen and sulfur present in the different supports based on agarose
beads 4% BCL after their functionalization with ethylenediamine (EDA) or divinyl sulfone. Data
were obtained via elemental analysis, as described in the Methods Section.

Support Modification

Support µmol N/g Dried Support µmol S/g Dried Support

Agarose 0 0
Agarose-VS 0 2340 ± 90

Agarose-VS-EDA 1640 ± 80 2230 ± 110
Agarose-MANAE 2360 ± 90 0

Agarose-MANAE-VS 2150 ± 110 2760 ± 110
Agarose-MANAE-VS-EDA 3210 ± 230 2370 ± 140

As expected, agarose lacks detectable amounts of S or N. The activation of the support
with DVS produced a modification of the support that had over 2320 micromoles of S per g
of dried support. However, the modification of this support with EDA produced a relation
of N/S of only 0.72, which we expected to reach a value of 2 if all VS groups were reactive
and all were modified. Using a longer reaction time in the EDA/VS–supports reaction did
not produce significant changes in this ratio, suggesting that the problem was that some
VS groups may be inactive (or be attached by polymerization on previously immobilized
VS groups), or quite unlikely, some EDA molecules can react with 2 VS in the support.
Agarose-MANAE presented 2360 mols of N (that means 1180 mols of EDA groups). The
amount of introduced VS on agarose-MANAE was 2760, suggesting that VS can also react
with secondary amino groups; that is, 2–3 molecules of VS may be introduced by the EDA
molecule in the support. However, the reactivity of these VS groups was reduced, as
the ratio N/S only moved from 0.78 to 1.36, and only around 25–30% of the VS groups
reacted with free EDA. Together with the possibility of having many VS inactivated, the
cross-reaction of a single molecule of EDA with two VS groups cannot be discarded, and
this may be likelier here than in the standard support due to the proximity of the VS groups
that react with the same EDA group.

In any case, it seems that the increase in VS groups using the new support cannot be
decisive to determine the enzyme immobilization, and that the chemical reactivity of the
support is only slightly lower in the mono- than in the hetero-functional supports. It seems
that some optimization on this activation could be convenient, but we decided to continue
in this paper using the standard activation protocol that has enabled good results in other
cases [55–61].

2.3. Immobilization of PGA on Agarose-MANAE-VS Beads

Figure 3 shows that PGA fully immobilized on agarose-MANAE-VS beads in only
1.5 h at pH 7.0 and 10.0. When we tried to release the enzyme from the support by
incubating the enzyme in 1 M of sodium sulfate, no enzyme could be released from the
support from the first stage of the immobilization under both conditions. This contrasts
with the results shown in Figures 1 and 2, therefore suggesting that it may be possible
to have a small fraction of PGA molecules that become adsorbed by ion exchange in the
support, which subsequently react very fast in a covalent way with the vinyl sulfone
groups, promoting the shift of the ion exchange equilibrium and thus leading to full
enzyme covalent immobilization. Similar results have been reported in the immobilization
of enzymes with a high isoelectric point on amino-glutaraldehyde supports [75]. Other
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enzymes that failed at immobilizing on monofunctional VS supports readily immobilized
on different VS heterofunctional supports [59,66].
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Figure 3. Effect of the pH value in the immobilization courses of PGA on agarose-MANAE-VS at
25 ◦C in 5 mM of the indicated buffer. Data are shown as residual activity in %, considering 100% the
initial activity. (A) Sodium phosphate at pH 7.0, and (B) sodium carbonate at pH 9.0. Empty circles
with dashed line: reference suspension (0.25 mg/mL). Full triangles with solid line: suspension. Full
squares with solid line: supernatant. Other specifications are described in the Methods Section.

The immobilization was more rapid at pH 9.0 than at pH 7.0, and this could be due
to a more rapid covalent reaction (higher at alkaline pH values) or to a more efficient ion
exchange (considering the moderately high isoelectric point of the enzyme). The enzyme
immobilized at pH 7.0 retained around 80% of the activity after immobilization, while
the enzyme immobilized at pH 9.0 retained around 70% (Figure 3). This higher loss in
enzyme activity at pH 9.0 may be related to the higher enzyme-support reactivity at this
pH value [56]. Next, we studied the different steps involved in the enzyme immobilization
on VS supports.

2.4. Study of the Parameters Defining the Functional Parameters of Agarose-MANAE-VS-PGA
2.4.1. Effect of the Immobilization pH

First, we studied the effect of the pH on the immobilization. The immobilization pH
can determine the region of the enzyme surface that is involved in the immobilization,
and this can determine not only the enzyme activity, but also the immobilized enzyme
stability [28,46,76–78]. We fixed an incubation time of 3 h at pH 8.0 and used Gly as a block-
ing agent for the next steps. The activity evolution of the PGA biocatalyst is shown in Table 2.
The immobilization yielded a difference in expressed activity of only 10% (80% when im-
mobilized at pH 7.0 or 70% if immobilized at pH 9.0). The incubation promoted a drastic
reduction in the enzyme activity to around 30%, but as in other cases [56,58–61,66,79–81],
the activity was partially recovered during the blocking step, affording activity of around
50% for both biocatalysts.

In this way, we compared the immobilized enzymes’ thermal stabilities using both
immobilization pH values. In the inactivation of the enzymes (Figure 4), the enzyme
immobilized at pH 7.0 was more stable than the enzyme immobilized at pH 9.0. It should
be considered that the enzyme immobilized at pH 9.0 has a certain advantage in the
enzyme-support reaction and should yield a more intense multipoint covalent attachment,
as the reactivity of the enzyme with the support is higher at this pH than at pH 7.0 [56].
This result suggested that the area of the enzyme immobilized in contact with the support
when immobilized at pH 7 was more important for the enzyme stability than the area
of the enzyme in contact with the support when the enzyme was immobilized at pH 9
or presented more nucleophiles and permitted to reach a higher multipoint covalent
immobilization [28,46,76–78]. Another likely explanation is that the immobilization at
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pH 9.0 caused some conformational changes in the enzyme structure, producing a less
stable structure, even if later more enzyme-support bonds could be achieved.

Table 2. Effect of the immobilization pH on the relative activity of different PGA biocatalysts in the
different steps of the immobilization process. Biocatalysts were immobilized in 5 mM of sodium
phosphate at pH 7.0 or sodium carbonate at pH 9.0. Incubation was carried out in 25 mM of sodium
carbonate at pH 8.0 (100 mM of phenyl acetic acid and 30 mM of glycerol) for 3 h and the blocking
was carried out utilizing 2 M of glycine at pH 8.0. The experiments were conducted as described in
the Methods Section.

Relative Activity (%)

Immobilization pH Immobilization Incubation Blocking

pH 7.0 77.5 ± 3.9 35.7 ± 0.5 52.3 ± 2.6
pH 9.0 70.8 ± 3.5 31.6 ± 0.6 47.1 ± 2.4
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Figure 4. Thermal inactivation courses of PGA immobilized in agarose-MANAE-VS using different
immobilization pH values (see legend of Table 2). Full triangles: immobilization in 5 mM of sodium
phosphate at pH 7.0. Full squares: immobilization in 5 mM of sodium carbonate at pH 9.0. Other
specifications are described in the Methods Section.

From these results, we decided to continue the experiments immobilizing the enzyme
at pH 7.0.

2.4.2. Effect of the Incubation pH

In this study, the enzyme was immobilized at pH 7.0, incubated for 3 h at pH 7.0, 8.0,
9.0, and 10.0, and blocked with Gly. Table 3 shows the results of the expressed activity
versus 6-nitro-3-(phenylacetamido) benzoic acid (NIPAB). It can be observed that the
incubation step produced a similar decrease in enzyme activity (from around 80% to just
30–35%) at all the incubation pH values, and the Gly blocking, as in the section above,
permitted the recovery of activity to around 50–55%. Differences were not relevant in this
parameter, and in this way, we analyzed the stability of the different preparations. The
inactivation courses in Figure 5 show that the incubation at pH 10.0 provided a slight
improvement of the enzyme stability compared to the incubation at the other pH values.
At this pH, the reactivity of the Lys groups in the enzyme should be higher than at the
other pH values.
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Table 3. Effect of the incubation pH in the relative hydrolytic activity of PGA. Immobilization was
performed in 5 mM of sodium phosphate at pH 7.0. Incubation was carried out using 25 mM of
sodium phosphate at pH 7.0 and 8.0 or sodium carbonate at pH 9.0 and 10.0 (an additional 100 mM
of phenylacetic acid and 30% glycerol were always added) for 3 h. Blocking was performed using
2 M of Gly at pH 8.0 for 48 h. Other details can be found in the Methods Section.

Relative Activity (%)

Incubation pH Immobilization Incubation Blocking

pH 7.0 80.3 ± 3.9 34.1 ± 0.5 51.4 ± 2.6
pH 8.0 78.6 ± 3.7 31.6 ± 0.6 52.6 ± 2.6
pH 9.0 79.6 ±3.8 32.7 ± 0.5 53.4 ± 2.6
pH 10 78.4 ± 3.8 30.1 ± 0.6 53.3 ± 2.7
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Figure 5. Effect of the incubation pH of the PGA biocatalyst on its thermal stability. Figure shows the
thermal inactivation courses of PGA immobilized at pH 7 and incubated at different pH values (see
legend of Table 3). Full triangles: pH 7.0. Full circles: pH 8.0. Full squares: pH 9.0. Empty rhombi:
pH 10.0. Other specifications are described in the Methods Section.

We fixed immobilization at pH 7.0 and incubation at pH 10 in further studies.

2.4.3. Effect of the Incubation Time

The incubation time is a very important variable to define the final enzyme activity
and stability, because after the enzyme is immobilized, the reaction between two rigid
entities, such as the support and the enzyme surfaces (that will become more rigid after
each additional enzyme-support bond), is required [82]. Table 4 shows how when the
incubation time was prolonged for 3 h, there was a relatively quick decrease of the enzyme
activity. After that time, the decrease in the activity proceeded slower.

The blocking with Gly allowed for recovering activity in all cases, with the activity
ranging between 51% and almost 55%. The expressed activity did not seem a decisive point
to select the PGA biocatalyst. The inactivation course in Figure 6 shows that the stability
progressively increased until 5 h of incubation, then there were no further improvements
on the enzyme stability, and the biocatalysts prepared by incubation of 48 or 72 h showed
the poorest stability. This could be due to the promotion of distorted conformation of the
enzyme that introduces some tension on the enzyme structure, promoting a less stable
enzyme. The incubation was defined at pH 10 for 5 h for the next studies.
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Table 4. Effect of the incubation time in the relative (considering 100% of the activity of the enzyme
offered for the immobilization) hydrolytic activity of PGA biocatalysts immobilized in 5 mM of
sodium phosphate at pH 7.0 and incubated in 25 mM of sodium carbonate (100 mM of phenylacetic
acid and 30% glycerol) at pH 10.0. Blocking was performed with glycine. The experiments were
conducted as described in the Methods Section.

Relative Activity (%)

Incubation Time Immobilization Incubation Blocking

1 h 81.28 ± 3.7 50.1± 0.8 53.8 ± 2.7
3 h 79.2 ± 3. 8 40.2 ± 0.8 52.9 ± 2.6
5 h 76.3 ± 3.7 31.1 ± 0.9 51.1 ± 2.6
24 h 81.5 ± 3.7 28.4 ± 0.7 51.4 ± 2,6
48 h 80.6 ± 3.7 30.0 ± 0.7 51.2 ± 2.6
72 h 81.2 ±3.8 27.7 ± 0.7 50.8 ± 2.5
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Figure 6. Effect of the incubation time on the stability of PGA biocatalysts immobilized at pH 7 and
incubated at pH 10.0 during different times (see Table 4 for more details). Empty triangles with solid
line: 1 h. Full circles with solid line: 3 h. Full squares with solid line: 5 h. Empty squares with solid
line: 24 h. Full rhombi with solid line: 48 h. Empty rhombi with solid line: 72 h. Other specifications
are described in the Methods Section.

2.4.4. Effect of the Blocking Agent

As it has been commented in this paper, many studies point out that the blocking step may
be a critical one in the preparation of a vinyl sulfone immobilized enzyme [56,58–61,66,79–81].
We tried different blocking agents and analyzed the features of the immobilized PGA
prepared as described in the previous section.

Table 5 shows that the blocking with mercaptoethanol produced a further decrease
of the enzyme activity, and the final biocatalyst activity expressed less than 5% of the
initial one. Among the other blocking agents, Gly is the blocking agent that permitted to
maintain the highest activity (over 50%), while the blocking with Asp and Cys yielded a
final activity of 35% (slightly increasing the activity after the incubation step) and the use
of ethanol amine and ethylenediamine permitted to recover more than 40% of the activity
utilized in the immobilization process. When studying the enzyme stability, Figure 7
shows that the blocking with Gly and mercaptoethanol yielded the highest stabilities (but
the activity of the second biocatalyst was initially 10-fold lower (Table 5)). The blocking
with EDA, the same group presented in the support below the VS groups, produced the
biocatalyst with the lowest stability. Ethanolamine was the second least stable biocatalyst,
suggesting that a cationic support was not very adequate for the enzyme stability. Using
monofunctional VS support and high ionic strength, this blocking agent produced the most
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stable biocatalyst [64], pointing to the great differences between both biocatalysts, and to
the necessity to empirically study each enzyme immobilization protocol.

Table 5. Effect of the blocking agent (2 M) in the relative hydrolytic activity (considering 100% of the
initial activity utilized in the immobilization) of PGA biocatalysts immobilized at pH 7 and incubated
for 5 h at pH 10.0. The experiments were conducted as described in the Methods Section.

Relative Activity (%)

Blocking Agent Immobilization Incubation Block

Gly 76.2 ± 3.8 33.2 ± 1.0 51.0 ± 2.6
Ethanolamine 77.3 ± 3.9 31.6 ± 0.9 42.2 ± 2.1

Cys 77.3 ± 4.1 30.4 ± 0.8 36.1 ± 1.8
Asp 76.9 ± 3.9 31.4 ± 0.8 35.3 ± 1.8

Ethylenediamine 76.5 ± 3.8 34.6 ± 0.9 41.8 ± 2.1
β-mercaptoethanol 77.2 ± 3.9 31.5 ± 0.7 4.8 ± 0.2Catalysts 2023, 13, 151 11 of 17 
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Figure 7. Effect of the blocking agent in the thermal inactivation courses of PGA biocatalysts
immobilized at pH and incubated at pH 10.0 for 5 h (see Table 5 for further details). Full squares:
glycine. Empty squares: cysteine. Full triangles: ethylenediamine. Empty circles: aspartic acid. Full
rhombi: ethanolamine. Empty rhombi: β-mercaptoethanol. Other specifications are described in the
Methods Section.

Cys and Asp blocking yielded similar stabilities, but lower than those obtained by the
blocking with Gly (using monofunctional VS at high ionic strength, Asp produced the least
stable biocatalyst) [64]. The different effects of the blocking reagents may be a consequence
of several factors. First, in all cases, there was a layer of a di-cationic compound below the
VS layer that was not in the previous case. Second, it is possible that the area of the enzyme
in contact with the support was not the same in both cases.

Considering both activity and stability, the best blocking agent was considered as Gly
among the studied reagents.

Figure 8 shows the comparison of the stabilities of the free and the most stable immo-
bilized PGA prepared in this paper. The immobilized enzyme was more stable than the
free enzyme (e.g., maintaining 30% of the initial activity after 1 h, while the free enzyme
maintained only 5%). Although this stabilization is relevant, it does not compare well
with the stabilization achieved using glyoxyl [37,40] or epoxide supports [29,31], or even
monofunctional VS [64]. The reason may be due to the negative effect of the cationic surface
below the enzyme (effect found using monofunctional VS after blocking with EDA) [64]
and/or the longer spacer arm used in this paper [27].
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Figure 8. Thermal inactivation courses of soluble PGA in 50 mM of Tris HCl (solid squares) and
Agarose-MANAE-VS-PGA immobilized at pH 7, incubated for 5 h at pH 10, and blocked with Gly
(empty circles). Other details can be found in the Materials Section.

3. Materials and Methods
3.1. Materials

The enzyme penicillin G acylase (PGA) was purchased from Merck (Madrid, Spain),
as an aqueous solution (with an average value of 86 ± 4 mg of protein per mL). The Protein
Assay Dye Reagent kit was acquired from Bio-Rad (Alcobendas, Spain). Phenylacetic
acid, 6-nitro-3-(phenylacetamido) benzoic acid (NIPAB), ethylenediamine (EDA), glycine,
ethanolamine, cysteine, glucose, aspartic, and β-mercaptoethanol were purchased from
Merck. Sodium borohydride and sodium periodate were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Divinyl sulfone (DVS) was supplied by Thermo Fisher Scientific
(Madrid, Spain). Sepharose® 4BCL was purchased from ABT (Madrid, Spain). Glyoxyl [72]
and MANAE [83] agarose beads were prepared as described elsewhere. All other reagents
were analytical grade. Elemental analyses were performed by CAI of Microanálisis Ele-
mental, Complutense University of Madrid, using a Leco 932 CHNS (EA Consumables,
Marlton, NY, USA) combustion microanalyzer.

3.2. Methods

Protein concentration was determined using Bradford’s method [84]. All experiments
were performed at least in triplicate. The values are presented as mean and standard error.

3.2.1. Preparation of Agarose-MANAE-VS Beads

Here, 15 mL of divinyl sulfone was added to 200 mL of 0.333 M sodium carbonate
at pH 11.5 under stirring until a homogeneous solution was obtained [85]. Then, 10 g of
agarose-MANAE support was added under gentle agitation for 2 h. After this period, the
activated support was vacuum-filtered with a sintered glass funnel, washed extensively
with distilled water, and stored at 4–6 ◦C.

3.2.2. PGA Hydrolytic Activity Determination

A spectrophotometer with temperature control at 40 ◦C and magnetic stirring (200 rpm)
was used to determine the enzyme activity. One unit of enzymatic activity (U) was defined
as the amount of enzyme able to hydrolyze 1 µmol of substrate per minute and per mass
of biocatalysts (protein or biocatalyst) under the assay conditions. NIPAB was used in the
determination of PGA enzymatic activity, as described by Kutzbach and Rauenbusch [73].
The substrate was prepared in 50 mM of sodium phosphate at pH 7.5 at a concentration of
0.15 mM. Then, 100–200 µL of enzyme suspension or soluble enzyme solution was added
to the reaction medium to initialize the reaction. The activity was measured following
the increase in absorbance at 405 nm caused by the hydrolysis of NIPAB (ε under these
conditions is 8730 M−1 × cm−1).
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3.2.3. PGA Immobilization on Agarose-MANAE-VS Beads

In all the experiments, PGA was immobilized at a loading of 2.5 mg/g of support.
A reference suspension was prepared using inert agarose beads (the enzyme was not
immobilized at all on this support). The immobilization was determined by measuring
the PGA activity presented in the suspension, supernatant, and reference suspension. The
activity in the supernatant divided by the activity in the reference suspension afforded
an accurate measure of the immobilization yield: the percentage of enzyme that has
been immobilized. We have supplied in all cases the immobilization yield (percentage of
enzyme immobilized on the support) and expressed activity (observed activity divided
by the expected one from the immobilization yield) [86]. The immobilization assays
were performed in a ratio of 1 g of support per 10 mL of enzyme solution. PGA was
diluted in 5 mM of sodium phosphate solution at pH 7.0 and pH 8.0, or 5 mM of sodium
carbonate solution at pH 9.0 (protein concentration was 0.25 mg/mL). To check the covalent
immobilization, the immobilized enzyme was incubated in 1 M of sodium sulfate. After
enzyme immobilization, the biocatalysts were filtered and washed with the buffer utilized
in the incubation step (25 mM of sodium phosphate at pH 7.0 or 8.0, or 25 mM of sodium
carbonate at pH 9.0 or 10.0), and the biocatalysts were resuspended under these conditions
for different times to permit the multipoint covalent attachment, adding 30% glycerol
(v/v) and 100 mM of phenyl acetic acid to prevent enzyme inactivation [8,22,87]. After
the desired times, and to end the enzyme-support reaction, the biocatalysts were washed
with distilled water and resuspended in 2 M solutions of different nucleophiles (EDA, Gly,
ethanolamine, Cys, Asp, or β-mercaptoethanol) in 100 mM of sodium phosphate at pH
8.0 for 48 h to block the remaining VS groups in the support. Samples were withdrawn to
check the enzyme activity during the whole process.

3.2.4. Thermal Inactivation of Different Biocatalysts

The different biocatalysts were inactivated by incubation in 50 mM of Tris-Cl at pH 8.0
in a water bath with the temperature set at 55 ◦C. Periodically, samples were taken, and their
residual activities were determined using the NIPAB assay described above, considering
the initial activity of the preparation as 100% and referencing the activity of the other
samples to this initial value as a percentage.

4. Conclusions

The main conclusion of this paper is that the cooperation between two different
immobilization causes, individually unable to yield the enzyme immobilization, produced
a great acceleration of the immobilization of PGA on agarose-MANAE-VS supports. This
occurred even though immobilization was not appreciated using agarose-MANAE supports
and it was very slow using monofunctional agarose-VS beads. The covalent reaction was
so rapid after the enzyme adsorption that we were not able to release the enzymes from
the biocatalysts even from the first moments, proving the rapid reaction between the
adsorbed enzyme and the VS groups. The immobilization, incubation, and blocking steps
play critical roles on the final biocatalyst performance and must be studied in a specific
way. The blocking reagents have different qualitative effects using monofunctional VS
or this amino-VS bifunctional supports, confirming the importance of this step and the
difficulties to extrapolate the effect of a specific blocking reagent on the final properties
of the immobilized enzyme. In the specific case of the enzyme used in this paper, the
final biocatalyst presented a stabilization much lower than that using other immobilization
methods, perhaps due to the longer spacer arms or the near presence of cationic groups,
but it has interest as a model for this kind of situation.
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