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Abstract: The development of non-natural enzymatic catalysis is important for multicomponent
tandem organic transformations. However, the delicate acting environments of biological enzymes
still present some challenges in the synthesis of spirooxindole skeleton via enzymatic catalysis. To
address these issues, a lipase-catalyzed method was developed for the synthesis of spirooxindole
frameworks. Using easily available isatins, cycloketones, and malononitriles as substrates, mild
reaction conditions, and a reasonable reaction time, moderate to good yields (67–92%) and excellent
functional group tolerance were accomplished via this protocol. The related mechanism explanation
is also speculated in this paper.

Keywords: spirooxindoles; lipase catalysis; one-pot tandem process; green synthesis

1. Introduction

Compared with traditional stepwise processes, one-pot tandem processes represent a
greener and more versatile synthesis approach, given their inherent simplicity. The multi-
step reaction in one-pot processes can start from relatively simple and easily available raw
materials without the separation of intermediates to directly obtain complex molecules,
which is evidently economical and environmentally friendly [1]. The one-pot tandem
catalytic system combined with chemical catalysis has been widely reported, whereas
systems using biocatalysis still have development space and potential [2,3]. As Nicholas
Harmer mentioned, sets of enzymes or multiple substrates working together—a “cascade”—
to drive desirable reactions in one-pot systems will help deliver the target product on a
large scale using fewer resources and generating less waste [4,5]. Large-scale demand for
target products, such as fine chemicals, medicine, and food, are present in many fields.
The starting reagents used in the cascade process can be derived from low-cost, high-
yield isolates, and we can create maximum production value based on the convenience of
initial materials.

Spirocytic structures have attracted attention due to their wide range of biological and
pharmacological activities [6–8]. Highly functional spirooxindoles have become a research
hotspot due to their remarkable and diverse biological activities [9,10]. These oxindole
skeleton compounds with various spiral–ring structures have been shown to be used as
anti-infective, anti-tumor, and antibacterial materials, and as molecular probes [11–13].
Therefore, spiroxide indole compounds with different structures should be designed and
synthesized. At present, various organocatalyzed schemes have been developed to obtain
spiroindole structures. In 2010, Perumal’s group reported a method for the synthesis of
functionalized spirocyclic oxindoles catalyzed by triethylamine [14]. In 2016, Pore’s group
reported the use of the strong base-DABCO to catalyze the synthesis of functionalized
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spirooxindoles [15]. In 2015, Kesavan et al. developed an enantioselective synthesis proto-
col in toluene, obtaining carbocyclic spirooxindoles with good yield and enantioselectivity
using L-proline derived thiourea organocatalyst [16]. In 2021, Parewa et al. manufactured
functionalized graphitic carbon nitride (Sg-C3N4) and utilized a reusable catalyst for the
one-pot production of various spiro-pyrano chromenes and spiro indole-3,10-naphthalene
tetracyclic systems in aqueous media [17]. Although these methods can obtain spirooxin-
doles with good yield in a relatively short time, the reactions need to be catalyzed by weak
or strong organic base catalysts, and some catalysts require complex synthesis procedures.
For example, thiourea catalysts reported in Kesavan’s work require chiral prolines for
derivational synthesis [16], and the catalyst reported by Parewa requires high temperature,
a strong acid solution and tedious characterization [17]. In addition, most of the methods
reported need to be carried out in organic solvents, such as toluene or ethylene glycol;
these organic solvents do not conform to the concept of green chemistry to some extent
(Figure 1).
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synthesis. In many cases, biocatalysts have replaced traditional chemical catalysts and
have significant application prospects in the future [18–23]. Through enzymatic reactions,
we can construct drug modules and biologic therapeutics effectively, and reduce the use
of polluting chemicals and solvents [24–27]. The synthesis of spirooxindole compounds
catalyzed by enzymes has been partially studied. In 2011, Zhang reported the synthesis of
spirooxindole catalyzed via lipase (porcine pancreatic lipase), but the process was carried
out in a mixed solvent of ethanol/water, and the ratio of water significantly affected the
yield [28]. In 2014, Lin’s group used isatin derivatives and 1,3-dicarbonyl as starting mate-
rials; spirooxindole derivatives were obtained via a two-component enzymatic (Acylase
Amano from Aspergillus oryzae) catalytic process in ethylene glycol [29]. However, the
enzymatic synthesis of spirooxindole is still a hot spot in enzyme catalysis. Lipase, as an
efficient and green biocatalyst, has been widely studied by researchers due to its good
applicability of reaction types, stable temperature, solvent compatibility and commercial
simplicity [30–32].

In this study, we investigated the synthesis of spirooxindoles from isatin, malononitrile
and cycloketone substrates with lipase from porcine pancreatic lipase (PPL) in the presence
of water to expand the study of non-natural enzymatic reactions and explore favorable
biocatalytic synthesis. To the best of our knowledge, the synthesis of spirooxindole using
a one-pot tandem process catalyzed via lipase in aqueous media has not been reported
before (Figure 1).

2. Results and Discussion
2.1. Optimization of Reaction Conditions for the One-Pot Tandem Process

1a, 2a, and 3 were selected as model substrates to optimize a series of reaction con-
ditions. We discovered the catalytic effects of different lipases at a temperature of 40 ◦C
(Table 1), and selected several lipases that showed different catalytic activities. Among
these lipases, porcine pancreatic lipase (PPL) showed the highest reactivity (Table 1, entry 1
versus entries 2–5). Although PSL, BSA, CALB, and Novozym 435 had certain catalytic
effects, the target product was obtained with low yield (Table 1, entries 2–5), whereas 4a
was not obtained when denatured PPL was replaced with PPL (Table 1, entry 6); similar
results occurred in the controlled experiment (Table 1, entry 7). The above results indi-
cated that the difference in the lipase active site was crucial for the catalytic synthesis of
spirooxindoles. Based on the highest lipase activity temperature range reported in the
relevant literature [33], analyses were conducted regarding experimental temperature (see
Supplementary Materials, Table S1).

Solvents could significantly affect the activity of enzymes in the catalytic enzymatic
reaction. Therefore, we proceeded to examine the effects of solvents. The model reaction
showed excellent reactivity in the presence of polar solvents, such as EtOH, DMF, DMSO,
and water (Table 2, entries 1–4). However, when THF, toluene, EA, and DCM were used
as reaction solvents separately, the catalytic effect of PPL was extremely poor or even
non-reactive (Table 2, entries 5–8). Although PPL in DMF or DMSO could make the model
reaction achieve the highest yield in a relatively short time (Table 2, entries 2–3), water, as
the best medium in enzymatic chemical reactions, has a series of advantages, including
its safety and non-toxicity, and that it is a green solvent [34]. In addition, in subsequent
separation and purification processes, due to the low solubility of the target product 4a in
the water phase, we could easily obtain the target product via simple filtration, washing,
and drying, rather than using a complicated column chromatography separation. Even
though the reaction takes longer in the aqueous phase, we still chose water as the best
solvent for an almost identical yield.
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Table 1. Optimization of lipase types for the one-pot tandem synthesis of 4a.

Catalysts 2023, 12, x FOR PEER REVIEW 4 of 12 
 

 

efficient and green biocatalyst, has been widely studied by researchers due to its good 

applicability of reaction types, stable temperature, solvent compatibility and commercial 

simplicity [30–32]. 

In this study, we investigated the synthesis of spirooxindoles from isatin, malono-

nitrile and cycloketone substrates with lipase from porcine pancreatic lipase (PPL) in the 

presence of water to expand the study of non-natural enzymatic reactions and explore 

favorable biocatalytic synthesis. To the best of our knowledge, the synthesis of spirooxin-

dole using a one-pot tandem process catalyzed via lipase in aqueous media has not been 

reported before (Figure 1). 

2. Results and Discussion 

2.1. Optimization of Reaction Conditions for the One-Pot Tandem Process 

1a, 2a, and 3 were selected as model substrates to optimize a series of reaction condi-

tions. We discovered the catalytic effects of different lipases at a temperature of 40 °C 

(Table 1), and selected several lipases that showed different catalytic activities. Among 

these lipases, porcine pancreatic lipase (PPL) showed the highest reactivity (Table 1, entry 

1 versus entries 2–5). Although PSL, BSA, CALB, and Novozym 435 had certain catalytic 

effects, the target product was obtained with low yield (Table 1, entries 2–5), whereas 4a 

was not obtained when denatured PPL was replaced with PPL (Table 1, entry 6); similar 

results occurred in the controlled experiment (Table 1, entry 7). The above results indi-

cated that the difference in the lipase active site was crucial for the catalytic synthesis of 

spirooxindoles. Based on the highest lipase activity temperature range reported in the rel-

evant literature [33], analyses were conducted regarding experimental temperature (see 

Supplementary Materials, Table S1). 

Table 1. Optimization of lipase types for the one-pot tandem synthesis of 4a. 

 

Entry Lipase 1 Yield (%) 2 

1 PPL 88 

2 PSL 40 

3 BSA 45 

4 CALB 35 

5 Novozym 435 38 

6 PPL 3 N.D 4 

7 Control N.D 4 

Reaction conditions: 1a (0.2 mmol), 2a (0.2 mmol), 3 (0.6 mmol), lipase (15 mg), water (3 mL), 40 

°C, 72 h. 1 PPL (porcine pancreatic lipase); PSL (lipase from Pseudomonas sp.); BSA (albumin from 

bovine serum); CALB (C. antarctica lipase B); Novozym 435 (a commercial immobilized lipase B 

from C. antarctica). 2 Isolated yield. 3 The denatured PPL was obtained by heating PPL to 100 °C for 

12 h in water. 4 Not detected.  

Solvents could significantly affect the activity of enzymes in the catalytic enzymatic 

reaction. Therefore, we proceeded to examine the effects of solvents. The model reaction 

showed excellent reactivity in the presence of polar solvents, such as EtOH, DMF, DMSO, 

and water (Table 2, entries 1–4). However, when THF, toluene, EA, and DCM were used 

as reaction solvents separately, the catalytic effect of PPL was extremely poor or even non-

reactive (Table 2, entries 5–8). Although PPL in DMF or DMSO could make the model 

Entry Lipase 1 Yield (%) 2

1 PPL 88
2 PSL 40
3 BSA 45
4 CALB 35
5 Novozym 435 38
6 PPL 3 N.D 4

7 Control N.D 4

Reaction conditions: 1a (0.2 mmol), 2a (0.2 mmol), 3 (0.6 mmol), lipase (15 mg), water (3 mL), 40 ◦C, 72 h.
1 PPL (porcine pancreatic lipase); PSL (lipase from Pseudomonas sp.); BSA (albumin from bovine serum); CALB
(C. antarctica lipase B); Novozym 435 (a commercial immobilized lipase B from C. antarctica). 2 Isolated yield.
3 The denatured PPL was obtained by heating PPL to 100 ◦C for 12 h in water. 4 Not detected.

Table 2. Optimization of solvent for the one-pot tandem synthesis of 4a.
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Entry Solvent 1 Yield (%) 2

1 EtOH 86
2 DMF 3 90
3 DMSO 3 90
4 H2O 88
5 THF 35
6 Toluene 23
7 EA N.D 4

8 DCM N.D 4

Reaction conditions: 1a (0.2 mmol), 2a (0.2 mmol), 3 (0.6 mmol), solvent (3 mL), PPL (15 mg), 40 ◦C, 72 h. 1 EtOH
(ethanol), DMF (N,N–dimethylformamide), DMSO (dimethyl sulfoxide), H2O (water), THF (tetrahydrofuran), EA
(ethyl acetate), DCM (dichloromethane). 2 Isolated yield. 3 Reaction for 3 h. 4 Not detected.

The enzyme dosage also has an evident effect on the reaction. Insufficient enzyme
reduces catalytic efficiency, whereas excessive enzyme increases production cost, and
even leads to negative effects to some extent. Therefore, we explored the influence of
enzyme dosage. Figure 2 shows that the yield of spirooxindole 4a increased as the lipase
dosage increased from 5 mg to 15 mg, but the yield of 4a decreased as the lipase dosage
increased from 20 mg to 25 mg. This phenomenon might have been caused by excessive
enzyme aggregation in a quantitative solvent that was not conducive to the contact between
substrates and enzyme active centers. Thus, 15 mg PPL was the optimal reaction dosage.
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Figure 2. Optimization of PPL dosage for the one-pot tandem synthesis of 4a. Reaction conditions:
1a (0.2 mmol), 2a (0.2 mmol), 3 (0.6 mmol), H2O (3 mL), 40 ◦C for 72 h.

2.2. Substrate Scopes for the One-Pot Tandem Process

With optimized conditions in hand, respective series of isatins 1 and cyclic ketones
2 were examined using this one-pot tandem process; results are summarized in Figure 3.
Cyclohexanone 2a easily reacted with isatins at different substitution sites and afforded
the final products 4a–4m with 67–90% isolated yields. It was notable that their electronic
properties did not significantly affect their yields. One-pot tandem reactions with substrates
(2a–2m) had electron-withdrawing and electron-donating substituents at 2- to 7-positions.
To be clear, all products except 4c (67% isolated yield) achieved excellent yield, which
might have been caused by the high steric hindrance of the 4-substituted site. In addition,
6-membered cycloketone substrates were tested for this transformation. Similarly, 1a
smoothly reacted with 2n–2r, producing desired products 4n–4r in high isolated yields
of 84–92%.

2.3. Mechanism of the One-Pot Tandem Process

To understand the mechanism better, some control experiments were performed. We
found that both isatin 1 and cyclohexanone 2 could form corresponding intermediates
Ia and IIa with malonitrile 3 in either a single system or a mixed system, indicating that
the formation of intermediates Ia and IIa in a one-pot tandem system was a spontaneous
Knoevenagel condensation process (Figure 4A,B versus Figure 4C). Subsequently, it was
found that the reaction between intermediate Ia and IIa could not form the target product
4a without the action of PPL. On the contrary, 4a could be effectively generated under the
catalysis of PPL (Figure 4D versus Figure 4E).

On the basis of our experimental results, we speculated regarding the plausible mech-
anism of this PPL-catalyzed one-pot tandem reaction (Figure 5). Given the strong electron-
withdrawing ability of –CN, first, using this one-pot tandem process, adducts alkenyl
dinitrile I and II were obtained via Knoevenagel condensation of isatin 1 and cycloketone 2,
respectively, using malonitrile 3. Next, the adduct II was deprotonated using Asp-His dyad
to produce intermediate III. Immediately after that, the carboanion of the intermediate
III nucleophile attacked the C=C of the isatilidenemalononitrile I and formed IV, which
further attacked the cyanogroup and cyclized to obtain the anionic intermediate V. Finally,
V was protonated/deprotonated to provide target product 4; the regeneration of PPL
maintained the catalytic cycle.
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electron-withdrawing ability of –CN, first, using this one-pot tandem process, adducts 
alkenyl dinitrile I and II were obtained via Knoevenagel condensation of isatin 1 and cy-
cloketone 2, respectively, using malonitrile 3. Next, the adduct II was deprotonated using 
Asp-His dyad to produce intermediate III. Immediately after that, the carboanion of the 
intermediate III nucleophile attacked the C=C of the isatilidenemalononitrile I and formed 
IV, which further attacked the cyanogroup and cyclized to obtain the anionic intermediate 
V. Finally, V was protonated/deprotonated to provide target product 4; the regeneration 
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(C): spontaneous Knoevenagle condensation in mixed system; (D) and (E): Investigation on the
catalytic effect of PPL. 1H NMR of intermediates Ia (400 MHz, DMSO-d6) δ 11.23 (s, 1H), 7.90 (d,
J = 7.8 Hz, 1H), 7.59 (td, J = 7.8, 1.2 Hz, 1H), 7.16 (td, J = 7.7, 1.0 Hz, 1H), 6.96 (d, J = 7.9 Hz, 1H). 1H
NMR of intermediates IIa (400 MHz, DMSO-d6) δ 2.09–2.21 (m, 4H), 1.66–1.49 (m, 6H).
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3. Materials and Methods
3.1. General Information

PPL (porcine pancreas lipase), PSL (Pseudomonas sp. lipase), and CalB (lipase B from
Candida antarctica) were purchased from Shanghai Yuan Ye Biological Technology Company
(Shanghai, China), and Novozym 435 was purchased from Sigma–Aldrich China Co.
(Beijing, China). All other chemical reagents were purchased from commercial suppliers
(Bide Pharmatech (Shanghai, China), Aladdin (Shanghai, China), and Energy Chemical
(Beijing, China)). All commercially available reagents and solvents were used without
further purification. Proton nuclear magnetic resonance (1H NMR) spectra were recorded
using a 400 MHz spectrometer in DMSO. Chemical shifts of protons were reported in parts
per million downfield from tetramethyl silane (TMS) and referenced to residual protium in
the NMR solvent (DMSO = δ 2.50 ppm). NMR data are presented as follows: chemical shift
(δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, and br
= broad), coupling constant in Hertz (Hz), and integration. A 100 MHz spectrometer in
DMSO (δ 39.52 ppm) was used to report 13C NMR spectra. Experiments were performed
in triplicate, and all data were obtained based on the average values.

3.2. General Procedure for Lipase-Catalyzed Synthesis of 4

PPL (15 mg) was added into a mixture of isatins (1, 0.2 mmol), cycloketones (2, 0.2 mmol),
and malononitrile (3, 0.6 mmol) in water (3 mL) at 40 ◦C for 48–72 h. After the reaction
was complete, as indicated by TLC, the precipitate was filtered and washed using 20%
ethanol/petroleum ether, then dried in a vacuum to afford pure and solid product (4). All
the isolated products were well characterized by their NMR.

4. Conclusions

In conclusion, we have successfully established a novel lipase catalyzed one-pot
tandem reaction to synthesize a series of spirooxindoles. This method used lipase to catalyze
the reaction of three components in aqueous solution. The developed three-component
enzymatic process requires only common equipment and obtainable raw materials. Simple
filtration and washing operations result in product with an excellent yield, without any
further purification steps. Combined with the green chemistry concept that is now being
advocated, this non-natural enzymatic method for synthesizing spirooxindole structures is
expected to be widely used in the future. Furthermore, immobilization is an efficient tool for
improving enzyme features in the biotechnology toolbox. Through enzyme immobilization,
many enzyme limitations can be addressed; for example, enzyme stability can be improved;
enzyme selectivity, specificity, and activity can be altered and inhibitions reduced; and
the operation window and resistance to chemicals can be enlarged, and even be coupled
to enzyme purification [35–39]. Therefore, to improve the feasibility and efficiency of
this synthetic method, related PPL immobilization methods are being studied and will be
reported in due course.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/catal13010143/s1, Figure S1: Data of Products; Figure S2: Spectra of
Products; Table S1: Optimization of temperature for the one-pot tandem synthesis of 4a.
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