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Abstract: As a novel reaction mode of oxidative dehydrogenation of ethane to ethylene, the chemical
looping oxidative dehydrogenation (CL-ODH) of ethane to ethylene has attracted much attention.
Instead of using gaseous oxygen, CL-ODH uses lattice oxygen in an oxygen carrier or redox catalyst
to facilitate the ODH reaction. In this paper, a perovskite type redox catalyst LaMnO3+δ was used as
a substrate, Ce3+ with different proportions was introduced into its A site, and its CL-ODH reaction
performance for ethane was studied. The results showed that the ratio of Mn4+/Mn3+ on the surface
of Ce-modified samples decreased significantly, and the lattice oxygen species in the bulk phase
increased; these were the main reasons for improving ethylene selectivity. La0.7Ce0.3MnO3 showed
the best performance during the ODH reaction and showed good stability in twenty redox cycle tests.

Keywords: chemical looping oxidative dehydrogenation; LaMnO3; Ethane; perovskite type redox
catalyst

1. Introduction

Ethylene is one of the most commonly used feedstocks in the production of numerous
chemical intermediates and polymers, and is one of the most produced chemicals in the
world [1–3]. The global ethylene market was estimated to be 158 million tons in 2020, and
is expected to reach 207.4 million tons in 2027 [4]. At present, steam cracking is mainly
carried out by petroleum raw materials, such as petroleum brain and condensate, to achieve
ethylene production in industry [5]. Recently, with the increase in shale gas production,
there has been extensive attention paid to the use of the underutilized ethane, extracted
from shale gas, to produce ethylene [6,7].

In industry, the steam cracking process for ethylene production from ethane is shown
in Equation (1) [8]. This reaction is a strongly endothermic reaction with a high reaction
temperature (higher than 1000 ◦C), which inevitably leads to high energy consumption
(approximately 16 GJ/[t C2H4]), serious carbon deposition, and produces a large number
of environmentally unfriendly by-products such as CO2 (1−1.2 t CO2/[t C2H4]) and
NOx [9,10].

C2H6 (g)⇔ C2H4 (g) + H2(g)∆H298K= +136 kJ/mol (1)

In order to avoid the disadvantages of the traditional steam cracking process, ethylene
production via the oxidative dehydrogenation (ODH) of ethane (Equation (2) is proposed
as an alternative method. Compared to steam cracking technology, ODH is an exothermic
reaction; therefore, the reaction temperature is lower (300–700 ◦C), and the energy con-
sumption of tons of ethylene can be reduced by 35%. In addition, due to the participation
of gaseous oxygen in the reaction, the hydrogen generated by the cleavage of ethane in the
reaction Equation (2) will undergo a combustion reaction (Equation (3); this can eliminate
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the thermodynamic barrier to achieve a high ethane conversion rate and make the reaction
kinetics possess lower Gibbs free energy [8,11,12].

C2H6 (g) +
1
2

O2 (g)→ C2H4 (g) + H2O (g)∆H298K= −150 kJ/mol (2)

2H2 (g) + O2 (g)→ 2H2O (g)∆H298K= −286 kJ/mol (3)

In the past 20 years, a number of ODH catalyst systems have been reported, such
as NiO [13], MO-V-O [14], Sn-doped Pt [15], La/Sr/Nd [16], and Mo/V/Te/Nb/O [17].
It has been reported that the ethylene yield of NiO and NiO catalysts, modified with
Zr, Ti, Mo, W, and V in the ODH reaction of ethane, ranges from 35% to 38%, among
which Ni-W-O and Ni-Ti-O catalysts show the highest ethylene yield [13]. The Mo-V-
containing catalysts achieved a high ethylene selectivity of 76% under the condition of 30%
ethane conversion [14]. The Mo/V/Te/Nb/O catalyst can achieve 78% ethylene yield [17].
Despite the ODH reaction possessing many potential advantages, it can not replace the
steam cracking process in the industry, because there are still some problems that need to
be solved; these include the following: (1) In order for pure oxygen or oxygen-enriched
air to participate in the ethane ODH reaction, it needs to be in an air separation plant;
this no doubt increases the cost of investment and the extent of air separation oxygen in
the energy intensive process. (2) The co-feeding of ethane and oxygen has safety hazards.
If inert gas is added to dilute the feedstock gas, it will increase the additional costs and
bring unnecessary trouble to the separation of subsequent products [18]. (3) With the
participation of gas-phase oxygen, the product is more likely to be deeply oxidized to COx,
which reduces ethylene selectivity [11].

To solve these problems, the chemical looping was combined with the ODH reaction
of ethane to form the chemical looping oxidative dehydrogenation of ethane, as shown
in Scheme 1 [19–21]. This scheme uses lattice oxygen in an oxygen carrier (also known as
a redox catalyst) instead of gas oxygen, to participate in the oxidative dehydrogenation
reaction, without needing air separation; thus, the feed mixture of ethane and oxygen
is avoided, which inhibits the deep oxidation of the product and minimizes explosion
hazards from co-feeding oxygen with ethane. In the CL-ODH scheme, the reaction process
between fuel and the oxygen carrier is divided into two steps: In the fuel reactor, ethane
is partially oxidized into ethylene by an oxygen carrier (MeOx); meanwhile, the oxygen
carrier is reduced to a reduced state. In the air reactor, the reduced oxygen carrier (MeOx−1)
is reoxidized by air to restore its lattice oxygen, completing the redox cycle [22]. Previous
studies show that in the chemical looping oxidative dehydrogenation reaction, ethane is
firstly cleaved to produce ethylene and hydrogen, and the produced hydrogen is selectively
oxidized on the surface of oxygen carrier, breaking the thermodynamic equilibrium and
making the reaction go in the direction of ethylene formation [23]. In the ODH reaction, the
adsorbed oxygen on the surface of the oxygen carrier will be rapidly consumed to form
oxygen vacancies, and the internal lattice oxygen needs to migrate to the surface to fill
the oxygen vacancies.. Therefore, the lattice oxygen mobility of the oxygen carrier plays a
crucial role in the success of the CL-ODH reaction [24]. In the CL-ODH of ethane, the key
to this process is to design oxygen carriers with high lattice oxygen mobility, which can
selectively burn hydrogen and inhibit the deep oxidation of products.

Recently, perovskite-type oxygen carriers have attracted much attention as redox
catalysts due to their unique structure and high stability. The general formula of perovskite-
type oxide is ABO3, where A is an alkaline earth or rare earth metal cation and B is a
transition metal cation. To date, a number of studies have been conducted on the chemical
looping oxidative dehydrogenation of ethane using perovskite-type oxygen carriers. In
these previous studies, perovskite-type oxides are widely used in chemical looping reactions
due to their excellent redox properties and high oxygen mobility. Tian et al. [10] studied that
Ce-modified SrFeO3−δ achieved up to 29% ethane conversion and 82% ethylene selectivity
at 725 ◦C. In this study, the modification of Ce promoted the formation of surface oxygen
vacancies and increased the resistance of lattice oxygen diffusion to the surface, which
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was the reason for the increased reactivity and ethylene selectivity. Gao et al. [25] found
that the LaxSr2−xFeO4−δ catalyst, modified with Li and K, had an ethane conversion of
60% and ethylene selectivity of 86% at 700 ◦C. It is very important to design and develop
efficient redox catalysts to replace gaseous oxygen, inhibit the deep oxidation of ethane,
and improve ethylene selectivity for the chemical looping oxidative dehydrogenation of
ethane. It was also found that Mn-based oxygen carriers, such as CaMnO3, Mg6MnO8,
SrMnO2, and Mn7SiO12, had good performances in the CL-ODH of ethane, and the yield of
Mn-based oxygen carriers, modified by Na2WO4, could reach 68.2% [23,24,26–28]. These
results indicated that the Mn-based oxygen carrier is a promising oxygen carrier for the
oxidative dehydrogenation of ethane. Among the various perovskite-type oxides, LaMnO3
exhibited a higher thermal stability and better activity, so it is considered to be a more
meaningful carrier for the CL-ODH of ethane to produce ethylene [11]. It is generally
believed that when different cations are introduced into the A or B sites of perovskite
oxides, the lattice structure of perovskite will not change fundamentally, but its reactivity
can be improved by regulating the number of oxygen vacancies, regulating the oxygen
vacancy symmetry, and oxide lattice distortion [29]. Recently, T. Rajkumar et al. [30] found
that in the CeO2/MnOx system, through the mixing of CeO2 and MnOx, the oxidation states
of Ce3+ and Ce4+ in the CeO2 can be shifted to improve the oxygen vacancy, oxygen mobility
and oxygen storage capacity in the lattice; this can change the catalytic activity of the CeO2.
Therefore, in this paper, by introducing Ce3+ cations as heterogeneous ions into the A site
of LaMnO3 to adjust the local chemical environment of the oxygen vacancy, the influence of
heterogeneous ions on ethane cleavage and the selective hydrogen burning mechanism in
the CL-ODH of ethane were studied. Different proportions of Ce3+ were introduced into the
A site of the perovskite-type oxide LaMnO3 to carry out the CL-ODH reaction. The doping
of Ce3+ can form asymmetric oxygen vacancies (some studies have shown that asymmetric
oxygen vacancies easily adsorb oxygen in an oxidizing atmosphere, and desorb oxygen in
a reducing atmosphere), actively regulate the local chemical environment of lattice oxygen
and oxygen vacancies, and achieve the effect of increasing ethylene selectivity [29].
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2. Results and Discussions
2.1. Structural Characterization

The lattice structure, crystal size and lattice parameters of the prepared LMO, 0.1LCMO,
0.2LCMO, 0.3LCMO and 0.4LCMO samples were characterized by XRD; the results are
shown in Figure 1 and Table 1. The appearance of a peak indicates a good crystallinity.
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For the samples without Ce doping, there was no secondary phase. According to the
JCPDS card (PDF # 82-1152), the sample shows the characteristic peaks of a hexagonal
LaMnO3 phase. The main peaks are at 2θ = 21.69◦, 31.25◦, 31.57◦, 38.87◦, 45.54◦ and 56.8◦,
corresponding to (012), (110), (104), (202), (024), and (214) planes, respectively. When Ce
is doped into LaMnO3, there will be a second phase, and a orthorhombic perovskite is
formed. The secondary phase has a main peak at 2θ of 27.34◦, 31.88◦, 46.22◦ and 55.12◦,
which is assigned to the CeO2 (PDF # 89-8436) phase. Moreover, it can be clearly observed
that with the gradual increase in the Ce doping amount, the characteristic peak intensity
of the parent LaMnO3 gradually weakens, while the peak intensity of the CeO2 gradually
increases [31]. The presence of the CeO2 phase was attributed to the surface enrichment
of atomic cerium and it not being incorporated into the LaMnO3 perovskite framework
during the calcination process. Therefore, the La1−xCexMnO3+δ samples were considered
to be multiple oxides, containing Ce-doped perovskite and cerium oxide [32]. The lattice
structure, crystal size and lattice parameters of each sample are listed in Table 1. It can
be seen that the total crystal size of La1−xCexMnO3+δ samples was smaller than that of
LaMnO3+δ, indicating that the doping of Ce degraded the crystallinity of perovskite crys-
tal. The lattice parameters of La1−xCexMnO3+δ decreased due to Ce doping. The lattice
shrinks of La1−xCexMnO3+δ crystal were attributed to the substitution of La3+ (ionic radii
is 1.032 Å) by Ce3+ (ionic radii is 1.02 Å), though there is a certain amount of Ce4+ (ionic
radii is 0.87 Å) in the La1−xCexMnO3+δ perovskite [33].
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Figure 1. XRD patterns of as-prepared redox catalysts.

Table 1. Lattice structure, crystal size and lattice parameters of each fresh sample.

Samples Lattice
Structure

Crystal
Size (nm) a (Å) b (Å) c (Å) Vol (Å3)

LMO hexagonal 21.93 5.525 5.525 13.361 407.853
0.1LCMO orthorhombic 21.02 5.517 5.517 13.356 406.530
0.2LCMO orthorhombic 19.56 5.516 5.516 13.348 406.130
0.3LCMO orthorhombic 19.15 5.517 5.517 13.351 406.368
0.4LCMO orthorhombic 18.23 5.521 5.521 13.358 407.171

In order to observe the micromorphology and element distribution of the samples more
intuitively, the fresh samples were characterized by SEM-EDS, as shown in Figures 2 and 3.
It can be clearly seen that all samples have a similar porous structure, and all elements are
uniformly dispersed in the prepared samples. From the results of the BET experiment, as
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shown in Table 2, the specific surface area of the samples is between 3.1–5.1 m2/g, and the
specific surface area of LaMnO3 without Ce doping is the smallest.
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2.2. XPS

In order to further explore the influence of Ce-doping on the performance of LaMnO3
in ODH reactions of ethane, XPS technology was used to test the types of manganese
ions and oxygen species near the surface of the oxygen carrier. It is known that the man-
ganese ions, located in the B sites of perovskite, directly affect the reactivity of perovskite;
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meanwhile, the properties of the near-surface oxygen species greatly affect the ethylene
selectivity of oxygen carriers for ethane conversion. Therefore, the O 1s and Mn 2p spectra
of each sample were analyzed in detail, and the results are shown in Figure 4.

Table 2. Structural information of the fresh catalysts.

SBET (m2/g) Vpore (cm3/g) Average Pore Diameter (nm)

LCMO 3.1 0.01 9.2
0.1LCMO 5.1 0.02 14.7
0.2LCMO 3.4 0.02 17.1
0.3LCMO 4.7 0.04 26.4
0.4LCMO 5.0 0.03 15.8
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As shown in Figure 4a, the Mn 2p is featured with a double-peaked spectrum, assigned
to Mn 2p1/2 and Mn 2p3/2, respectively, due to energy level splitting. For each sample, two
peaks with binding energies of around 641.5~641.8 eV and 643.4~643.8 eV were obtained
via the deconvolution of Mn 2p3/2 spectra, corresponding to Mn3+ and Mn4+ species,
respectively [34–36]. This is consistent with the analysis of the binding energy location of
Mn3+ and Mn4+ species in Yin et al.’s study [34]. According to the detailed data of Mn 2p3/2
shown in Table 3, as Ce is introduced into the oxygen carrier, the characteristic peak of
manganese shows a trend reflecting atransfer from a high binding energy to a low binding
energy, and the value of Mn4+/Mn3+ is obviously reduced. Considering the potential
incorporation of Ce4+ with a higher valence than La3+, which causes the distortion of the
perovskite structure and the imbalance of internal charges, it is necessary to compensate by
converting Mn4+ into Mn3+, so more active sites are generated and more oxygen vacancies
are formed [10]. Combined with the CL-ODH results, the changing trend in ethylene
selectivity is negatively correlated with the changing trend in Mn4+/Mn3+ value, indicating
that the formation of Mn3+ is conducive to the selective production of ethylene from ethane.

Table 3. Molar proportion of surface element for each fresh sample was measured by XPS.

Mn 2p3/2 O 1s

Mn3+ Mn4+ Mn4+/Mn3+ OI OII OIII OI/(OII+OIII)

LCMO 0.53 0.47 0.90 0.40 0.55 0.05 0.67
0.1LCMO 0.58 0.42 0.74 0.47 0.44 0.09 0.88
0.2LCMO 0.54 0.46 0.85 0.45 0.52 0.03 0.81
0.3LCMO 0.55 0.45 0.81 0.46 0.50 0.04 0.85
0.4LCMO 0.58 0.42 0.71 0.49 0.46 0.05 0.96
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For the deconvolution of O 1s spectrum, two main peaks and one secondary peak
can be observed in all samples; these are the lattice oxygen species (O2−, O I) near
529.2~529.5 eV, surface electrophilic oxygen species (O II) near 530.9~531.1 eV and the hy-
droxide/carbonate species (OH−/CO3

2−, O III) near 533.1~533.9 eV [37,38]. It is generally
believed that both lattice oxygen and surface electrophilic oxygen species can improve the
conversion rate of ethane in CL-ODH reactions. The difference is that lattice oxygen can
promote the selective conversion of ethane to ethylene, whereas the electrophilic oxygen
species is usually non-selective and prone to causing the deep oxidation of ethane [24,28].
It can be seen from the O 1s in Figure 4b, and the data in Table 3, that the relative content of
the lattice oxygen of LaMnO3 is obviously less than that of the doped sample, consistent
with its worst selectivity in the CL-ODH process. The higher proportion of the lattice
oxygen species in 0.1LCMO and 0.4LCMO is consistent with their relatively high ethane
selectivity. As far as 0.2LCMO and 0.3LCMO are concerned, due to the similar relative
amount of active oxygen substances (i.e., lattice oxygen and surface electrophilic oxygen),
their reaction activities are almost the same (97% vs. 96%). As for the 0.3LCMO sample, it
has a higher proportion of lattice oxygen, thereby giving a better reaction performance in
CL-ODH.

2.3. H2-TPR and O2−TPD

In order to understand the reducibility of oxygen carriers in the CL-ODH reaction, a
H2-TPR test was conducted, and the H2-TPR curve of the sample is shown in Figure 5a.
It can be observed that all samples have two obvious reduction peaks, which are located
at 300–620 ◦C and 650–850 ◦C, respectively. The reduction peak at low temperatures may
originate from the consumption of adsorbed oxygen on the surface and the reduction of
Mn4+ to Mn3+, while the reduction peak at high temperatures is corresponding to the
removal of lattice oxygen from the reduction of Mn3+ to Mn2+ [34,39]. It can be observed
that the initial reduction peak position of the modified oxygen carrier obviously moves to
the lower temperature, indicating that the addition of Ce improves the oxygen mobility
of LaMnO3 and the reducibility of the sample. It is generally believed that the samples
with high reducibility have higher activity, which is consistent with the CL-ODH reaction
results [25].
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In order to study the relative amounts of various oxygen species in the oxygen carrier,
an O2-TPD test was conducted on the fresh oxygen carrier. Figure 5b shows the O2-TPD
curve for each sample. According to the previous literature published to date, the curve
is usually divided into three peaks, labeled as α, β and γ [40,41]. The α peak is in the
temperature range below 280 ◦C, and the appearance of this decomposition absorption
peak is attributed to the desorption of surface chemisorbed oxygen (O2

−, O2
2−, O−). The

β desorption peak, in the range of 280 ◦C–520 ◦C, is caused by the surface lattice oxygen
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(O2−) species. The higher temperature range of γ is related to the bulk lattice oxygen
of perovskite crystals [40–43]. It can be noticed that the peaks in the α and β regions
of the doped samples have significant changes, especially for the sample 0.3LCMO; this
gives a significantly enhanced β peak region, which indicates that the introduction of
cerium is conducive to the formation of more oxygen vacancies and improves the sample
oxygen mobility. At elevated temperatures, it can be seen that the peak value of the γ

region is shifted to a higher temperature due to the doping of cerium, which indicates that
the oxidation activity of modified samples is worse at high temperatures. Therefore, the
modification of the LaMnO3 substrate is more conducive to the optimization of the reaction
performance at low temperatures.

2.4. Ethane CL-ODH Reaction Resting

In the continuous cycle pulse experiment, due to the existence of adsorbed oxygen on
the surface of the oxygen carrier, non-selective oxidation may occur at the beginning of the
pulse, resulting in the poor performance of the sample. The continuous pulse experiment
results of the 0.2LCMO sample at 700 ◦C are shown in Figure 6. It can be observed that
in the first two pulses, the non selective oxygen species are rapidly consumed, and the
sample performance tends to be stable without too much negative impact [44]. The ethane
conversion, ethylene selectivity and ethylene yield data of different samples obtained
in the CL-ODH step, at various temperatures (650 ◦C, 675 ◦C and 700 ◦C), are shown
in Figure 7. The carbon balance calculations for all tests were in the range of 93102%.
Perovskite-type oxygen carriers exhibit a satisfactory redox performance in the CL-ODH
reaction at 700 ◦C. It can be seen from Figure 7c that, compared with the oxygen carrier
without Ce, the reactivity of the modified oxygen carrier was almost improved, and it
obtained a higher ethylene selectivity. These results show that the introduction of Ce
is effective in improving the CL-ODH reaction performance of the LaMnO3 substrate.
Among all oxygen carriers, 0.3LCMO exhibited the highest activity for ethane conversion
and moderate ethylene selectivity. While 0.1LCMO had a higher ethylene selectivity, the
activity was the worst. Once the Ce-doping content was above 0.3, the activity or ethylene
selectivity of the Ce-doped samples was further improved with the Ce content. Therefore,
0.3LCMO is considered to have the most suitable Ce doping ratio.
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2.5. Cyclic Stability

The excellent stability and recyclability of perovskite-type catalysts at high tempera-
tures are critical for multiple redox cycles in the utilization of chemical looping. Therefore,
the 0.3LCMO sample with the best reaction performance was subjected to 20 consecutive
cycles of redox tests, and the reaction results are shown in Figure 8. In the ethane ODH step,
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the conversion of ethane fluctuated slightly between 35–40%, while ethylene selectivity
remained in the range of 25–30%, and the yield did not decline significantly after 20 cycles.
The XRD results (Figure 9) can further confirm the structural stability of the 0.3LCMO
sample. The sample after the re-oxidation cycle obtained the same XRD patterns as the
fresh sample, and the characteristic peaks after successive redox cycles were dominated by
LaMnO3 characteristic peaks. In addition, it is noted that the sample showed weak peaks
at 2θ = 34.9◦ and 2θ = 40.5◦ after cycling, which corresponded to MnO [34]. The SEM-EDS
results (Figures 10 and 11) show that the structure of the circulating sample remains good
after the cycle, and all elements are evenly distributed in the oxygen carrier.
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3. Experimental Section
3.1. Redox Catalyst Preparation

The La1-xCexMnO3+δ (x = 0, 0.1, 0.2, 0.3, 0.4) oxygen carriers used in this work were all
prepared by a simple sol–gel method described elsewhere [45–48]. Firstly, La (NO3)3•6H2O
(Aladdin, 99.99% purity), Ce (NO3)3•6H2O (Aladdin, 99.95% purity) and Mn (NO3)2
(Rhawn,50 wt.% in solution) were dissolved in deionized water with a certain molar ratio
(e.g. La0.9Ce0.1MnO3+δ, La(NO3)3•6H2O: Ce(NO3)3•6H2O: Mn (NO3)2 = 0.9:0.1:1), and
the total nitrate concentration reached 1 mol/L. Then citric acid (C6H8O7•H2O, Aladdin,
≥99.5% purity) was added to the solution, and the molar ratio of citric acid to total nitrate
ions was 3:1. After the mixture was stirred in a water bath at 60 ◦C for 30 min, glycol solution
(C2H6O2, Aladdin, ≥99.5% purity) was added, and the molar ratio of glycol solution to
citric acid was 2:1. The solution was heated to 80 ◦C under constant stirring (approximately
24 h) until a sol-like viscous substance formed. The gel was dried in a blast drying oven at
120 ◦C for 24 h. Finally, the sample was decomposed at 350 ◦C for 2 h and then calcinated
at 1000 ◦C for 8 h in a muffle furnace; the heating rate of the calcination was 10 ◦C/min.
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Eventually, five samples were attained, and they were labeled as LMO, 0.1LCMO, 0.2LCMO,
0.3LCMO, and 0.4LCMO, respectively. All samples were ground and sieved into the size
range of 0.45–0.9 mm for reaction testing.

3.2. CL-ODH Experiments

The reaction performance of ethane CL-ODH was tested in a micro fixed-bed quartz
tube reactor under atmospheric pressure; the length of the catalyst bed was 300 nm. In this
experiment, the length of the quartz tube was 440 mm, the outer diameter was 8 mm, and
the inner diameter was 6 mm. The amount of redox catalyst was 1.5 g. The appropriate
amount of quartz wool was used to fix the catalyst on its upper and lower sides, but also to
reduce the gas flow in the heated reaction area.

The whole fixed-bed reaction was divided into two stages: reduction and oxidation.
In the reduction stage, the fixed-bed reactor acted as a fuel reactor and was heated to the
reduction temperature in pure argon at 10 ◦C/min. Then, the atmosphere was switched
to 40% ethane/balance nitrogen, and the air flow rate was 30 mL/min. After that, the
argon gas was blown at the same speed and gas bags were used to collect all the tail gas at
this stage. Next was the oxidation stage; here, the fixed-bed reactor acted as an air reactor,
using 21% oxygen/balanced nitrogen to oxidize the catalyst; argon was also used for line
purging.

Before the performance test, in order to explore the potential oxygen capacity of the
prepared oxygen carrier, a continuous pulse experiment was carried out. After the reactor
was filled with reaction gas (40% ethane/balance nitrogen) for 1 min, it was purged with
argon for 2 min to complete a single pulse. Then, it was pulsed ten times continuously to
observe the best performance time. All samples adopted the performance data at the same
time. Each experiment was repeated three times.

In order to test the cycle stability of the materials, redox cycle experiments were carried
out for the materials with the best performance. The reaction temperature was set to 700 ◦C,
reaction gas was injected for 1 min in the reduction phase, and it was purged with argon
for 2 min. Then, 21% O2 (N2 as balance gas) was used in the oxidation stage, and the flow
rate was 20 mL /min for 4 min.The reactor was purged for 4 min by 30 mL/min argon
between each redox cycle.

A Shimadzu GC-2014 gas chromatograph equipped with a flame ionization detector
(FID, for hydrocarbon analysis) and two thermal conductivity detectors (TCD, for CO/CO2
and H2 analysis, respectively) was used to test the exhaust of the phone. According to the
carbon balance, the C2H6 conversion, C2H4 selectivity, and C2H4 yield can be calculated
using the following formulas:

Conversion of ethane(%) =
introduced ethane− residual ethane

introduced ethane
× 100% (4)

Selectivity of ethylene(%) =
produced ethylene
converted ethane

× 100% (5)

Yield of ethylene(%) =
produced ethylene
introduced ethane

× 100% (6)

3.3. Characterization Techniques

X-ray diffraction (XRD) was used to analyze the crystal structure of the samples. The
test conditions were the following: Cu Kα radiation, a wavelength of λ = 1.5406 A, a
scanning speed of 15◦/min, a target voltage of 40 kV, a target current of 40 mA, and a
scanning angle of 15–80◦. The specific surface area of the catalyst was measured by the
JW-BK112 automatic physical adsorption analyzer using the Brunauer Emmett Teller (BET)
theory. Before the test, the samples were dried in a vacuum at 300 ◦C for 3 h to completely
remove the adsorbed water vapor and other impurities. Then, the pretreated samples were
tested at low temperatures with liquid nitrogen (−196 ◦C) to obtain the adsorption and
analytical curves. SU-5000 field emission scanning electron microscopy (SEM) was used to
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observe the microstructure of the catalyst under the conditions of 3 kV accelerating voltage
and 5 mm working distance. At the same time, an XFlash6110 energy-dispersive spectrum
analyzer (EDS) was used to analyze the element content of the catalyst. It is worth noting
that in an SEM test, the sample needs to be treated with gold spraying before observation.

A hydrogen temperature programmed reduction (H2-TPR) experiment was performed,
using a PCA-1200 full-automatic temperature program of Beijing Builder Electronic Tech-
nology Company. First, the sample (0.01~0.015 g) was heated to 300 ◦C at 10 ◦C/min
under 30 mL/min nitrogen atmosphere and kept constant for 1 h to remove moisture and
adsorbed gas, and then cooled to room temperature naturally. In the reduction process,
5% H2/Ar gas (the gas flow rate is 30 mL/min) was used and the temperature was in-
creased to 900 ◦C (the heating rate iwas 10 ◦C/min) to obtain the H2-TPR curve. Oxygen
temperature programmed desorption (O2-TPD) experiments were carried out using the
same chemisorption instrument; in this experiment, the sample quality was 0.1~0.15 g, and
the gas flow rate of the gas used was 30 mL/min. The pretreatment process of the samples
was the same as that of the H2-TPR experiment. After that, the pretreated samples were
adsorbed in a pure oxygen environment for 1 h at 60 ◦C, and then switched to a helium
atmosphere. After the TCD signal was stable, the temperature rate was increased to 900 ◦C
at 10 ◦C/min, and signal data were recorded. The X-ray photoelectron spectroscopy (XPS)
test used the ESCALAB 250 Xi multifunctional and high-performance surface analyzer of
the US Thermo-Fisher Scientific Company. The experimental conditions were Al Kα rays
(hν = 1486.6 eV) as the excitation source, and a power of 150 W. With channel energies of
20 eV and 100 eV, the total spectrum and the single element spectrum of C, La, Mn, Ce and
O were obtained, respectively.

4. Conclusions

In this study, LaMnO3 redox catalysts, modified with different proportions of cerium,
were prepared by the sol–gel method for the CL-ODH reaction of ethane. Their properties
were characterized by XRD, SEM, BET, XPS, H2-TPR, O2-TPD, etc. XRD shows that a
CeO2 phase is formed in Ce doped LaMnO3, and the introduction of Ce4+ will cause
the lattice distortion of calcium titanium. From the XPS results, it can be concluded that
Ce4+ will promote the conversion of Mn4+ to Mn3+, which is conducive to improving the
ethylene conversion rate. The increase in active oxygen species plays a positive role in
the reaction activity of the samples. Among all the catalysts, 0.3LCMO showed the best
performance in the ODH reaction process, obtaining a 22% ethane conversion and 57%
ethylene selectivity; this was improved compared with the substrate LaMnO3, and showed
a higher stability in the redox cycle experiment. This study makes a new attempt to further
the design and development of perovskite-type redox catalysts; it also lays a foundation
for the development of high-performance oxygen carriers for the ethane CL-ODH reaction.
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