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Abstract: Metal phase molybdenum disulfide (1T-MoS2) is considered a promising electrocatalyst for
the hydrogen evolution reaction (HER). In this work, an interface engineering-induced strategy is
reported to prepare a 1T-MoS2/NiS heterostructure. The 1T-MoS2/NiS heterostructure exhibits an
enhanced HER activity compared with that of the 1T-MoS2 in 1.0 M KOH. It achieves an overpotential
of 0.12 V at a current density of 10 mA cm−2 with a Tafel slope of 69 mV dec−1. The density functional
theory (DFT) calculations reveal that the interface engineering-induced 1T-MoS2/NiS heterostructure
exhibits regulated electronic states of the S sites in 1T-MoS2, thus promoting the HER activity. This
work demonstrates that tuning the electronic structure through interface engineering to enhance the
intrinsic activity of electrocatalysts is a feasible strategy.

Keywords: interface engineering; heterostructure; 1T-MoS2/NiS; hydrogen evolution reaction

1. Introduction

Molybdenum disulfide (MoS2) is regarded as a promising electrocatalyst for the hydro-
gen evolution reaction (HER) due to its abundant edge sites [1–5]. However, the catalytic
performance is not as expected in practical applications. In the past years, enormous efforts
have been devoted to fabricating various MoS2 electrocatalysts to improve the HER activity,
such as adjusting the size [6], regulating the layer number [7,8], heteroatom doping [9],
creating vacancies [10], phase engineering [11] and interface engineering [12–14]. The 1T
phase MoS2 (octahedral structure) catalysts have attracted significant attention because of
the dense active sites on their basal plane and edge site [15]. The metallic 1T-MoS2 exhibits
a conductivity that is about six orders of magnitudes higher than that of the semiconductor
2H-MoS2, which ensures a fast charge transfer during the electrode reaction [16]. However,
1T-MoS2 is thermodynamically metastable, which can spontaneously transform into 2H-
MoS2 at a certain temperature [17]. The traditional synthesis methods of 1T-MoS2 always
involve harsh conditions and a complex process, such as the alkali metal intercalation or
exfoliation process, making it difficult to synthesize in batches [18].

In recent years, hybrid materials, which feature heterostructures, have attracted
much attention due to their decent HER electrocatalysis activity. The catalysts, such
as Ni3S2@MoS2 [19], 1T-MoS2/NiS2 [20], MoS2/NiS [21], MoS2/NiS nanoflowers [22],
etc., have been explored. Notably, the interface engineering-induced strategy has been
developed to prepare the 1T-MoS2, which possesses easy operation, a low energy con-
sumption and high conversion rate [20,23]. Theoretical and experimental studies revealed
that interface engineering can trigger the slip of S atoms, thus transforming the 2H to the
1T phase [24]. For example, Park et al. reported an edge-aligned 2H-MoS2 and reduced
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graphene oxide heterointerface-induced interface charge transfer, resulting in a phase con-
version of 2H-MoS2 to 1T-MoS2 [17]. Moreover, the obtained heterostructure can regulate
the electronic structure of the 1T-MoS2, thus improving the intrinsic electrocatalytic activity
of HER. Song et al. reported a 1T-MoS2/CoS2 heterostructure by an interface engineering-
induced in situ growth with molybdate cobalt oxide nanowire as a precursor and thiourea
as a sulfur source [25]. The obtained MoS2/CoS2 heterostructure yields a regulated elec-
tronic structure at the interface, thus achieving a near zero Gibbs free energy for hydrogen
adsorption. Therefore, it is plausible to develop an interface engineering-induced strategy
to fabricate highly conductive 1T-MoS2 with a modulated electronic structure at its interface
to boost the HER.

In line with the above understanding, a two-dimensional 1T-MoS2/NiS heterostruc-
ture was prepared by an interface engineering-induced strategy to boost the HER in alka-
line media. The physiochemical characterizations reveal that the obtained 1T-MoS2/NiS
features a typical heterostructure with interlinked 1T-MoS2 and NiS. The 1T-MoS2/NiS
heterostructure shows a strong electronic interaction between 1T-MoS2 and NiS. Density
functional theory (DFT) calculations reveal that the electrons were transferred from Ni to
the adjacent S in 1T-MoS2, thus facilitating the chemical adsorption step of the HER. The
electrochemical results confirm that the 1T-MoS2/NiS heterostructure exhibits an improved
HER electrocatalytic activity compared with that of the 1T-MoS2.

2. Results and Discussion
2.1. Material Synthesis and Characterization

The 1T-MoS2/NiS heterostructure is synthesized by an interface engineering-induced
strategy with a two-dimensional Ni nanosheet (Figure S1) as the substrate, as illustrated
in Scheme 1. First, the Ni nanosheets are dispersed in a mixed solution of ethanol and
deionized water with MoO3 as a Mo precursor and KSCN as a sulfur source. Then, the
above solution is subjected to a solvothermal treatment at 180 ◦C for 24 h to obtain the
1T-MoS2/NiS heterostructure. The possible growth mechanism is as follows: Under the
high-temperature and high-pressure conditions, the active metallic Ni is easily oxidized to
Ni2+ and reacts with the sulfur source to form NiS at the initial stage. Then, the NiS serves
as the substrate to form composite structures [26]. The MoO3 (Mo VI) is slowly reduced to
Mo (IV) in the presence of ethanol, and the resultant Mo (IV) reacts with SCN− to produce
MoS2 on the NiS surface to form heterostructures [21,27].
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Scheme 1. Schematic illustration of the synthesis process.

The scanning/transmission electron microscopy (SEM/TEM) is employed to charac-
terize the microscopic morphology of the synthesized materials (Figure 1a,b). It is seen that
the 1T-MoS2/NiS heterostructure shows a distinct nanosheet-like morphology. Scanning
transmission electron microscopy–energy dispersive X-ray (STEM-EDX) element map-
ping results confirm the presence of Ni, Mo and S elements and the uniform distribution
(Figure 1c). The high-resolution TEM (HRTEM) image shows well-resolved lattice fringes
with a d-spacing of 0.278 nm, which correspond to the (300) lattice plane of NiS (Figure 1d).
Remarkably, the region marked with yellow corresponds to the crystal structure of 1T
phase MoS2 (Figure 1e,f) [28,29]. The above results suggest the successful fabrication of
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the 1T-MoS2/NiS heterostructure by the interface engineering-induced strategy [25]. In
comparison, the 2H-MoS2 is prepared without the presence of the Ni nanosheet, which
also exhibits a nanosheet-like morphology as the 1T-MoS2/NiS heterostructure (Figure S2).
The above results suggest that the Ni nanosheet plays a significant role in inducing the
formation of the 1T-MoS2 phase.
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Figure 1. (a) SEM image, (b) TEM image and (c) STEM-EDX elemental mapping of the 1T-MoS2/NiS;
(d) HRTEM image on the basal plane of 1T-MoS2/NiS and (e,f) zoom-in view of the selected regions
and the lattice schematic of 1T-MoS2.

X-ray diffraction (XRD) is used to identify the crystal structure of the prepared catalysts
(Figure 2a). As shown in Figure 2a, the diffraction peaks at 14.1◦, 32.9◦ and 58.8◦ correspond
to the (002), (100) and (110) planes of the MoS2 (PDF#75-1539) for both 1T-MoS2 and 2H-
MoS2, respectively. In addition, the broadened diffraction peaks suggest a low crystallinity
of the MoS2 electrocatalysts. While the diffraction peaks of 1T-MoS2/NiS at 18.4◦, 30.3◦,
32.2◦, 35.7◦, 40.4◦ and 48.8◦ are matched well with (111), (101), (300), (021), (211) and
(131) planes of hexagonal phase NiS (PDF#12-0041), respectively, it is worth noting that no
obvious peak of 1T-MoS2 was detected in the 1T-MoS2/NiS heterostructure, which may be
due to its relatively low crystallinity compared with the high crystallinity NiS [30].
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Figure 2. (a) XRD spectra and (b) Raman spectra of the 2H-MoS2, 1T-MoS2 and 1T-MoS2/NiS.

The Raman spectroscopy is further used to confirm the crystal structure of the 1T-
MoS2/NiS heterostructure. A crucial difference between 2H-MoS2 and 1T-MoS2 is the
symmetry of the S atoms in their structures. It is seen that the 2H-MoS2 exhibits two main
characteristic peaks of E1

2g (383 cm−1) and A1g (408 cm−1). The E1
2g peak involves the

molecular vibrations mode of Mo and S atoms in the 2g layer, while the A1g peak involves
the molecular vibration mode of S atom symmetry outside the layer along the c-axis [31].
For the 1T-MoS2 and 1T-MoS2/NiS heterostructure, there are four new characteristic peaks
that can be observed at J1 (147 cm−1), J2 (236 cm−1), E1g (283 cm−1) and J3 (335 cm−1),
confirming the existence of 1T phase MoS2 [32]. This result further confirms that the
interface engineering induced the formation of the 1T-MoS2 phase.

The elemental composition and chemical states are determined by X-ray photoelectron
spectroscopy (XPS), as shown in Figure 3. The XPS survey spectra of 1T-MoS2 and 1T-
MoS2/NiS show the signals of Mo, S, O and C (Figure 3a). The presence of O may be
attributed to the surface oxidation of the materials, while C originated from the carbon
substrate. In the 1T-MoS2/NiS heterostructure, the Ni is detected and the atomic ratio of
Mo to Ni is around 3:1. It is seen that the peaks around 228.6 and 231.9 eV correspond to
the Mo 3d3/2 and Mo 3d5/2, respectively (Figure 3b). It is seen that the Mo 3d3/2 and Mo
3d5/2 of 1T-MoS2/NiS shift to lower binding energies than that of the 1T-MoS2, indicating a
strong electronic interaction between the 1T-MoS2 and the NiS species in the 1T-MoS2/NiS
heterostructure [33]. Similarly, the S 2p peak of 1T-MoS2/NiS also shifts to lower binding
energies than that of the 1T-MoS2 (Figure 3c). The detailed XPS analysis of the Mo 3d, Ni 2p
and S 2p are shown in Figure 3d–f. It is seen that the high-resolution Mo 3d spectrum of the
1T-MoS2/NiS is mainly deconvoluted into four peaks of Mo 3d5/2, Mo 3d3/2, S 2s and Mo6+

(Figure 3d). The two characteristic peaks of Mo 3d5/2 (228.3 eV) and Mo 3d3/2 (231.3 eV)
correspond to the production of Mo4+ in 1T-MoS2/NiS [20]. The peaks located at around
229.5 eV and 232.4 eV can be attributed to the Mo4+ in the 2H phase, which is ~1.1 eV
higher than the corresponding peaks in 1T-MoS2 (red line) [34]. Based on the analysis
and discussion of the high-resolution Mo 3d spectra and the fitting results [35], it is worth
noting that the relative content of the 1T phase (red line) in the catalyst is estimated to be
~38.9%, and the 1T/2H phase ratio was determined to be 0.64. The peak at ~225.9 eV can
be allocated to S 2s [30], Moreover, the peaks located at 234.3 eV and 235.6 eV correspond
to Mo6+, which possibly arises from the surface oxidation of Mo4+ when exposed to air [36].
The high-resolution Ni 2p spectrum of the 1T-MoS2/NiS is deconvoluted into four peaks
of Ni 2p1/2 (874.4 eV), Ni 2p3/2 (856.5 eV) and two satellite peaks (861.3 and 879.4 eV)
(Figure 3e), which correspond to the characteristics peaks of Ni2+ [19]. In the S 2p spectrum
(Figure 3f), the peak at 164.3 eV is associated with bridging disulfides S2

2-, implying the
unsaturated S atoms on NiS and MoS sites [37,38]. The peak at 161.1 eV (S 2p3/2) and
162.5 eV (S 2p1/2) is consistent with S2- species in 1T-MoS2 [39,40].
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(d) Mo 3d, (e) Ni 2p and (f) S 2p.

2.2. Electrochemical Activity

Electrocatalytic activity of the as-prepared 1T-MoS2/NiS heterostructure towards the
HER is evaluated in 1.0 M KOH. For comparison, the HER electrocatalytic activity of
the Ni-doped MoS2 (Ni-MoS2), 1T-MoS2, 2H-MoS2 and NiS are also examined under the
same conditions. As shown in Figure 4a,b, carbon fiber paper (CFP) exhibits negligible
HER activity compared to the obtained electrocatalysts. It is seen that the 1T-MoS2 shows
a much lower overpotential of 0.19 V than that of the 2H-MoS2 (0.29 V) at the current
density of 10 mA cm−2 (Figure 4a,b), which may be attributed to its increased conductivity
and active sites. It is reported that the 1T-MoS2 exhibits an inherent conductivity, thus
promoting the charge transfer of HER, and both the basal plane and edge are active
sites [41]. Among the electrocatalysts, the 1T-MoS2/NiS heterostructure shows the lowest
overpotential of 0.12 V at the current density of 10 mA cm−2, which is lower than that of
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1T-MoS2. In particular, this trend is still maintained at a high current density of 100 mA
cm−2, and the results are summarized in Figure 4b. Moreover, 1T-MoS2/NiS shows a much
higher overpotential than that of the commercial Pt/C electrocatalyst (0.03 V) at a current
density of 10 mA cm−2, while attaining comparable performance at high current densities
(100 mA cm−2) (Figure S3).
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To further evaluate the HER kinetics of the catalysts, the Tafel slopes are obtained by lin-
early fitting the polarization curves of HER based on the Tafel equation [42–44]. As shown
in Figure 4c, the 1T-MoS2/NiS heterostructure shows the lowest Tafel slope compared with
the other prepared electrocatalysts, indicating the fastest kinetic of 1T-MoS2/NiS (Figure 4c).
The Tafel slope of the 1T-MoS2/NiS is 69 mV dec−1, indicating the Volmer–Heyrovsky
mechanism of the HER pathway [45,46]. The electrochemical impedance spectroscopy (EIS)
is also employed to study the charge transfer resistance (Rct) of the electrocatalysts. It is
seen that the 1T-MoS2/NiS exhibits a charge transfer resistance of ~0.4 Ω, which is much
lower than that of 1T-MoS2 (~ 2.9 Ω) (Figure S4). This result indicates that the strong inter-
action between NiS and 1T-MoS2 can significantly facilitate charge transfer. The detailed
mechanism analysis of the electrocatalytic activity enhancement is further explored by the
density functional theory (DFT) calculations (see below).

Finally, the stability of the as-prepared 1T-MoS2/NiS is evaluated by chronoamperom-
etry, as shown in Figure 4d. It is seen that the 1T-MoS2/NiS exhibits good stability with
a slight degradation at an overpotential of −0.12 V. It is worth noting that the long stable
performance is maintained even at high current densities (black line), the degradation
of which we attribute to the partial shedding of the catalyst. As shown in Figure S7 and
Table S1, the prepared 1T-MoS2/NiS heterostructure is equipped with low overpotential
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and a small Tafel slope, which indicate the merits of high intrinsic activity and fast HER ki-
netics, making the 1T-MoS2/NiS heterostructure one of the promising molybdenum-based
sulfide electrocatalysts.

2.3. Mechanism Analysis of the Electrocatalytic Activity Enhancement

To further investigate the reason for the enhanced HER activity of 1T-MoS2/NiS, the
DFT calculations and electronic structure analysis are performed on CP2K 8.1 package.
The models of 1T-MoS2 and 1T-MoS2/NiS are constructed based on the HRTEM results
(Figure 1d,e), as shown in Figures S5 and S6. The electronic structure is investigated to
understand the effect of interface engineering. As displayed in Figure 5a, the location of the
S orbital relative to the Fermi energy level in 1T-MoS2/NiS is higher than the counterpart of
1T-MoS2. The location of S orbital shifts to the Fermi level, resulting in a decreased binding
energy [47], which is consistent with the XPS analysis (Figure 3c). As previously reported,
the H adsorption on the S site of 1T-MoS2 is weak, the S orbital shifts to the Fermi level can
strengthen the adsorption free energy of H, thus promoting the chemical adsorption step
of the HER [48]. The charge density difference map of the 1T-MoS2/NiS heterostructure
exhibits a strong electronic interaction between the 1T-MoS2 and NiS, in which the electrons
are transferred from Ni to the adjacent S in 1T-MoS2 (Figure 5b). These results suggest that
the introduced NiS species regulate the electronic states of S in 1T-MoS2, thus modifying
the adsorption free energy of hydrogen, and finally enhancing the HER activity.

Catalysts 2022, 12, x FOR PEER REVIEW 7 of 10 
 

 

2.3. Mechanism Analysis of the Electrocatalytic Activity Enhancement 

To further investigate the reason for the enhanced HER activity of 1T-MoS2/NiS, the 

DFT calculations and electronic structure analysis are performed on CP2K 8.1 package. 

The models of 1T-MoS2 and 1T-MoS2/NiS are constructed based on the HRTEM results 

(Figure 1d–e), as shown in Figure S5 and S6. The electronic structure is investigated to 

understand the effect of interface engineering. As displayed in Figure 5a, the location of 

the S orbital relative to the Fermi energy level in 1T-MoS2/NiS is higher than the counter-

part of 1T-MoS2. The location of S orbital shifts to the Fermi level, resulting in a decreased 

binding energy [47], which is consistent with the XPS analysis (Figure 3c). As previously 

reported, the H adsorption on the S site of 1T-MoS2 is weak, the S orbital shifts to the Fermi 

level can strengthen the adsorption free energy of H, thus promoting the chemical adsorp-

tion step of the HER [48]. The charge density difference map of the 1T-MoS2/NiS hetero-

structure exhibits a strong electronic interaction between the 1T-MoS2 and NiS, in which 

the electrons are transferred from Ni to the adjacent S in 1T-MoS2 (Figure 5b). These results 

suggest that the introduced NiS species regulate the electronic states of S in 1T-MoS2, thus 

modifying the adsorption free energy of hydrogen, and finally enhancing the HER activ-

ity. 

 

Figure 5. (a) Projected density of states (PDOS) of catalysts with the Fermi level set to zero. (b) the 

side view of the charge density distribution of 1T-MoS2/NiS, showing electron transfer from NiS to 

1T-MoS2, with cyan and pink exhibiting the increase and decrease in electron density, respectively. 

3. Conclusions 

A novel 1T-MoS2/NiS nanosheet heterostructure was developed for the HER by an 

interface engineering-induced strategy. The obtained 1T-MoS2/NiS electrocatalyst exhib-

ited an enhanced HER activity compared with that of 1T-MoS2. DFT calculations revealed 

that the obtained 1T-MoS2/NiS heterostructure can modulate the electronic structure of S 

by increasing its electronic density states and shifting towards the Fermi level. The S or-

bital shifts to the Fermi level can facilitate the chemical adsorption step of the HER, thus 

enhancing the HER activity. This work may provide fundamental insights and strategies 

for the rational design of efficient HER electrocatalysts by manipulating the electronic 

structure. 

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/xxx/s1, Experimental section; Figure S1: SEM image, (b) TEM image and (c) XRD 

pattern of the Ni nanosheets; (d) AFM image and (e–f) corresponding thicknesses, Figure S2: (a) 

SEM image, (b) TEM image and (c) HRTEM image of the 2H-MoS2; (d) crystal structure of 2H-MoS2 

nanosheets, Figure S3: (a) Polarization curves (without iR correction) of 1T-MoS2/NiS and commer-

cial Pt/C, Figure S4: Nyquist plots of 1T-MoS2/NiS and 1T-MoS2 (inset is an enlarged view of 1T-

MoS2/NiS), Figure S5: Side and top views of the optimized slab models of 1T-MoS2, Figure S6: Side 

view and top view of the optimized plate model of the 1T-MoS2/NiS, Figure S7: Performance com-

parison chart between different materials, Table S1: Comparisons of HER performance of the 

Figure 5. (a) Projected density of states (PDOS) of catalysts with the Fermi level set to zero. (b) the
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1T-MoS2, with cyan and pink exhibiting the increase and decrease in electron density, respectively.

3. Conclusions

A novel 1T-MoS2/NiS nanosheet heterostructure was developed for the HER by an in-
terface engineering-induced strategy. The obtained 1T-MoS2/NiS electrocatalyst exhibited
an enhanced HER activity compared with that of 1T-MoS2. DFT calculations revealed that
the obtained 1T-MoS2/NiS heterostructure can modulate the electronic structure of S by
increasing its electronic density states and shifting towards the Fermi level. The S orbital
shifts to the Fermi level can facilitate the chemical adsorption step of the HER, thus enhanc-
ing the HER activity. This work may provide fundamental insights and strategies for the
rational design of efficient HER electrocatalysts by manipulating the electronic structure.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/catal12090947/s1, Experimental section; Figure S1: (a) SEM image,
(b) TEM image and (c) XRD pattern of the Ni nanosheets, (d) AFM image and (e–f) corresponding
thicknesses, Figure S2: (a) SEM image, (b) TEM image and (c) HRTEM image of the 2H-MoS2,
(d) crystal structure of 2H-MoS2 nanosheets, Figure S3: (a) Polarization curves (without iR correction)
of 1T-MoS2/NiS and commercial Pt/C, Figure S4: Nyquist plots of 1T-MoS2/NiS and 1T-MoS2 (inset
is an enlarged view of 1T-MoS2/NiS), Figure S5: Side and top views of the optimized slab models

https://www.mdpi.com/article/10.3390/catal12090947/s1
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Catalysts 2022, 12, 947 8 of 10

of 1T-MoS2, Figure S6: Side view and top view of the optimized plate model of the 1T-MoS2/NiS,
Figure S7: Performance comparison chart between different materials, Table S1: Comparisons of HER
performance of the recently reported MoS2-based electrocatalysts in 1.0 M KOH. References [49–64]
are cited in the supplementary materials.
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