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Abstract: Herein, a simple, cost-effective, and in-situ environmentally friendly approach was adopted
to synthesize carbon dot-adorned silver nanoparticles (CDs@AgNPs) from yellow myrobalan (Termi-
nalia chebula) fruit using a hydrothermal treatment without any additional reducing and or stabilizing
agents. The as-synthesized CDs@AgNP composite was systematically characterized using multiple
analytical techniques: FESEM, TEM, XRD, Raman, ATR-FTIR, XPS, and UV-vis spectroscopy. All the
results of the characterization techniques strongly support the idea that the CDs were successfully
made to adorn the AgNPs. This effectively synthesized CDs@AgNP composite was applied as
a catalyst for the degradation of organic dyes, including methylene blue (MB) and methyl or-
ange (MO). The degradation results revealed that CDs@AgNPs exhibit a superior catalytic activity
in the degradation of MB and MO in the presence of NaBH4 (SB) under ambient temperatures.
In total, 99.5 and 99.0% rates of degradation of MB and MO were observed using CDs@AgNP
composite with SB, respectively. A plausible mechanism for the reductive degradation of MB
and MO is discussed in detail. Moreover, the CDs@AgNP composite has great potential for
wastewater treatment applications.

Keywords: Terminalia chebula; silver nanoparticles; catalytic degradation; methylene blue; methyl
orange; organic dyes

1. Introduction

Today, nanomaterials with different architecture and supports play key roles in indus-
trial catalysis. They provide exciting opportunities for dealing with various chemical trans-
formations and environmental challenges [1–5]. The catalytic processes are mainly classified
into three categories, including homogeneous, heterogeneous, and enzyme/biocatalysis,
which are based on the phase nature of the catalyst [6,7]. Among these, the heterogeneous
catalytic process is industrially and environmentally important due to its application in
biologically important chemical transformations and environmental remedies such as dye
degradation, pesticide removal, and photocatalytic dye degradation [8–11]. Generally,
heterogeneous catalysts are solid materials that increase the rate of a chemical reaction and
remain unchanged after the completion of the reaction. The unchanged catalysts can be
quickly recovered and recycled. Thus, dye degradation with the help of heterogeneous
catalysts is an interesting topic among environmental scientists. Based on reports, noble
metal nanoparticles, such as gold, silver, and palladium nanoparticles, show excellent cat-
alytic activities in the reduction/degradation of toxic dyes by aqueous sodium borohydride
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(SB) [12–14]. However, the stability of these nanoparticles is limited, and, hence, carbon-
supported noble metal nanoparticles have been developed as catalysts for the reduction
of dyes and dye effluents, which are highly stable and easily recoverable [15]. Among
these metal nanoparticles, silver nanoparticles (AgNPs) are considered valuable for their
high electrical conductivity, low cost, and high catalytic activity [16–19]. Carbon-supported
AgNPs can be synthesized by various methods, including organometallic grafting, ion
exchange, and the hydrothermal method combined with the reduction of silver ions, where
the hydrothermal-assisted reduction method provides diverse advantages, such as easy
setup, cost-effectiveness, and high stability compared to the other reported methods [20–22].
Methylene blue (MB) and methyl orange (MO) are the two important industrial organic
dyes applied in the printing and textile dyeing industries. Therefore, the waste efflu-
ents of these industries mainly contain MB and MO. High-level exposure to these dyes
causes various illness in human beings and also other living things [23–25]. Thus the
degradation/reduction of MB and MO is significant [26].

Hence, the main aim of this work was to synthesize carbon dot-adorned silver nanopar-
ticles with the benefits of cost-effectiveness and a greener route of synthesis. Terminalia
chebula fruits were utilized as the base material for the synthesis of the carbon dots, as
well as the reducing agent for turning the silver nitrate (AgNO3) into AgNPs. This is
a route for the concurrent synthesis of the carbon dots decorated with silver nanoparticles
(CDs@AgNPs). The resulted CDs@AgNP composite was characterized in detail using
various physicochemical techniques to confirm their structure and compositions. Then,
the structural confirmed CDs@AgNP composite was utilized as a potential heterogeneous
catalyst for the reductive degradation of organic dyes, including MB and MO, in the pres-
ence of SB (NaBH4). The degradation of the organic dyes in the presence and absence of
the catalyst (CDs@AgNP composite) and SB was examined, and the corresponding results
were discussed. All the results suggested that the CDs@AgNP composite acted as the best
catalyst for the degradation of MB and MO.

2. Results and Discussion
2.1. Structural Characterization of the Synthesized CDs@AgNPs Composite

The structural and chemical compositions of the prepared CDs@AgNP composite were
characterized by various techniques, such as XRD, Raman, FESEM, TEM, ATR-FTIR, and
XPS. The optical properties of the CDs@AgNPs were studied using the UV-vis spectrum.
The absorption spectra of the fruit extract and CDs@AgNPs are shown in Figure S1. After
the hydrothermal process, the color of the resultant solution changed from pale yellow to
brownish yellow, which indicated the formation of the CDs@AgNP composite [27]. The
photographic images of the TCE and CDs@AgNP aqueous solutions are displayed in the
inset of Figure S1. The TCE exhibited a base peak at 280 nm respective to the π-π* electronic
transition of the carbonyl phytoconstituents (tannin) of Terminalia chebula. The CDs@AgNP
composite showed a sharp and clear surface plasmon resonance absorbance peak at
425 nm and a shoulder peak at 380 nm. A peak at 425 nm confirmed the formation of the
AgNPs [28,29]. Further, the TCE peak intensity decreased and slightly shifted towards
a higher wavelength, rising to 320 nm from 280 nm in the CDs@AgNPs. This might be due
to the carbonization and complete reduction of the tannins present in the extract. These
results revealed the presence of C=C and C=O bonds in the prepared CDs@AgNPs.

The crystal structure of the CDs@AgNPs was characterized by XRD. As shown in
Figure 1a, the XRD pattern exhibited four sharp peaks, with the 2θ values of 38.1, 44.2,
64.4, and 76.4◦, which are related to the (111), (200), (220), and (311) planes of the Ag-
NPs [30]. This XRD results confirmed the presence of AgNPs in the prepared CDs@AgNPs.
However, patterns responsible for the CDs were missing. This could be because of the
high intensity of the patterns that correspond to the AgNPs, but the observation of CD
patterns was not possible. Further, the CDs@AgNPs were characterized using Raman spec-
troscopy (Figure 1b). In contrast to the XRD results, Raman studies revealed the presence
of CDs and AgNPs in the CDs@AgNPs. The Raman spectrum of the CDs@AgNPs showed
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four predominant peaks. The peaks at 1350, 1575, and 2800 cm−1 are contributed by the D,
G, and 2D bands of CDs, being typical peaks of a graphitic carbon structure [31,32]. The
peaks between 350 and 750 cm−1 are responsible for the AgNPs.
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Figure 1. (a) XRD pattern and (b) Raman spectrum of the synthesized CDs@AgNPs.

Figure 2 shows the FESEM images of the prepared CDs@AgNPs with different magni-
fications. The irregular morphologies of the CDs@AgNPs in the hierarchical process can be
observed (Figure 2a–d). This is because of the very small size of the CDs and AgNPs. How-
ever, the elements present in CDs@AgNPs were demonstrated using elemental mapping
images (Figure 2e–i). This directly indicated that the carbon (C), oxygen (O), nitrogen (N),
and silver (Ag) were homogeneously distributed in the CDs@AgNPs. Furthermore, the
uniform distribution of C, O, N, and Ag elements is revealed by Figure 2i. The C, O, and N
elements in the CDs@AgNPs derive from the plant source, and the element Ag is derived
from the AgNO3. Moreover, the EDAX spectrum in Figure S2 revealed the presence of the
elements C, N, O, and Ag in CDs@AgNPs, along with the platinum and silicon signals that
were used for the sputter coating and crystalline silicon wafer substrate, respectively.

Consistent with the FESEM results, the TEM/HRTEM observation of the CDs@AgNPs,
as indicated by Figure 3, led to the discovery of the irregular morphology of the CDs. The
presence of CDs on the AgNP surface is evident from Figure 3a–e. The HRTEM showed
that the carbon lattice was enclosed on the AgNPs. The size distribution histogram of the
AgNPs (inset Figure 3c) was obtained by measuring the sizes of 100 randomly selected
nanoparticles from the TEM image (Figure 3b). The average AgNP size in the CDs@AgNP
composite was about 20 nm. Furthermore, the HETRM images revealed the spherically
shaped AgNPs, and the particle size was calculated at about 20 nm and was relatively
uniform. The AgNPs had a fine fringe pattern, with a spacing of 0.24 nm, corresponding to
the Ag (111) lattice fringes (Figure 3e). The HRTEM image also showed visible crystalline
lattice fringes, with bright spots in the selected area electron diffraction (SAED) pattern.
This SAED in Figure 3f indicates the crystalline nature of the CDs@AgNPs.

Furthermore, an ATR-FTIR study was performed to identify the functional groups
that were present in the CDs@AgNPs (Figure S3). The spectra of the TCE showed a broad
peak centered at 3250 cm−1, revealing the presence of O–H/N–H bonds. The peaks at 2850
and 2920 cm−1 occurred due to the C–H antisymmetric and symmetric bonds, respectively.
The intense peaks at 1620 and 1050 cm−1 are responsible for the stretching vibrations of the
C=O/C=C and C–O–C bonds, respectively. For the CDs@AgNPs, the broad peaks between
3500 and 3100 cm−1 are responsible for the O–H/N–H bonds [33]. The C–H stretching
vibration was observed at 2870 cm−1 from the graphitic structure of the CDs@AgNPs [34].
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A strong peak at 1650 cm−1 was attributed to the C=O/C–C vibrations. The C–N and
O–H/N–H/C–OH bonds can be observed at 1430 and 1314 cm−1, respectively [35]. The
peaks at 1050 and 826 cm−1 are responsible for the C–O–C and –CH2 groups in the
CDs@AgNPs, respectively [36]. The presence of the AgNPs confirms the peak at
480 cm−1. These results reveal that the CDs@AgNPs were rich in oxygen and nitrogen
functional groups, such as hydroxyl, carbonyl, carboxylic acid, amide, and amino groups.
These nitrogen functional groups could serve as stabilizing agents for the AgNPs.
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XPS measurements were carried out to investigate the chemical compositions and
elemental states of the CDs@AgNPs. As shown in Figure S4, the survey spectrum disclosed
four peaks: C 1 s at 285 eV, Ag 3d at 368 eV, N 1s at 400 eV, and O 1s at 533 eV. Thus, the
prepared CDs@AgNPs were composed of the elements C, O, Ag, and N, with values of
60, 27, 7, and 6% (inset of Figure S4). The high-resolution spectrum of C 1s (Figure 4a) re-
sulted in four peaks at 284.8, 286.0, 287.2, and 288.9 eV, which can be assigned to C=C/C–C,
C–N/C–O, C=O/C=N, and HO–C=O, respectively [37]. The C=C/C–C peak corresponds to
the presence of sp2 graphitic/sp3 hybrid structures in the CDs@AgNPs [38]. The reduction
process of the AgNO3, resulting in the formation of AgNPs, was confirmed by the existence
of a peak at the Ag 3d level [39]. With respect to the deconvolution of the Ag 3d level re-
sults, two peaks at 368.1 and 374.2 eV can be attributed to the 3d5/2 and 3d3/2, respectively
(Figure 4b). This indicated the presence of metallic Ag in the CDs@AgNPs [27,39]. Figure 4c
shows the deconvolution spectrum of the N 1s level that resulted in three peaks at 399.0,
400.0, and 401.6 eV, which can be assigned to C–N–C, C–N–H, and (C)3–N, respectively.
The O 1s spectrum (Figure 4d) reveals the presence of O atoms in the C=O at 531.4 eV,
C–O–C/C–OH at 532.4 eV, and HO–C=O at 533.4 eV [40]. The XPS showed results consis-
tent with those of the ATR-FTIR, and, thus, the overall results of the XPS and ATR-FTIR
validate and confirm that the CDs@AgNPs consisted of many functional groups, such as
carboxyl, hydroxyl, amide, amino, and carbonyl groups.
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2.2. Catalytic Activity of the Synthesized CDs@AgNPs Composite towards the Degradation of
Organic Dyes

The catalytic performance of the CDs@AgNP composite was studied in terms of the
reductive degradation of MB and MO using aqueous SB solution. The catalytic activity of
the CDs@AgNP composite was monitored through visual observation and also by using
UV-vis spectroscopy. In order to confirm the catalytic ability of the CDs@AgNP composite,
as a control experiment, degradations of MB and MO without the CDs@AgNP composite
were conducted. Figures S5–S8 show the UV-vis absorbance spectra of the MB/MO in the
presence of SB (and in the absence of CDs@AgNPs) and in the presence of CDs@AgNPs
(and in the absence of SB), respectively. In these control experiments, insignificant changes
in the characteristic absorbance peaks for MB and MO, centered at 665 and 465 nm, were
observed, respectively. This suggests that the degradation of MO and MB does not only
occur when using a catalyst (the CDs@AgNP composite) or the reductive agent SB.

Conversely, after mixing SB and CDs@AgNPs and their application to MB/MO, the
reductive degradation reaction commenced quickly with the evolution of the hydrogen
gas, which was identified from the color degradation and decrement in the absorbance
intensity, as exhibited by the respective time-dependent UV-vis spectra in Figure 5a,b.
This result confirmed the catalytic activity of the CDs@AgNPs in the degradation of MB
and MO [41–43]. Furthermore, the level of degradation (%) and rate of reaction as per
the pseudo-first-order kinetic model for both MB and MO were calculated. The achieved
degradation levels for the MB and MO dyes were about 99.5 and 99.0%, respectively
(Figure 5c). Figure 5d shows the degradation time vs. ln (At/A0) kinetic graphs of MB
and MO. It is noticeable that the kinetic graphs of MB and MO yielded linear straight lines
with rate constants (slope values) of 0.204 and 0.128 min−1, and the respective linearity
coefficient (R2) values were about 0.985 and 0.986, respectively. This result suggests that
the degradation of MB/MO by the CDs@AgNP composite followed pseudo-first-order
kinetics [44,45]. These catalytic reduction reactions can be explained using the Langmuir–
Hinshelwood model. In this model, SB acts as an electron donor and hydrogen provider.
After the addition of SB to the reaction, the pH of the solution changed to basic, and
hence the surface charge of CDs@AgNP composite was changed to positive. Thus, the
MB/MO and BH4

− ions were concurrently adsorbed on the surface of the CDs@AgNP
composite. Furthermore, the reduction reaction was initiated by relaying electrons from the
donor BH4

− ions acting as electron transfer mediators to the adsorbed MB/MO molecules
through the CDs@AgNP composite. This was evident from the strong effervescence of the
hydrogen gas that evolved, and, subsequently, this action led to the reductive degradation
of MB and MO [46,47]. Furthermore, the visual observations of the MB/MO degradation
in the presence of the CDs@AgNP composites with SB are shown in Figure 6. One can
note the decoloring of the MB/MO aqueous solution by increasing the reaction time. The
decoloring starts within 1 min, and complete decoloring (degradation product-DP) of the
MB and MO was observed within 15 and 20 min, respectively. These photographic images
confirm the effectiveness of the CDs@AgNP composite as a catalyst for the degradation of
MB/MO. In order to ensure the greater activity of the prepared CDs@AgNP composite, the
results of the present work were compared with the recent literature studies on MB/MO
degradation by AgNPs-related composites, and the corresponding results are illustrated
in Table 1. The CDs@AgNP composite achieved the degradation efficiency rates of 99.5
and 99.0% at the reaction times of 15 and 20 min, with the rate constants of 0.204 and
0.128 min−1 for the MB and MO, respectively, results which are significantly comparable
with those of the performances of previously reported Ag-based catalysts [17,44,48–53].
This suggests that the CDs@AgNP composite exerted a high catalytic activity on the MB
and MO in the aqueous medium under atmospheric conditions.

Furthermore, the FESEM images were captured and EDAX elemental mapping analy-
ses of CDs@AgNP composite were performed after the degradation of the organic dyes,
and the corresponding results are shown in Figure S9. The FESEM image of the CDs@AgNP
composite revealed the spherical shape of the AgNPs, and one can see that the particles
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were relatively uniform in shape, with minute variation in size (Figure S9a). The elemental
composition of the CDs@AgNP composite was examined by elemental mapping. The
elemental mapping results of the CDs@AgNP composite confirmed that the concentra-
tions of the different elements, including C, O, N, and Ag, were uniform in the composite
(Figure S9b–e). Furthermore, the uniform distribution of the C, O, N, and Ag elements was
revealed by overlapping elemental mapping, as shown in Figure S9f. Hence, we could
observe an insignificant amount of AgNPs leaching from the CDs@AgNP composite after
the degradation of the organic dyes.
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concentrations of the different elements, including C, O, N, and Ag, were uniform in the 
composite (Figure S9b–e). Furthermore, the uniform distribution of the C, O, N, and Ag 
elements was revealed by overlapping elemental mapping, as shown in Figure S9f. Hence, 
we could observe an insignificant amount of AgNPs leaching from the CDs@AgNP 
composite after the degradation of the organic dyes. 

3. Materials and Methods 
Synthesis of the CDs@AgNP Composite 

Terminalia chebula fruits were dried in sunlight followed crushing into a powder 
using a blender. To every 1 g of powder, 100 mL of distilled water was added and heated 
at 70 °C overnight. The mixture was cooled down and filtered using filter paper. In an 

Figure 6. Photographic images of the MB and MO aqueous solutions with the CDs@AgNP composite
in the presence of NaBH4 at different reaction (degradation) times under ambient conditions.

Table 1. Comparison of the catalytic performances of AgNP-based composites from bio-sources.

Catalyst Reaction
Time (min)

MB/MO
Degradation (%)

Rate Constant
(k) Reference

Ag/Au composite 20 - (MB) 0.668 min−1 [48]
AgNPs/G. arborea 10 100 (MB) - [17]

Ag NPs/peach kernel 10/12 100 (MB/MO) - [49]
Ag NPs/C. arvensis 20 - (MB) 0.108 min−1 [50]

AS-AgNPs 27 97 (MB) 0.0007 s−1 [13]
AgNPs/Marine algae 20 99 (MB) 0.106 min−1 [44]

AgNPs-GS 60 94 (MO) 0.0725 min−1 [51]
AgNPs/PDS 40 88 (MO) 0.00159 s−1 [52]

Ag-ZX 25 100 (MO) 0.305 min−1 [53]
CDs@AgNPs 15/20 min 95.5/99.0 0.204/0.128 min−1 This work
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3. Materials and Methods
Synthesis of the CDs@AgNP Composite

Terminalia chebula fruits were dried in sunlight followed crushing into a powder using
a blender. To every 1 g of powder, 100 mL of distilled water was added and heated
at 70 ◦C overnight. The mixture was cooled down and filtered using filter paper. In
an autoclave reactor, 5 mL of the filtered mixture and 50 mL of 0.01 M AgNO3 were taken
and reacted at 200 ◦C for 24 h. After the reaction time, the mixture was cooled down
and dried using a freeze-dryer. The dried CDs@AgNP composite was utilized for the
characterization using X-ray diffractometry (XRD), Raman and field emission scanning
electron microscopy (FESEM) together with energy-dispersive X-ray (EDX) spectroscopy,
high-resolution transmission electron microscopy (HRTEM), attenuated total reflection
Fourier-transform infrared spectroscopy (ATR-FTIR), and X-ray photoelectron spectroscopy
(XPS). For the degradation analyses, the mixture was used as it is before drying. Scheme 1
illustrates the formation of the CDs@AgNP composite from the Terminalia chebula fruits
extract (TCE) and AgNO3 aqueous solution by a simple one-pot hydrothermal method.

Scheme 1. Formation of the CDs@AgNP composite from the Terminalia chebula fruit and silver nitrate
via the one-step hydrothermal method.

4. Conclusions

In summary, a simple and effective CDs@AgNP catalyst was hydrothermally devel-
oped via a simple one-pot route as a catalyst for the reductive degradation of organic
dyes, including MB and MO. From the ATR-FTIR spectra, we discovered that the plant
extract could reduce and stabilize to form AgNPs, and the strong UV-vis absorbance
of the final product confirmed the formation of the AgNPs. Excellent crystallinity and
spherical-shaped morphology, with a lattice distance of 0.24 nm, were observed from the
XRD, FESEM, and TEM/HRTEM analyses. The EDAX and XPS results demonstrated the
presence of C, N, O, and Ag constituents in the synthesized CDs@AgNP composite. The
XPS results revealed the characteristic peak of the Ag and the surface functionalities of
oxygen- and nitrogen-presented moieties from the TCE. Furthermore, the ATR-FTIR and
XPS revealed functional groups, such as hydroxyl, carbonyl, carboxyl, amide, and amino
groups, in the CDs@AgNPs. The reductive catalytic activities of the CDs@AgNP composite
in the presence of SB against degradation of MB and MO under ambient conditions were
measured as 99.5 and 99.0% within 15 and 20 min, respectively. This degradation followed
pseudo-first-order kinetics. The kinetic graphs of MB and MO dye yielded linear straight
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lines, showing rate constants of 0.204 and 0.128 min−1, with R2 values of 0.985 and 0.986,
respectively. Thus, the present study suggested that the TCE-assisted CDs@AgNP compos-
ite has potential as a reductive catalysts for the degradation of various organic dyes and
could act as a nano-catalyst in other applications.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/catal12090937/s1, Materials, instrumentation methods,
and catalytic degradation measurement of the synthesized CDs@AgNPs, Figure S1. UV-vis spectra
of the Terminalia chebula fruit extract and synthesized CDs@AgNPs, Figure S2. EDAX spectrum of
the synthesized CDs@AgNPs, Figure S3. ATR-FTIR spectra of the Terminalia chebula fruit extract
and synthesized CDs@AgNPs, Figure S4. XPS survey spectrum of the synthesized CDs@AgNPs, and
the inset is a pie chart of the elemental composition of the synthesized CDs@AgNPs, Figure S5. UV-
vis absorbance spectra of MB in the presence of SB at different reaction times, Figure S6. UV-vis
absorbance spectra of MB in the presence of CDs@AgNPs at different reaction times, Figure S7.
UV-vis absorbance spectra of MO in the presence of SB at different reaction times, Figure S8. UV-vis
absorbance spectra of MO in the presence of CDs@AgNPs at different reaction times, Figure S9.
(a) FESEM electron image and (b–e) the corresponding elemental mapping of (b) carbon, (c) oxygen,
(d) nitrogen, and (e) silver in the CDs@AgNPs after the degradation of organic dyes; (f) overlapping
image of all elements (a–e) of the CDs@AgNPs after the degradation of organic dyes.
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