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Abstract: Pure and Cu-doped NiO films were synthesized via a soft chemical process. They were
deposited on glass substrates heated to 400 ◦C. Different atomic percentage ratios (2, 4, 6, 8, and 10%)
of Cu-doping were used. The prepared samples were characterized by several techniques such as
X-ray diffraction for crystallographic study, SEM and AFM for microstructural and morphological
properties, and UV-Visible spectroscopy for optical and photocatalytical analysis. XRD results of
pure and Cu-doped NiO films indicated the formation of NiO polycrystalline phases under a cubic
structure with a favored orientation along the (200) plane noticed in all sprayed films. SEM images
revealed the formation of NiO nanoparticles of spherical forms whose sizes increase and agglomerate
with increasing Cu-doping. At 10% Cu-doping, NiO agglomeration was extended to the whole surface.
AFM images showed a textured and rough surface composed of NiO nanoparticles of average size
varying from 16 to 10 nm depending on Cu-doping concentration. UV-visible spectroscopy confirmed
the transparency of NiO films and their semiconducting character with a band gap ranging from
3.4450 eV to 2.8648 eV. The photocatalytical properties of pure and Cu-NiO films were enhanced
by Cu-doping particles as revealed by the degradation of methylene blue (MB) solution subjected
to irradiation.

Keywords: NiO synthesis; spray pyrolysis; Cu-doping; nanograins; photocatalytic properties

1. Introduction

Transparent Conducting Oxides (TCO) such as ZnO, TiO2, SnO2, CuO, etc., continue
to receive considerable attention due to their outstanding electrical, magnetic, and catalytic
properties [1–4]. They are essential compounds for the development of ultra-high frequency
components, gas sensors, optoelectronics, and batteries [5–7]. As the textile industries are
disposing of unused direct dyes into the aquatic environment, which is posing a serious,
alarming threat to aquatic life, recent studies are increasingly interested in wastewater
treatment because the nanofilms of these materials allow the photodegradation of dyes
rejected by the textile industry [8–11].

As a reminder, dyes are aromatic organic compounds which have the property of
absorbing light and giving color in the visible region. This important property is exploited
in many industries such as textiles, food, cosmetics, medicine, etc., which generate a huge
amount of wastewater containing toxic dyes that pollute the environment. Among the
various dyestuffs, methylene blue (MB) is the most commonly used in the textile industry
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for coloring silk, wool, cotton, etc., but MB, contained in the wastewater discharged by the
textile industry, is toxic and carcinogenic. It is non-biodegradable and can cause a severe
threat to human health and environmental safety. Textile industries release significant
amounts of MB dyes into natural water sources, which is a threat to public health because
of the toxicity of MB, which becomes harmful above a certain concentration [12,13].

Therefore, photocatalysis stands out as one methodology that can be effectively
exploited for the complete mineralization of various dye pollutants present in wastewa-
ter. Photodegradation is an advanced oxidation process which is used in this work for
MB removal.

Currently, nickel oxide (NiO) nanoparticles are particularly attracting the attention of
the scientific community [14–16] for its use in this domain. NiO is one of the parts of this
family of TCO; it is known for its good adsorptive properties and chemical stability. NiO is
one of the p-type semiconductor materials with an optical band gap ranging from 3.6 to
4.0 eV [17,18] and has a wide range of applications, such as gas sensors, photocatalysis, dye-
sensitized, electrochromic coatings, UV photodetector, lightweight structural components
in the aerospace, in ceramic structures, a counter electrode and anode layer of solid, and
counter electrodes oxide fuel cells [19–23]. However, most of these applications require
particles with a small size and a narrow size distribution. With the volume effect, the
quantum size effect, and the surface effect, NiO nanoparticles are expected to possess
many improved properties and even more attractive applications than those of bulk-sized
NiO particles.

NiO nanofilms containing nanoparticles can be produced by several physical and
chemical techniques such as reactive evaporation, molecular beam epitaxy (MBE), mag-
netron sputtering technique, pulsed laser deposition (PLD), spray pyrolysis, sol–gel process,
chemical vapor deposition, and electrochemical deposition [24–26]. Among these methods,
spray deposition has many advantages, such as low cost, simple deposition equipment,
easy fabrication of large-area films, easier adjustment of composition, and being able to
carry out doping at the molecular level.

The spray pyrolysis method, which gave good results in previous works [27–29], was
used here to synthesize NiO nanofilms from Nickel (II) nitrate hexahydrate ((Ni(NO3)2·6H2O)
as the inorganic precursor. We also investigated the influence of copper (Cu) doping on
the quality of NiO films. All deposits were made on glass substrates heated to 400 ◦C.
Investigation and characterization of structural, optical, and photocatalytical properties
of prepared NiO nanofilms were performed using X-ray diffraction, scanning electron
microscopy (SEM), atomic force microscopy (AFM) and UV-visible spectroscopy.

2. Results and Discussion
2.1. Structural and Morphological Properties
2.1.1. XRD Characterization

In Figure 1, we report the X-ray diffractograms of pure NiO thin films and copper-
doped NiO with doping ratios of 2, 4, 6, 8, and 10%. As a first result, all films showed
well-defined peaks with orientations in the (111), (200), (220), (311), (222), and (400) crystal
planes which correspond to 2θ diffraction angles around 37.01◦, 42.95◦, 62.65◦, 75.25◦,
78.94◦, and 94.75◦.

The peaks related to (111) and (200) planes are the most shown and discussed in the
literature [30–32]. They denote that pure and Cu-NiO thin films are polycrystalline and
crystallizes in face-centered cubic. No trace of impurity is observed on these diffractograms,
this shows the high-purity of the nickel oxide deposits. All Cu-NiO films displayed only
NiO peaks, even after adding higher Cu. This may appear unlikely because doping with
transition metals decreases always the intensity of XRD peaks. However, because of the
ionic radius and electronegativity of Ni2+ (rNi2+ = 0.78 Å) and Cu2+ (rCu2+ = 0.82 Å) are
of same of order (rCu2+/rNi2+/ ≈ 1.05), Cu2+ ions can be easily substitute for Ni ions
and fill nickel vacancies without significant lattice distortion. This is why Cu-doped NiO
displayed typical XRD patterns of NiO in good agreement with the works of Chen et al.
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and Gowthami et al. [33,34]. As it can be observed in Figure 1, the peaks are relatively
broadened, and the intensity of the (200) diffraction peaks increases with the increase in
Cu-doping concentration, indicating the enlacement of particle size due to Cu doping.
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Figure 1. XRD patterns of pure and Cu-doped NiO films. (a) Pure NiO, (b) 2% Cu-doped NiO, (c) 
4% Cu-doped NiO, (d) 6% Cu-doped NiO, (e) 8% Cu-doped NiO, and (f) 10% Cu-doped NiO. 
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Figure 1. XRD patterns of pure and Cu-doped NiO films. (a) Pure NiO, (b) 2% Cu-doped NiO, (c) 4%
Cu-doped NiO, (d) 6% Cu-doped NiO, (e) 8% Cu-doped NiO, and (f) 10% Cu-doped NiO.

From XRD spectra, we can determine the lattice parameters a, b, and c of the deposited
films by the relation below. As NiO adopts the NaCl structure, with octahedral Ni2+ and
O2− sites, the lattice parameters are equal (a = b = c).

1
d2

hkl
=

h2 + k2 + l2

a2 (1)

where dhkl is the interplanar spacing determined from Bragg equation [35]:

2 dhkl sinθ = n λ (2)

λ is the wavelength of Cu-Kα radiation (1.54 Å), θ is the diffraction angle, and n is the order
of diffraction (usually n = 1). a, h, k, and l in Equation (1) are the lattice parameter and
Miller indices, respectively.

The values of the parameter a deduced from this relation for the plane (200) for pure
and Cu-doped NiO samples are displayed in Table 1.
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Table 1. Estimation of lattice parameter.

Samples 2θ a (Å) a (Å) from in
Literature

Pure NiO 42.93 4.1092

4.1605–4.1787 [36]
4.16–4.19 [37]

4.204 [38]

2% Cu-doped NiO 43.08 4.1952
4% Cu-doped NiO 43.11 4.1968
6% Cu-doped NiO 43.00 4.2026
8% Cu-doped NiO 43.08 4.2066
10% Cu-doped NiO 43.13 4.2105

From this table, the values of lattice parameter a vary from 4.1092 to 4.2105 Å from
pure to Cu-doped NiO. These values, which vary slightly with Cu-doping, agree well with
those performed in the literature for synthesized NiO films [36–38].

The grain sizes of NiO and Cu-NiO crystallites are estimated from the use of the
following Debye–Sherrer formula [39]:

D =
0.9λ

β(2θ)cosθ
(3)

where λ is the X-ray wavelength, θ is the Bragg diffraction angle, and β is the broadening
of the diffraction peak measured at half of its maximum (FWHM) intensity.

The dislocation density δ, which is defined as the number of dislocation lines per unit
volume of crystal, depends on the nanoparticles sizes and is calculated using the following
formula [40]:

δ =
1

D2 (4)

Micro-strain (ε), which occurs during growth, is affected by the stretching of the crystal
lattice. It is evaluated from the formula [41].

ε =
β(2θ)cosθ

4
(5)

Table 2 summarizes the values of D, ε, and δ for the most intense (200) diffraction peak.

Table 2. Determination of grain size, micro strain and dislocation density.

Samples D (nm) ε × 10–3 δ × 10–3

Pure NiO 6.6125 15.3061 22.80
2% Cu-doped NiO 6.4625 14.9092 14.90
4% Cu-doped NiO 6.4274 16.6267 24.20
6% Cu-doped NiO 5.9303 15.3658 28.43
8% Cu-doped NiO 5.5810 18.6885 32.10
10% Cu-doped NiO 5.2737 17.6454 35.95

From the values of this table, the estimated crystallite size was 6.6125 nm for pure
NiO, and it decreases with increased Cu-doping. Cu-doping seems to have an effect on the
improvement of the crystalline quality by reducing Ni2+ vacancies. Micro-strain (ε), which
occurs during NiO film growth, depends also on cu-doping. It acts on the compression and
on the stretching of the lattice [42]. The dislocation density (δ) decreases with the increase
in Cu-doping. Cu-atoms create imperfections in the crystal by the appearance of the lattice
displacement between different planes of the crystal [43].
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2.1.2. Microstructural Study

The subsurface morphology of NiO nanofilms was studied by scanning electron
microscopy (SEM) combined with EDX. EDX giving quantitative chemical composition
revealed an equivalent proportion of nickel Ni and oxygen O. From Table 3, the atomic
ratio is ≈ 1, which shows that synthesized NiO films are stoichiometric.

Table 3. EDX analysis of chemical species.

Scheme Ni (% at.) O (% at.) Atomic Ratio
(Ni/O) Cu (% at.)

Pure NiO 44.7 48.6 0.91 0
2% Cu-doped NiO 52.1 45.9 1.13 0.1
4% Cu-doped NiO 52 46.3 1.12 0.4
6% Cu-doped NiO 49.8 48 1.03 1.7
8% Cu-doped NiO 47.3 45 1.05 2.9

10% Cu-doped NiO 45.6 44.8 1.01 6.9

Figure 2 shows the distinctive SEM images of pure and Cu- NiO films and their
qualitative chemical composition. So as not to clutter the paper, we have chosen only three
SEM images corresponding to pure, 6, and 10% Cu-doped NiO. As it can be observed:
with increasing Cu-doping, NiO surface is composed of spherical nanoparticles which
agglomerate and increase along the surface with cu-doping. At 10% of Cu atoms, the
substrate becomes completely covered with NiO particles exhibiting nanoagglomerations
continue its formation in becoming microagglomerations.
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Figure 2. SEM images Evolution the NiO microstructure with Cu-doping. (a) Pure NiO, (b) 6%
Cu-NiO, and (c) 10% Cu-NiO.
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2.1.3. AFM Characterization

AFM images of undoped and Cu-doped niO films with different Cu contents are
shown in Figure 3. As in SEM, we reported only AFM images for pure, 6, and 10% Cu-NiO.
The AFM topography of the as-deposited NiO films prepared reveals that the film surface
is rather textured and rough. AFM observations show clear grains whose size depends
on Cu-doping.
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According to the profile plotted on the right of the AFM images, the average size of
pure NiO nanoparticles is greater than 16 nm, while it is 14 and 10 nm for pure, 6, and 10%
Cu-NiO, respectively. As discussed in the XRD paragraph, the decreased NiO nanoparticles
size with Cu-doping improves the crystalline quality.

2.2. Optical Properties

In order to determine the effect of Cu-doping on the optical properties, transmittance
spectra were measured by using UV-visible spectrometry in a double-beam spectropho-
tometer operated in the wavelength range of 300–1100 nm. The obtained results are shown
in Figure 4.
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Figure 4. Transmittance spectra of pure and Cu-doping NiO films.

As it can be observed, the transmittance yield is around 70% for pure NiO films and
is decreasing with increasing Cu-doping. We can split the transmittance spectra into two
ranges: the first one at a wavelength lower than 400 nm for which transmittance is almost
inexistent and where it exhibits the beginning of absorption owing to the direct transition
between the valence and conduction bands. The second is at a wavelength greater than
400 nm showing the transparency of NiO films whose transmittance yield depends on
Cu-doping concentration, in agreement with the literature where Mn, Zn, and Fe doping
were used [44,45]. It is observed that with increasing Cu-doping, there is a decrease in
transmittance and an increase in the absorbance attributed to changes in the crystalline
structure due probably to the increase in NiO film thickness as indicated in XRD results. By
combining the transmittance and absorption data and applying the Tauc’s relation [46], we
have estimated the values of the band gap Eg of NiO.

(αhν)2 = A(hν − Eg) (6)

where α is the absorption yield, hν is the photon energy, A is a constant, and Eg is the band
gap energy.

Eg was obtained from the plot of Equation (6) by extrapolation the linear portion of
the curve to (αhν)2 = 0 which intersects the energy axis (Figure 5).
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The obtained band gap values are presented in Table 4.

Table 4. Different values of band gap energy.

NiO Band Gap (eV) Eg Band Gap from Literature

NiO pure 3.450

3.085–3.116 [47]
3.6–4 [48]

3.83–3.14 [49]

NiO:Cu 2% 3.4051
NiO:Cu 4% 3.2953
NiO:Cu 6% 3.1373
NiO:Cu 8% 2.8954

NiO:Cu 10% 2.8648

From Table 4, the band gap energy values are found in the range of Eg given in
the literature [47–49]. Furthermore, the energy gap of Cu-doped NiO decreases with the
increase in the grain size as discussed in SEM and AFM results. The decrease in Eg can be
attributed to crystallinity improvement of deposited NiO films.

2.3. Photocatalytical Activity

The efficiency of photocatalytical activity to degradation of the organic pollutants by
TCO nanoparticles are of increasing interest [50–53]. Photocatalytical activity describes a
process whereby a semi-conductor nanomaterial such as NiO is excited by UV-radiation
whose energy is equal to or larger than the band gap energy. The radiation is capable of
catalyzing a redox reaction at its surface by creating a charge lying within the TCO band
gap. Photocatalytic activity of the synthesized pure and Cu-NiO films was tested by the
photodegradation of an aqueous solution of methylene blue. To do this, we introduced
deposited NiO and Cu-NiO films in a solution of MB, and we measured its absorbance as
a function of UV-irradiation time. We recorded the decrease in absorbance signal α after
every 30 min. As it can be seen in Figure 6, the absorbance signal is composed of two peaks
at around 613 and 664 nm.
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Figure 6. Effect of NiO nanoparticles on the decrease in Methylene Blue aqueous solution during
UV irradiation.

The signal of the absorbance bands decreases during UV-irradiation time. The signal
degradation is observed to be faster in the case where the Cu-doping is higher. The
interpretation of these results may be explained in terms of electronic excitation processes.

The increase in the degradation rate of MB dye is attributed to the incorporation of Cu2+

in the lattice of NiO nanoparticles which reduces the electron–hole pair recombination and
provides an increased number of free electrons and holes for the formation of free radical
ions OH−. During UV-illumination with a photocatalyst, the electron in the conduction
band is photoactivated and is transferred to the valence band, creating an electron–hole
pair capable of forming OH− ions. These OH− ions further combine with organic pollutant
to produce final degraded products (Figure 7).
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The reactions between holes and hydroxide groups produce O-H radicals and peroxide
groups (H2O2

−). These radicals react with the MB solution dye and degrade it into non-
toxic organic compounds. As discussed above, Cu-doping reduces NiO nanoparticle sizes
and improves crystalline quality. NiO nanoparticles reduction is better with the increase
in Cu-doping.

We suggest that small NiO particles combined with Cu-particles capture photons more
efficiently and generate electron–hole pairs in larger quantities, and exhibit more and more
photocatalytic activity. It is to be noted that the blue color of MB solution disappears after
300 min, especially for high Cu-doping (Figure 8).

1 

 

 

Figure 8. Degradation of the intensity of the absorption peak at 663 nm during UV-irradiation time.

As discussed in our previous work [54,55] and reported by Khan et al. [56,57], the
photocatalysis carried out in atmospheric air show that the role of the nanoparticles of the
films and of the oxygen O2 is essential for the degradation of MB dye solution.

It is suggested that small NiO particles, capture photons more efficiently, generating
electron–hole pairs in larger quantities and hence causing the more heavily doped NiO
to exhibit a higher photocatalytic activity in the degradation of MB. The photocatalytic
phenomenon can be explained in two steps:

(i) Step 1:

- During UV-light illumination, electrons are extracted from the valence band to the
conduction band; electron–hole pairs are then created.

- O-H radicals and peroxide groups (O2−) are produced by the presence of holes.
- The peroxides interact with the protons and form HO2− and H2O2− species.

(ii) Step 2:

During UV-irradiation, the species present in MB solution interact with and degrade
it. Step 1 and 2 can be displayed by the following mechanisms:

NiO + hν (uv)→ NiO + e− + h+ (7)

H2O→ OH− + H+ (8)

OH− + h+ → OH* (9)

O2 + e− → O−2 (10)

O2
− + H+ → HO2 (11)

2HO2 → H2O2 + O2 (12)

H2O2 + e− → OH− + OH− (13)
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3. Materials and Method

Pure and copper-doped nickel oxide (NiO) thin films were deposited onto glass
substrates heated at 400 ◦C using the spray pyrolysis method according to the following
schema of Figure 9.
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Figure 9. Principle schema of the spray pyrolysis technique.

Pure NiO was obtained from a primary solution of 0.2 M of nickel nitrate hexahydrate
(Ni(NO3)2 6H2O) dissolved in 100 mL distilled water. Copper-doping is obtained by adding
a second solution prepared from copper nitrate hydrate (Cu(NO3)3 9H2O) dissolved in
distilled water at various concentrations of 2, 4, 6, 8, and 10% for obtaining Cu-doped
NiO nanofilms. All precursor powders of purity of more than 98% were purchased from
Biochem Chemopharma. All reagents were used as such without any further purification.

The obtained pure and Cu-doped samples were characterized by different techniques
adapted to thin films analysis. X-ray diffraction (XRD) patterns were recorded to char-
acterize films crystallinity and the phases using Panalytical X’Pert diffractometer with
monochromatic high-intensity Cu-Kα radiation (λ = 0.1506 nm). Microstructural and
morphological characterizations were obtained by scanning electron microscopy (SEM)
(Hitashi instrument) and atomic force microscopy (AFM) (Bruker, Dimension Edge appara-
tus), respectively. The materials band gap energy (Eg) was extracted from the Tauc’s plot,
which combines absorption and transmittance data obtained from UV-visible spectroscopy
analysis (Specord 50 plus).

Photocatalytical experiments were performed in a dark chamber where the beakers
containing the Methylene blue (MB) solution and NiO and Cu-NiO samples were placed
there. The whole was illuminated by a UV lamp of wavelength 253.7 nm.

4. Conclusions

Pure and Cu-NiO nanofilms were successfully synthesized by the spray pyrolysis
method through a solution using nickel nitrate hexahydrate (Ni(NO3)2·6H2O) for NiO
films and copper nitrate hydrate (Cu(NO3)3·9H2O) for Cu-doping NiO films. The aim of
this study is to monitor the effect of Cu-doping on the structural, morphological, optical
and photocatalytic properties. XRD, SEM, AFM, and UV-visible spectroscopy were used
to characterize the synthesized samples. XRD revealed polycrystalline phases growing in
cubic structure with (200) preferred orientation. SEM and AFM showed a rough surface
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composed of spherical nanoparticles, which agglomerate with the increase in Cu-doping.
Optical and photocatalytic properties investigated by UV-visible spectrometer showed that
all NiO films are of good transparency, having a semiconducting character as revealed
by the band gap energy ranging between 3.4450–2.8648 eV. The photocatalytic properties
of pure and Cu-NiO films were enhanced by Cu-doping particles, as revealed by the
degradation of methylene blue (MB) solution under ultraviolet irradiation. The bleaching
of MB solution is faster for high Cu-doping, and it is correlated to the conductive behavior
of NiO films.
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