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Abstract: The CO2 reforming of methane to syngas was examined over five different supported
catalysts. In this study, 5% Ni was used as the active metal part of the catalyst. To better comprehend
the impact of the supports on the catalytic properties, 5% Ni-based catalysts were characterized
using nitrogen adsorption–desorption isotherms, XRD, H2-TPR, CO2-TPD, TGA, TPO, FTIR, and
Raman. The results showed that the catalyst support with the highest surface area provided the
best catalytic activity. The acquired CH4 and CO2 conversions at 700 ◦C were 58.2% and 67.6%,
respectively, with a hydrogen/carbon ratio of 0.85. The TGA investigation of the high-surface-area
sample produced a minimum carbon deposition of 11.2 wt.%, and in the CO2-TPD investigation, the
high-surface-area sample exhibited the absence of a peak in the strong-basic-sites zone. The formation
of NiAl2O4 spinel, moderate basicity, and the high surface area explained the outperformance of the
high-surface-area catalyst sample.

Keywords: alumina; CO2 reforming of methane; support; nickel catalyst; silica

1. Introduction

Heterogeneous catalysis is a vital part of energy and sustainability research because it
permits chemical transformations to be performed at somewhat low temperatures while
decreasing or circumventing the formation of by-products [1–3]. Up to now, heterogeneous
catalysts based on transition metals have been found to be successful in the hydrogenation
of petroleum refining and processing, as well as in the manufacture of fine and bulk chemi-
cals [4]. Catalytic hydrogenation primarily uses precious metals such as Pd and Pt, which
are characterized by high prices and rarity. Thus, research has turned to nonprecious metals
to identify lower-cost and more widely available hydrogenation catalysts [5–7]. Transition
metals such as Fe, Co, and Ni have received great attention because of their specific quali-
ties: huge abundance, low cost, lack of toxicity, and distinctive catalytic properties [8]. CO2
reforming of methane (CRM), adopted in this study, is a process that transforms CH4 and
CO2 greenhouse gases (GHGs) into synthesis gas (‘syngas’, a mixture of CO and H2) [9–12].
Today, CH4 and CO2 emissions to the atmosphere are increasing our concern for the envi-
ronment. However, this process promotes sustainable energy as methane is the principal
element in natural gas (>85%) [13]. The use of GHGs during the reforming processes leads
to their conversion to hydrogen, which is an indispensable material for all petrochemical
industries and renewable energy sources, whilst also mitigating the environmental impact
of GHGs emitted to the atmosphere. The well-studied processes for reforming methane are
through steam, partial oxidation, and dry or CO2 [1,2]. Their primary reforming reactions
for the generation of syngas are:

CH4 + CO2 ↔ 2H2 + 2CO ∆H
◦
298 = +247

kJ
mol

CO2 reforming (1)
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CH4 + H2O↔ 3H2 + CO ∆H
◦
298 = +206

kJ
mol

steam reforming (2)

CH4 +
1
2

O2 ↔ 2H2 + CO ∆H
◦
298 = −36

kJ
mol

partial oxidation (3)

CRM generates syngas with an equal H2/CO ratio, which is suitable for F-T synthesis
to give liquid fuel [2]. However, this process presents challenges—chiefly, high endother-
micity and carbon deposition—restricting the commercial practice of CRM [3]. The targeted
Equation (1) is also accompanied by side reactions:

H2 + CO2 = H2O + CO ∆H0
298 K = +41.17

kJ
mol

reverse water-gas shift reaction (4)

CH4 = 2H2 + C ∆H0
298 K = +74.87

kJ
mol

CH4 decomposition (5)

2CO = CO2 + C ∆H0
298 K = −172.44

kJ
mol

Boudouard process (6)

Ni-based catalysts are the most active for low-temperature CRM. SiO2 and Al2O3 are
two typical catalyst supports for CRM because of their high thermal stability and surface
area. The alumina support has been well commercialized for its hardness, chemical and
wear resistance, and wide raw material availability [4]. Nickel-based catalysts undergo
deactivation owing to carbon formation and sintering of metallic particles because of
their lack of thermal stability [5,6]. A catalyst support plays a vital role as it can assist
in stabilizing the metallic particles via efficient interactions with the supporting metallic
particles, diminishing the coke formation and the sintering of the metallic particles [7–9].
In this way, to avoid small Ni clusters on Al2O3 supports forming larger Ni particles
at high temperatures, the strong metal–support interaction between Ni and Al2O3 is
considered to upgrade the thermal stability of small Ni particles, which helps the formation
of spinel NiAl2O4 [10,11]. By doing so, carbon deposition can be tackled from the viewpoint
of the catalyst structure. Together with the nature of the support, its morphology has
additionally been revealed to be able to modify the size and dispersion of the supported
metallic particles, enhancing their catalytic performance by low coke formation and metal
sintering [9,12]. Wang et al. [13] also demonstrated that the metal–support interaction
plays an important role in controlling the catalyst sintering and carbon deposition. In
the study, the deposition of carbonaceous species was controlled as a result of the Ni–
support interaction [13]. Thus, the spread of Ni on the surface of the catalyst and the
structure of the support appear the prime means of resolving the deactivation problem.
Elharati et al. investigated the effect of a silica oxide support on the catalytic activity of a
nickel-molybdenum catalyst for hydrogen production and found that the SiO2 morphology
improved the coking resistance of Ni [14]. Xu et al. reported the results of 10% Ni supported
on either silica or alumina used for CRM [15]. The result displayed that the performance was
affected by the type of support. For instance, a silica-support catalyst exhibited higher initial
activity but poor stability when operated at 800 ◦C, whereas the alumina-supported catalyst
provided lower activity but much higher stability. Zhang et al. studied low-temperature
CRM using Ni supported on either SiO2 or γ-Al2O3 [16]. Their results showed excessive
CH4 decomposition when using the silica support, leading to poor activity and stability.
With respect to Ni/γ-Al2O3, a good metal–support interaction was developed, facilitating
a stable performance, which preferentially accelerated CO2 adsorption and dissociation.

Promoting the CO2 gasification of coke is a vital step for coke reduction on the surface
of the catalysts [17]. Alkaline metals have been tested as promoters to enhance coke
resistivity of Ni-based catalysts by helping the adsorption and activation of CO2 during
CRM. Cao et al. investigated the stabilization of CRM on modified Ni/Al2O3 catalysts via
an in situ K2CO3-enabled dynamic coke elimination reaction. It was discovered that the
doping of potassium carbonate enhanced the coke resistance [18]. Garbarino et al. examined
the effect of mixed supports of alumina and silica for Ni-based catalysts and found that
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silica in fair amounts considerably modified the dispersing properties of alumina [19].
Silica doping was discovered to increase thermal stability and improve the porosity of
alumina supports, whilst additionally increasing the reducibility of alumina-supported
metal catalysts [20]. This study the influence of alumina and modified alumina supports on
Ni-based catalysts operated for CO2 reforming of methane for synthesis gas. The impacts of
the high-hydrothermal-stability supports for CO2 reforming are compared and summarized
in terms of greenhouse gas conversions. The Ni-supported catalysts were prepared by the
impregnation method and their catalytic performances were tested in a CRM reaction. The
catalytic performance of the catalysts in CRM was explained using the BET, XRD, TPR,
TPD, TPR, FTIR, Raman, TGA, and TPO characterization methods.

2. Results and Discussion
2.1. BET Analysis

The textural properties of the fresh catalysts were investigated by N2 adsorption–
desorption measurements, as shown in Figure 1. The isotherms in Figure 1 are of type IV
with H3 hysteresis loops according to IUPAC sorting. These trends are characteristic of
mesoporous materials and are usually found on solids consisting of masses of particles
forming slit-shaped pores of various sizes and shapes [21]. Nevertheless, it can be observed
from Figure 1 that nitrogen uptake began at a relative pressure range of 0.6–0.7. The highest-
surface-area sample (SA75) adsorbed the greatest quantity of N2 (400 cm3/g), while SA02,
with a low surface area, adsorbed the lowest quantity of N2 (0.4 cm3/g).
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Figure 1. Cont.
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Figure 1. N2 adsorption–desorption measurements of fresh Ni-supported catalysts.

2.2. TPR

H2-TPR (temperature-programmed reduction) curves of the fresh catalysts are shown
in Figure 2. In the range of 0–330 ◦C, peaks did not appear, indicating that there was
no free NiO in the samples. Practically, all the samples were characterized by a single
broad peak. The peaks for SA39 at 368 ◦C, SA35 at 460 ◦C, and SA02 at 470 ◦C could be
attributed to moderate interactions between NiO and the support. Comparatively, the peak
for SA32 at 671 ◦C could be ascribed to the strong interaction between NiO and the support.
Meanwhile, the peak at 825 ◦C for SA75 could be related to the formation of NiAl2O4,
which was caused by the strong interaction of Al2O3 with NiO [22].
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Figure 2. H2-TPR profiles of fresh Ni-supported catalysts.

2.3. XRD Analysis

To identify the phases, Figure 3 shows the XRD profiles of fresh catalysts. XRD peaks
of Al2O3 and NiAl2O4 appear in Figure 3 at 2θ = 37.3, 46.0, and 66.5◦ (JCPDS 86-1410).
The peaks for NiO overlay those of Al2O3 and appear at 2θ = 37.3, 46.0, and 66.5◦ (JCPDS
47-1049), with the reflections of 111, 200, and 220, respectively, indicating that these Ni-
comprising phases were highly scattered on the surface of the supports [23]. Commonly,
a broad peak at around 22◦ was found for the Ni/SiO2 catalysts, which were assigned
to silica.
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Figure 3. XRD patterns of fresh Ni-supported catalysts.

2.4. FTIR Analysis

Figure 4 displays the Fourier transform infrared spectra of the different Ni-supported
catalysts. A wide band extending from 550 to 840 cm−1 can be ascribed to the Al-O
stretching vibrations of the tetrahedron (AlO4) and octahedron (AlO6) environments [24].
The IR spectrum of samples also shows bands at 1640 cm−1 and 3450 cm−1 for stretching
and bending vibration of O-H, respectively [25]. Apart from that IR band, for unidentate
carbonate at 1384 cm−1 and for stretching of C-H (in format species) at 2850 cm−1, a
combination of asymmetric stretching of COO and bending vibration of the C-H bond
at 2925 cm−1 can additionally be observed [26]. The IR spectra show broad transmission
bands centered at 550 and 612 cm−1 typical for Ni-O stretching vibrations [27].
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2.5. CO2-TPD

The surface concentrations of the basic sites were determined by temperature-pro-
grammed desorption of carbon dioxide (CO2-TPD). Figure 5 shows the CO2-TPD mea-
surements performed in the temperature range of 50–800 ◦C at a rate of 10 ◦C/min using
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helium (25 STP ml/min) as the carrier flow. The catalysts displayed peaks in the three
zones of the basicity: weak, medium, and strong, at temperatures of 0–200 ◦C, 200–350 ◦C,
and 350–600 ◦C, respectively. The weak basicity is attributed to surface hydroxyl resulting
from physical adsorption; the medium-strength basic sites are assigned to surface oxygen
anions resulting from the chemical adsorption; the strong basic sites are attributed to the
bulk oxygen anion/oxygen vacancy resulting from the interaction with oxygen vacancies.
SA39, SA02, and SA35 possess basic sites in all three zones, with the highest intensities
in the strong zone. The excessive basicity in this system stimulated a high extent of CO2
dissociation (CO2 = C + O2) to occur and, therefore, deactivated the catalyst, as reflected by
the TGA analysis. The SA75 sample with the highest activity and stability did not produce
a peak in the strong-basic-sites zone.
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2.6. Raman Analysis

The Raman spectra of fresh Ni-supported catalysts are shown in Figure 6. Raman
signals at 414–452, 508, 582, and 611 cm−1 are observed in all spectra. This is associated
with the stretching of the Ni-O bond. The bulk nickel oxide shows a main signal centered at
582–611 cm−1. The detected shift in the maximum frequency of this band could be related
to the interaction between the alumina and nickel species [28]. Previous researchers have
performed XPS analyses of NiO [29,30]. It was observed that only N+2 species were present
in the Ni2p XPS spectrum, as the two peaks located at BE values of 873.1 and 871.5 eV
corresponded to Ni2p1/2 of Ni(OH)2 and NiO, respectively.

2.7. Catalyst Activity

Figure 7 exhibits the activity and stability performance in terms of the conversion and
hydrogen/CO ratio of different supported Ni catalysts using CRM operated at 700 ◦C. The
SA75 sample best converted methane and carbon dioxide, at 58.2% and 67.7%, respectively,
with 0.85 H2/CO. Conversely, the conversions of the SA39 sample displayed the lowest
CH4 and CO2 values, of 34.7% and 31.0%, respectively, with 0.83 H2/CO. The performance
results can be related to the surface areas of supported Ni catalysts since the high-surface-
area sample SA75 displayed the best performance, followed by the intermediate surface
area samples of SA33 and SA35, while the low-surface-area samples SA39 and SA02
exhibited the worst performance. The overall catalytic performance of all samples was
rather stable, within a reaction time of 7.5 h. The established higher conversion of CO2
than that of CH4 during CRM was attributed to the reverse water–gas shift reaction
Equation (4) [31]. A comparison between the present work’s catalytic activity and that
in the literature was performed in terms of CH4 and CO2 conversion under different
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reaction/catalytic conditions, such as: catalyst weight, catalyst surface area, feed ratio,
activation temperature, reaction temperature, and time on stream (TOS). The present
catalysts displayed comparable results, as shown in Table 1.
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Table 1. Comparison of the results of this work with those reported earlier for alumina.

Catalysts BET
(m2/g)

Catalyst
Weight (mg)

Feed Ratio Activation
Temp.
(◦C)

Reaction
Temp.
(◦C)

TOS
(h)

Conversion (%)
Ref.

CO2 CH4 Inert CH4 CO2

5%Ni/Al2O3 132 200 1 1 0 700 700 5 60 70 [32]
Ni/Al.550 178 - 9 9 2 700 650 8 48 52 [33]

Ni/Al 191 100 1 1 0 800 700 24 55 65 [34]
5Ni3SiAl 222.08 100 6 6 1 800 700 7 65 70 [35]

Ni/Al 189.5 300 5 5 1 600 700 6 79.9 - [36]
5NiAl 182 100 3 3 1 600 700 7 79 85 [37]

5Ni/Al2O3 160.8 250 3 3 14 650 650 50 57 61 [38]
Ni/γ-Al2O3 123 - 1 1 2 700 700 20 55 64 [39]
Ni/Al2O3 113 - 1 1 0 700 850 24 80 85 [40]

10Ni/Al2O3 120 100 1 1 0 700 750 4 60 70 [41]
Ni/Al2O3 200 100 1 1 0 550 450 20 8 10 [42]

SA75 260 100 3 3 1 700 700 7 58.2 67.7

This
work

SA32 30 100 3 3 1 700 700 7 52.8 58.7
SA35 12 100 3 3 1 700 700 7 43.5 50.5
SA02 3 100 3 3 1 700 700 7 31.2 43.3
SA39 0.3 100 3 3 1 700 700 7 24.7 31

TOS = time on stream, Ref. = reference.
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Figure 7. Conversions of CH4, CO2, and H2/CO ratio at 700 ◦C, ambient pressure, and
GHSV = 48 L/(h·gcat) of the Ni-supported catalysts.

2.8. Mechanism of CRM

Figure 8 displays the summarized mechanism of CRM. The subfigures labeled with
A, B, C, and D display the stages and the pathways of the mechanism. In Figure 8A, CH4
in the feed gas is adsorbed on Ni sites of the catalyst and dissociates into CHx and H. On
the other hand, CO2 in the feed gas is adsorbed on the metal and metal–support interface,
then dissociates into O and CO. In Figure 8B, the adsorbed H on the Ni sites is combined
and desorbed as H2, and the adsorbed CO on the support is desorbed as CO. Figure 8C
demonstrates that the active sites for the large-surface-area support are sufficiently exposed
in the pore and on the surface, while Figure 8D shows that the active sites are less exposed.
Alternatively, Figure 8E depicts that the active sites for the low-surface-area support are
least exposed in the pore and on the surface.

2.9. TGA

Figure 9 shows the results of the thermogravimetric analysis (TGA) of the used cata-
lysts. The TGA analysis was recorded in the temperature range of 0–1000 ◦C during the
CRM reaction for 7 h at 700 ◦C. The SA75 sample showed the lowest (11.2 wt.%) carbon
deposition. In comparison, the samples SA39, SA02, SA32, and SA35 displayed 36.4, 28.2,
21.8, and 23.1 wt.% carbon deposition, respectively. It can be inferred that samples of low
surface areas and high basicity are prone to more carbon deposition. Carbon decomposi-
tion depends on CH4 dissociation, and the CO2 adsorption is enhanced by the sample’s
basicity [43]. Here, it can also be said that sample SA75 had a good balance between acidic
and basic sites, which facilitated efficient carbon removal.
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Figure 9. TGA curves for quantifying the amount of deposited carbon on the Ni-supported.

2.10. O2-TPO

TPO is one of the beneficial techniques used in determining the type of carbon de-
posited onto the surface of used catalysts. The different types of carbon formed on cat-
alyst surfaces can be gasified in different temperature ranges: <250 ◦C (atomic carbon),
250–600 ◦C (amorphous carbon), and >600 ◦C (graphitic carbon) [44]. Figure 10 presents
the TPO profiles obtained for all catalysts after the CRM reaction for 7 h. The TPO profiles
of the catalysts exhibit single broad peaks at 500–700 ◦C, indicating that an amorphous and
graphitic blend of carbon was deposited on the catalysts. The high-surface-area sample
depicts two more small peaks ascribable to atomic carbon. In general, the extent of carbon
deposition is the lowest for the high-surface-area samples, followed by the intermediate-
surface-area samples. Comparatively, the highest carbon formation is exhibited by the
low-surface-area samples. This TPO finding is in accordance with that of the TGA profiles,
with carbon deposition mainly resulting from the two reactions of Equations (5) and (6).
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3. Experimental Procedure
3.1. Catalysts’ Preparation

The compositions of the catalysts and the respective notations used in the text are
reported in Table 1. Supports of Al2O3, Al2O3 doped with SiO2, and nickel nitrate hex-
ahydrate Ni (NO3)2·6H2O 98%, were purchased from Alfa Aesar and used as received.
Ultrapure water was obtained via a Milli-Q water purification system (Millipore). A
description of the supports is provided in Table 2.

Table 2. Description of the supports used.

Support
Name

Surface Area
(m2/g) Pore Diameter Pore Volume

(cm3/g)
Purity
(wt.%)

SA-6175 High (>120)
260.0 10 nm 0.83 <0.05% Na2O

SA-3132
Intermediate

(10–120)
30.0

1.2 µm 0.55 17.9% SiO2

SA-3135
Intermediate

(10–120)
12.0

1.2 µm 0.53 17.9% SiO2

SA-5202 Low (0–10)
3.0

1.2 µm/
16.1 nm 0.3/0.01 <0.05 SiO2

SA-5239 Low (0–10)
0.3 1.8/150 µm 0.43 12% SiO2

3.2. Synthesis of Catalysts

A two-step synthesis procedure, based on the incipient wetness impregnation method,
was utilized for the preparation of all catalysts. The first step was the synthesis of the
alumina support or alumina doped with SiO2. The second step was loading the active
catalyst, nickel oxide with 5.0 wt.%, on the various supports. Al2O3 and the alumina doped
with SiO2-supported Ni-based catalysts were prepared by the incipient impregnation
method with a Ni loading of 5%. An aqueous solution containing the desired amount of Ni
(NO3)2·6H2O was added to the support and then dried slowly in a rotary evaporator under
a vacuum at 80 ◦C for 2 h, followed by drying at 120 ◦C in an oven overnight and calcining
in the air at 700 ◦C for 3 h. The 5% Ni supported on SA-6175, SA-3132, SA-3135, SA-5202,
and SA-5239 catalysts are referred to as: SA75, SA32, SA35, SA02, and SA39, respectively.
Table 3 gives descriptions of the prepared catalysts.

Table 3. Description of the used catalysts.

Catalyst Tested Catalyst’s
Abbreviated Name

Surface Area
(m2/g)

Pore Volume
(cm3/g)

Pore Size
(nm)

5% Ni/SA-6175 SA75 189.0 0.66 12.8
5% Ni/SA-3132 SA32 25.3 0.14 22.5
5% Ni/SA-3135 SA35 15.6 0.11 30.0
5% Ni/SA-5202 SA02 2.7 0.01 17.4
5% Ni/SA-5239 SA39 2.3 0.01 17.0

3.3. Catalyst Characterization

The Ni-supported catalysts’ surface area, and the pore size and pore diameter, were
determined by N2 adsorption–desorption at −196 ◦C using a Micromeritics Tristar II 3020
for porosity and a surface area analyzer. Temperature-programming processes comprising
H2-TPR, CO2-TPD, and O2-TPO were performed on a Micromeritics Auto Chem II 2920.
The tests were done over a temperature range of 50–900 ◦C with a 2.40 L/h flow of 10%
H2/Ar mixture for the H2-TPR analysis, 10% CO2/He mixture for the CO2-TPD basicity
measurement, and 10% O2/He mixture for the O2-TPO carbon-type assessment. The X-ray
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diffraction patterns of the catalysts were registered on a Miniflex Rigaku diffractometer
equipped with Cu Kα X-ray radiation. The device was run at 40 kV and 40 mA. The extent
of carbon deposition on the used catalysts was measured by thermo-gravimetric (TGA)
analysis. Here, a platinum pan was filled with 10–15 mg of the spent catalysts. It was
heated at 25 ◦C up to 1000 ◦C at a 20 ◦C min−1 temperature ramp. Mass variations were
continuously monitored as the heating progressed. Fourier transform infrared spectroscopy
(FTIR) using IR Prestige-21 SHMADZU was used to study the surface properties and
functional groups in the samples.

3.4. Catalytic Activity Test

The catalysts were tested for CRM at a 700 ◦C reaction temperature under atmospheric
pressure. A packed bed stainless steel reactor (internal diameter: 9.1 mm; height: 300 mm)
was used to perform the experiments. A catalyst mass of 0.10 g was positioned in the
reactor over a ball of glass wool. A stainless-steel sheathed thermocouple, K-type, axially
positioned close to the catalyst bed was used to read the temperature during the reaction.
Prior to the reaction, activation of the catalysts was performed at 700 ◦C in an atmosphere
of H2. This lasted for an hour and the remnant H2 was purged with N2. During the CRM
reaction, the feed volume ratio was kept at 3:3:1 for CH4, CO2, and N2 gases, respectively,
with a space velocity of 42 L/h./gcat. The outlet gas from the reactor was connected
to online gas chromatography (GC) with a thermal conductivity detector to compute
its composition. The CH4 and CO2 conversions and the syngas ratio were calculated
as follows:

CH4 Conversion (%) =
(CH4)in − (CH4)out

(CH4)in
× 100 (7)

CO2 Conversion (%) =
(CO2)in − (CO2)out

(CO2)in
× 100 (8)

H2

CO
=

generated moles of H2

generated moles of CO
(9)

4. Conclusions

The different Ni-supported catalyst samples used for CRM at 700 ◦C showed varia-
tion in their activity and stability performances. The SA75 sample displayed the highest
methane and carbon dioxide conversions, with a H2/CO ratio close to unity. Alternatively,
the SA39 sample provided the lowest conversions of CH4 and CO2. The TPR analysis
revealed that the low-surface-area samples SA39 and SA02 exhibited moderate interactions
between NiO and the support, whilst the high-surface-area sample SA75 showed powerful
interactions between Ni and the support. The XRD profiles exhibited by the crystals of
NiO, Al2O3, and SiO2 and the spinel compound between Ni and the alumina support were
ascertained. Analysis of the CO2-TPD of the low-surface-area samples SA39 and SA02
revealed the availability of strong basic sites, which took part in the efficiency decline. In
the TGA analysis, the high-surface-area sample SA75 showed the least carbon deposition.
The TPO profiles of the catalysts exhibited single broad peaks at 500–700 ◦C, indicating
that an amorphous and graphitic blend of carbon was deposited on the catalysts. Good
correspondence was attained between the TGA and TPO profiles.
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