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Abstract: Biogas is mainly composed of CH4 and CO2, so it is used as an alternative energy to
CH4 with high energy density by separating and removing CO2 from biogas. In addition, it can
be utilized by producing synthesis gas (CO and H2) through thermal decomposition of biogas or
by synthesizing CH4 by methanation of CO2. The technique of CO2 methanation is a method that
can improve the CH4 concentration without CO2 separation. This study aims to produce more
efficient methane through CO2 methanation of biogas over Ni-Mg-Al catalyst. So, the effect of Ni
contents in catalyst, catalyst reduction temperature, CO2 concentration in biogas, and the initial
concentration of CH4 on CO2 conversion rate and CH4 selectivity was investigated. In addition, the
effect of increasing CO2 concentration, H2/CO2 ratio, and GHSV (gas space velocity per hour) on
H2 conversion, CH4 productivity, and product was investigated. In particular, the durability and
stability of CO2 methanation was tested over 60 wt% Ni-Mg-Al catalyst at 350 ◦C and 30,000/h for
130 h. From the long-term test results, the catalyst shows stability by maintaining a constant CO2

conversion rate of 72% and a CH4 selectivity of 95%.

Keywords: CO2 methanation; CO2 hydrogenation; Ni catalyst; biogas; carbon capture utilization
storage; power to gas

1. Introduction

Because of the rapid development of the global economy, the severities of the en-
ergy crisis and environmental pollution are increasing. In 2020, fossil fuel consumption
accounted for 10.3 Gt of CO2 emissions. At the current rate, the Earth’s temperature is
predicted to rise by 6 ◦C before the end of 2050. To combat the threat of climate change, the
Paris Climate agreement, in which countries around the world pledged carbon neutrality
to limit the increase in the Earth’s temperature to 1.5 ◦C by 2050, was adopted. Measures
to minimize CO2 in the atmosphere include the replacement of fossil fuels with alterna-
tive energy sources (e.g., hydrogen) and utilizing carbon capture, utilization, and storage
(CCUS) technologies [1–3]. Among CCUS technologies, chemical conversion is the most
convenient and effective [4] because the CO2 generated from the fuel is converted to fuel
through the aid of a catalyst and recycled, thereby ensuring carbon neutrality [5]. As CO2
methanation, an important process that involves catalysis, has tremendous potential for
commercial applications, it has received significant attention. The methanation reaction can
reduce environmental pollution through the conversion of CO2 to CH4, which is cleaner for
the environment, and it can alleviate the energy shortage problem. Therefore, methanation
is among the most effective processes for mitigating CO2 emissions [6,7].

Catalytic processes involve a catalyst, a catalyst support, a catalytic promoter, and
group VIII metals, such as Ru, Rh, Pd, Ni, Co, and Fe to provide active sites for the CO2
methanation reaction. Among these metals, Pd, Rh, and Ru are precious metals that
are characterized by low-temperature catalytic activity and high methane selectivity [8].
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However, because of their high cost and scarcity, these metals are unsuitable for large-
scale applications [9]. Conversely, Co-based catalysts exhibit low-temperature activity and
stability but low methane selectivity [10,11]. Further, in the presence of Fe-based catalysts,
carbon accumulates on the surface of the catalyst and liquid hydrocarbons are easily
formed; however, these catalysts are unsuitable for low-temperature reactions [12]. Ni-
based catalysts have been extensively studied for application in CO2 methanation because
of their excellent performance and low cost. Therefore, efforts have been devoted to
identifying supports and promoters of Ni-based catalysts to address their low-temperature
activity and sintering resistance limitations.

La3+, Pr3+, Sm3+ in to the crystal structure of cerium oxide created a higher population
of oxygen vacant sites. Moreover, the co-presence of La3+, Mg2+ and La3+, Pr3+ into the
CeO2 increased the methos of moderate basic sites. These physicochemical properties
increased the rate of CO2 methanation reaction at a relatively low temperature. CO2
conversion was observed at 350 ◦C, Ni/La-Pr-Ce (55%) > Ni/La-Sm-Ce (53%) > Ni/La-Mg-
Ce (49%) > Ni Ce(39%) [13].

In a series of 5%X-12%Ni/γ-Al2O3 (X = La, Ce, Pr, Eu & Gd) catalysts, 5%Pr-12%Ni/γ-
Al2O3 catalysts showed the highest CO2 conversion of 98.2% with 100% CH4 selectivity
at 300 ◦C for investigated reaction conditions. Additionally, the catalyst was tested for
48h, which showed the stability of the catalyst for CO2 conversion and CH4 selectiv-
ity. CO2 conversion was observed at 300 ◦C, 5%Pr-12%Ni/γ-Al2O3 > 5% Ce-12% Ni/γ-
Al2O3 > Eu-12% Ni/γ-Al2O3 > 5% La-12%Ni/γ-Al2O3 12% Ni/γ-Al2O3 [14].

Types of bimetallic oxides act as catalysts and remarkably almost all of them present
a catalytic activity superior to that of a commercial rhodium catalyst supported on alu-
mina (5 wt% Rh/Al2O3) for the production of methane. CO2 conversion increases until
350–400 ◦C and stabilizes or decreases over all the nickel-lanthanide bimetallic oxides at
higher temperatures. At temperature above 350–400 ◦C there is an increase in the formation
of CO by product, due to reversed WGS reaction [15].

Considering that structural properties, dispersion, and metal-support interactions are
major factors affecting the low-temperature catalytic activity and sintering resistance of Ni-
based catalysts, designing and producing catalysts with adequate porosity, high potential
for Ni dispersion, and elevated metal-support interaction is critical [1]. High Ni dispersion
is generally achieved by using micro- or mesoporous supports characterized by excellent
structural properties and the addition of promoters, such as Co, Zr, Sn, and Mg [16].
Supports can suppress or prevent sintering by enhancing the metal-support interaction
and thus influence CO2 methanation by promoting the dissociation and adsorption of
CO2 [17]. A catalytic support having a high specific surface area and an elevated pore
volume can accommodate active Ni sites in a dispersed state [18]. Enhanced electron
transfer between the support and the metal active sites increases the electron density of
the metal and strengthens the Ni–C bond, which facilitates the dissociation of the C=O
bond and the formation of CH4 [19]. In addition, other physicochemical properties of the
support as well as the particle size and surface characteristics of Ni affect the reducibility
and properties of the catalyst. In general, substances such as Al2O3, TiO2, SiO2, and ZrO2
are utilized as supports for Ni-based catalysts for CO2 methanation [15].

According to Romero-Sáez et al. [20], ZrO2 is unable to activate and dissociate H2, but
it can activate CO2 to produce CO. Therefore, H2 molecules can be dissociated on the Ni
surface, while CO2 molecules are activated on the ZrO2 surface [21]. Thus, interactions
between hydrogen atoms and activated CO2 molecules are facilitated, and this expands the
Ni-ZrO2 interface, thereby enhancing the CH4 selectivity and reaction rate [22]. However,
owing to its excellent stability, elevated CO2 adsorption potential, and high oxygen storage
capacity, CeO2 likely has a superior low-temperature activity to supported Ni-based cat-
alysts [23–26]. Al2O3 is a low-cost porous support with a high specific area that enables
uniform dispersion of Ni on the catalyst surface [27,28]. In addition, Al2O3 and Ni can
react to form NiAl2O4 because the strong Ni–O bond prevents the reduction of Ni2+. The
fine size of the Ni particles on the catalyst surface hinders carbon deposition [29].
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Moghaddam et al. [30] indicated that an additive (promoter), such as Fe, Co, Zr, La, or
Cu, can improve the conversion of CO2. Stangeland et al. [31] investigated CO2 methanation
under the reaction conditions of the catalyst. Conversely, Aziz et al. [32] highlighted the
importance of the physicochemical properties, catalytic activity, and reaction mechanism of
a catalyst, and discussed the developments in heterogeneous catalysts. Doping catalysts
with Zr, Co, La, and Mg alters the CO2 methanation reaction pathways by introducing
alternative intermediates. Thus, CO formation can be prevented by effectively suppressing
side reactions. MgO has been widely investigated as a basic modifier of Ni-based catalysts
for CO2 methanation [33]. In particular, the addition of a small amount of MgO to a
catalyst promotes the chemisorption and dissociation of CO2 [34]. MgO also improves the
dispersion of Ni and modifies the oxidizing environment near its particles in the catalyst.
Thus, severe aggregation at active Ni sites and carbon deposition on the catalyst surface
can be prevented [35–37].

In this study, a Ni-Mg-Al catalyst with excellent redox properties was prepared.
This Ni-based catalyst is inexpensive [38] and exhibits high activity, the Al support has
high thermal stability and strong resistance to sintering and carbon deposition, and MgO
enhances the adsorption behavior and dispersion of active Ni, thereby enhancing the
catalytic activity [39]. In addition, MgO reduces catalyst deactivation, such as sintering and
carbon formation, as well as negative effects on water on the catalyst. Since the reaction
intermediate (CO) is converted to CH4, using Ni-Mg-Al catalysts with sufficient Ni content
of 20, 40, and 60 wt% to provide many reaction sites, high activity and selectivity of the
catalyst for CO2 methanation experiments improved [40]. In particular, the activation
energy of the CO2 methanation reaction for a Ni-Mg-Al catalyst containing 60 wt% Ni
was investigated. Based on the experimental results, the influence of CO2 concentration,
GHSV (gas hourly space velocity) and H2/CO2 ratio for CH4 productivity and product
production was investigated. Durability and stability for 130 h was performed for CO2
methanation over 60 wt% Ni-Mg-Al catalyst.

2. Results and Discussion
2.1. Effects of Temperature Reduction and Catalyst Loading on CO2 Conversion

The effect of the Ni proportion in the Ni-Mg-Al catalyst at reduced temperatures
of 450–700 ◦C on the CO2 conversion is shown in Figure 1. Obviously, CO2 conversion
and CH4 selectivity increased as the reduced temperature of the catalyst increased to
650–700 ◦C, indicating similarity in the behavior of the catalysts. However, 60 wt% Ni
catalyst exhibited no significant change as the reduction temperature varied. This is
consistent with the H2-TPR analysis results (Figure 11), which revealed that the maximum
reducibility of the catalysts occurred at 680–720 ◦C. Therefore, 700 ◦C was selected as the
reduction temperature for the activity experiments under different conditions.
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The 20, 40, and 60wt% Ni catalysts were reduced to 700 ◦C, and the results of the
catalysts activity experiment with reaction temperature at a H2/CO2 ratio of 4 and GHSV
of 30,000/h are shown in Table 1. The temperature at which CO2 conversion reached 50%
was 340, 298, and 291 ◦C, respectively, for the catalysts with 20, 40, and 60 wt% Ni, which
indicates that the temperature decreases as the proportion of Ni increases. This behavior
is attributed to the increase in active Ni sites as the proportion of Ni increases. This is
in line with the XRD data and the TOF values, which showed an increase in active Ni
sites, reflecting reactivity. In fact, a higher Ni loading promotes the production of CH4.
This behavior is likely associated with an increase in catalytic activity because a high
Ni loading increases the number of active sites. According to Wierzbicki et al. [42], the
metal loading determines the reduction properties of a catalyst. Zhang et al. [43] indicated
that the RWGS side reaction competes with the CO2 methanation reaction for active sites
at a low Ni loading and thus a high Ni loading (≥25%) promotes CO2 methanation.
Quindimil et al. [44] noted that an increase in the number of active sites (NiO) enhances
CO2 conversion, although increasing Ni loading beyond a certain limit can damage the
structure of the catalyst through thermal agglomeration of active Ni sites.

Table 1. Reaction temperatures to reach 50% CO2 conversion.

Ni Catalyst 20 wt% Ni-Mg-Al 40 wt% Ni-Mg-Al 60 wt% Ni-Mg-Al

Reaction temperature (◦C) 340 298 291

2.2. Effect of Temperature Reaction on CO2 Conversion

The reaction temperature is the dominant factor affecting the activity of Ni-based
catalysts. Activation energy higher than the dissociation energy of CO2 is required for CO2
conversion at low temperatures. Therefore, increasing the reaction temperature enables the
CO2 molecules to attain the required activation energy and thus enhances the reactivity.
The highest CO2 conversion and CH4 selectivity were achieved at temperatures ranging
between 300 ◦C–400 ◦C. Beyond this temperature range, the CH4 selectivity decreased.
Mutz et al. [45] noted that, based on thermodynamics, the high-temperature and exothermic
characteristics of the CO2 methanation process affect the equilibrium and deactivation of
catalysts. High temperatures have been reported to promote the RWGS reaction and impede
the CO2 methanation reaction. In addition, as shown in the equilibrium curve in Figure 2,
the limitation of the CO2 conversion rate with temperature is also the cause of the lower CO2
conversion rate. CO2 conversion and CH4 selectivity with reaction temperature at a GHSV
of 30,000/h and an H2/CO2 ratio of 4 are shown in Figure 2. Evidently, CO2 conversion
increased as the temperature increased and peaked at 400 ◦C, while CH4 selectivity and
yield reached maximum values at 350 ◦C. This behavior is attributed to suppression of the
methanation reaction and an increase in the RWGS reaction above 350 ◦C, which promotes
the conversion of CO2 to CO. In line herewith, Mohammad et al. [46] reported that the CO
concentration increased and methane selectivity decreased at 400 ◦C because the RWGS
reaction is enhanced at this temperature. In addition, Jia et al. [47,48] reported the highest
CO2 conversion and CH4 yield at 350 ◦C, and CO2 conversion decreased beyond this
temperature because of the thermodynamic equilibrium limitation. In the present study,
the activation energy of 60 wt% Ni-Mg-Al catalyst was reduced and reacted at 200, 250,
and 300 ◦C, and based on the data shown in Figure 3 the activation energy was reduced to
approximately 59.7 kJ/mol. This demonstrates the excellent activity of our catalyst and
this value is substantially lower than the 75 kJ/mol achieved with a Ni/Al2O3 catalyst as
reported by Garbarino et al. [22].
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2.3. Effects of CO2 and H2 Concentrations on CO2 Conversion

Figure 4 shows the effects of the CO2 concentration (6, 10, 16, and 20 vol%) on CO2
conversion and CH4 selectivity for 60 wt% Ni catalyst with an H2/CO2 ratio of 4 and
a GHSV of 30,000/h. CH4 selectivity essentially remained constant at approximately
98% as the CO2 concentration increased, while CO2 conversion increased because of the
increase in reactants and the decrease in N2, which enhance the likelihood of reactions. At
a CO2 concentration of approximately 15 vol%, the H2/CO2 ratio varied between 3.5 and
5 in increments of 0.5 under the same GHSV. The effects of the H2 concentration on CO2
conversion and CH4 selectivity are shown in Figure 5. As the H2 concentration increased,
CH4 selectivity remained stable at approximately 97%, while the CO2 conversion increased
at a level comparable to that observed for the effect of the CO2 concentration. Therefore, to
enhance CH4 production, high CO2 and H2 concentrations are required.
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2.4. Effect of CH4 Concentration on CO2 Conversion

The effect of the initial CH4 concentration on the production of CH4 from CO2 in
biogas is shown in Figure 6. As the CH4 concentration increased from 0% to 16.8%, CO2
conversion and CH4 production decreased. According to Le Chatelier’s principle, if CH4
is present among the reactants, CO2 conversion to CH4 is hindered after equilibrium is
attained, and thus an increase in the initial concentration of CH4 decreases CH4 produc-
tion. Therefore, CH4 production decreases at a higher rate than the increase in the overall
flow as the concentration of CH4 increases. Based on a simulation study, Jürgensen [49]
found that CO2 conversion decreases as the initial CH4 concentration increases. H2 con-
version showed minimal changes, indicating that it is essentially unaffected by the initial
CH4 concentration.
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2.5. Effect of CO2 Concentration, H2/CO2 Ratio and GHSV on CH4 Productivity and Product

Effect of CO2 concentration, H2/CO2 ratio, and GHSV on CH4 productivity and
product at 350 ◦C are shown in Figures 7–9, respectively. As mentioned before, the increase
in the CO2 reactant not only increases the CO2 conversion rate but also increases the
productivity and product due to the increase in reaction opportunity with a decrease
in inert nitrogen. As shown in Figure 7, as the H2/CO2 ratio increased, H2 conversion
decreased, while the CH4 product and productivity remained almost unchanged. It is
important and necessary to find the optimization of the reaction from the above results.
Figure 9 shows the effect of increasing GHSV on CH4 productivity and product. As shown
in Figure 9, as GHSV increased, H2 conversion and CH4 productivity slightly decreased,
but CH4 product increased. The CH4 productivity and product were different, depending
on the presence or absence of a reaction in the balance of N2. In the reaction without N2,
CH4 productivity and product decreased by 1.1% and increased by 1.5 mol, respectively,
whereas in the reaction with N2, it decreased by 1.4% and increased by 0.37 mol.
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2.6. Catalytic Activity and Stability Tests

The activity and stability of the catalyst were evaluated for approximately 130 h under
a GHSV of 30,000/h, a temperature of 350 ◦C, and a CO2 concentration of 16 vol% at
H2/CO2 ratios of 3.3, 3.6, and 4.0 (Figure 10). The maximum CO2 conversion and CH4
selectivity were 72% and 95%, respectively, during the 130 h. During the test period of
130 hours for CO2 methanation, almost no carbon was produced. These results confirm
that the Ni-Mg-Al catalyst provides adequate activity and stability for CO2 methanation.
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3. Characterization of the Catalysts
3.1. Surface Area Analysis

The surface area, which is a critical catalyst property, was measured by the Brunauer–
Emmett–Teller (BET) method using an ASAP 2020 Plus Physisorption instrument (Mi-
cromeritics Instrument Corporation, Norcross, GA, USA). The surface area, pore volume,
and pore size of fresh (20 and 40 wt% Ni-Mg-Al) and spent (20 wt% Ni-Mg-Al, 200 h
of use) catalysts are presented in Table 2. Evidently, the BET surface area decreased as
the Ni content increased, and the surface area, pore volume, and pore size of the spent
catalysts were lower than those of the fresh catalysts. It is thought to be due to catalyst
agglomeration and pore breakage through reduction and reaction.

Table 2. BET specific surface area, pore volume, and pore size of Ni-Mg-Al catalysts containing
different proportions of Ni before (fresh) and after (spent) experiments.

Ni Catalyst BET (m2/g)
Total Pore

Volume (m3/g) Pore Size (Å)

* 20
(wt%)

fresh 180.3 0.36 81.5

spent 148.9 0.30 81.1

40
(wt%)

fresh 155.8 0.31 77.4

spent 107.8 0.32 82.4

60
(wt%)

fresh 140.9 0.32 91.5

spent 110.8 0.23 85.9
* 20 wt%, 40 wt% data was cited reference [41].

3.2. H2-Temperature Programmed Reduction (TPR) and H2-Chemisorption Analyses

The results of H2-TPR analysis before and after reduction of the 20, 40, and 60 wt%
Ni-Mg-Al catalysts at 600 ◦C using an Auto Chem II 2920 chemisorption analyzer are
shown in Figures 11a and 11b, respectively. Two peaks are observed in the low-temperature
(<200 ◦C) and near-high-temperature (700 ◦C) regions, with the latter being substantially
larger. The larger peak is attributed to a higher H2 concentration because of the higher Ni
proportion, and it shifted toward lower temperatures. Conversely, in Figure 11b, only one
peak is visible between 150–180 ◦C, demonstrating the complete reduction of the catalysts
in the reactor. The peak observed for the spent catalyst is smaller than that for the same
catalyst before the reduction. The temperature associated with peaks decreases as the
proportion of Ni increases, which indicates improved reducibility. The low-temperature
behavior observed during the reduction of the catalysts suggests the presence of some
amorphous substances or decreased interaction because of the strongly reducing MgO.
These observations were consistent with those obtained by X-ray diffraction (XRD) and
X-ray photoelectron spectroscopy (XPS) (see below).
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Figure 11. H2-TPR profiles of (a) fresh and (b) spent catalysts (* reference [41] was cited).

The Ni dispersion, particle size, and turnover frequency (TOF) of the 20, 40, and
60 wt% Ni-Mg-Al catalysts at 250 ◦C measured through H2-chemisorption analysis are
presented in Table 3. As the Ni content increases, the Ni dispersion increased slightly and
then decreased slightly. According to many researchers [50], increasing the catalyst content
tends to significantly decrease the dispersion of Ni, but in this paper the dispersion of
the catalyst is maintained uniformly. The strong interaction between MgO and Ni-species
appears to maintain the formation of well-dispersed small Ni particles [51–54]. In addition,
the increase in TOF value is consistent with the activity test results. The particle size
remained quite stable (28.3–29.6 nm). The increases were the most pronounced at the
highest proportion of Ni (60 wt%) because of the higher reactivity of the catalyst.

Table 3. Ni dispersion, particle size, and TOF for the 20, 40, and 60 wt% Ni-Mg-Al catalysts.

Ni Catalyst Ni Dispersion (%) Ni Particle Size (nm) TOF (s−1)

20 wt% * 3.57 28.3 0.01093

40 wt% * 3.68 27.5 0.02366

60 wt% 3.42 29.6 0.02593
* Reference [41] was cited.

3.3. XRD Analysis

The elemental composition of the catalysts was determined with an X-ray diffractome-
ter. The catalyst powder samples were heated at 250 ◦C for 5 h to remove moisture, and the
catalyst crystals were analyzed. Cu-Kα radiation was used to fix the axis of the sample,
and measurements were performed at 30 mA and 40 kV over a 2θ range of 10–80◦. The
XRD analysis results of the catalytic supports and Ni catalysts before and after the reaction
are shown in Figure 12. The fresh catalysts (Figure 12a–c) produced no Ni peaks but rather
were characterized by NiO peaks, whereas Ni peaks were evident in the patterns of the
spent catalysts (Figure 12d–f). The Ni peaks (37.4◦, 44.7◦, 51.7◦, and 76.3◦), gamma Al2O3
diffraction peaks (39.5◦, 46.1◦, and 66.9◦), and MgO were observed at 37.2◦, 43.2◦, and 62.4◦

(JCPDS No.04-0850). As the Ni loading was increased, the intensity of metallic Ni peaks
increased (51.7◦ and 76.3◦) [55]. The XRD MgO peak overlapped with the NiO and Al2O3
peaks, making it difficult to distinguish them, and no difference was found except for the
intensity of the MgO peak before and after the reaction.
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Figure 12. XRD patterns of fresh Ni-Mg-Al catalysts (a) 20 wt% Ni (b) 40 wt% Ni, or (c) 60 wt% Ni
and spent catalysts (d) 20 wt% Ni (e) 40 wt% Ni, or (f) 60 wt% Ni ((A) fresh, (B) spent)(* reference [41]
was cited).

3.4. XPS Analysis

An X-ray photoelectron spectrometer (Thermo Scientific, Waltham, MA, USA, K-
Alpha plus model) was used to determine binding energy (BE) values, which were used
to evaluate the oxidation states of the catalysts. BE values for fresh and spent catalysts
without pre-treatment measured under vacuum using Al-Kα (50 mV) radiation are shown
in Figure 13. The oxidation states of Ni can be determined from the BE of the XPS Ni2p3/2,
which varies 855 to 856 eV for NiO, 852.3 to 852.6 eV for metallic Ni and 861.5 to 865.6 for
Ni(OH)2. All of the catalyst were calcined in the presence of atmospheric air, and humidity
could be formed Ni(OH)2. As shown in Figure 13, the BE values in the fresh catalysts
appeared mainly NiO and Ni(OH)2. In the spent catalysts, in addition to NiO and Ni(OH)2,
metallic Ni emerged at 852.3 eV [56,57]. Metallic Ni was formed during reduction; however,
this Ni species is stable and it can be easily oxidized when it is exposed to air, generating
NiO and Ni(OH)2.
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3.5. Transmission Electron Microscopy (TEM) Characterization

The metallic Ni particle size of the fresh and spent catalyst with 20, 40, and 60 wt%
Ni were analyzed using a TEM. As shown in Figure 14a–f, the metallic Ni particles were
suitably disperesed over the supports. The size of the Ni particle were approximately
27~32 nm, Which matched with the metallic Ni particle size obtained using the H2
chemisorption. It can be confirmed that there is no change and no carbon deposition,
when compared with the fresh catalyst.
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Figure 14. TEM images of reduced Ni-Mg-Al catalysts (a) 20 wt%, (b) 40 wt%, (c) 60 wt% Ni and
spent Ni-Mg-Al catalyst (d) 20 wt%, (e) 40 wt%, (f) 60 wt%.

SEM-energy-dispersive X-ray spectroscopy (EDX) was used to investigate the surface
morphology of the catalysts and the dispersion of Ni. An APREO SEM system (FEI,
Hillsboro, OR, USA) was used to acquire images of the catalyst samples prepared by
removing powders and dust, drying at 120 ◦C for 1 h and coating with metal (Au) at a
magnification of 20,000×. Because of the decomposition of Mg(NO3)2·6H2O to MgO at
temperatures above 600 ◦C, spherical particles were uniformly dispersed, as has been
previously reported [40].

The results of the elemental composition analysis of the catalysts using EDX are shown
in Table 4. The contents of Ni, Mg, and Al metals in cross-sections of the catalysts are
summarized. The EDX analysis data indicated that the actual Ni contents of the catalysts
used in the experiment were close to the theoretical values of 20, 40, and 60 wt%.

Table 4. SEM-EDX analysis results for fresh Ni-Mg-Al catalysts.

Items Ni (wt%) Mg (wt%) Al2O3 (wt%)

20 wt% 15.9 (20) 3.2 (5) 79.8 (75)

40 wt% 36.8 (40) 2.0 (5) 61.2 (55)

60 wt% 41.5 (60) 1.0 (5) 57.5 (35)
( ): theoretical amount

4. Experimental Methods
4.1. Methanation Reaction

CO2 methanation, which was proposed by Sabatier in 1902, is a high-pressure, low-
temperature process for efficiently converting CO2 to CH4. In this process, hydrogen
produced using a renewable energy source (e.g., solar) and CO2 produced from biomass are
reacted to produce CH4 [38,39]. Because of the significant heat released (−165 kJ/mol) dur-
ing the methanation process, CO2 conversion and CH4 selectivity decrease at temperatures
above 627 ◦C. This is because, under such conditions, the change in Gibbs free energy is > 0,
and thus CO2 is produced through the reaction of CH4 and H2O [40]. In theory, to ensure
high CO2 conversion and CH4 selectivity, the process requires a low temperature [58,59].
In addition, a catalyst with a high efficiency at a low temperature is required to ensure
optimal catalytic activity.

The CO2 methanation process can be divided into two steps. The first step involves the
formation of carbonaceous intermediates through the reaction of CO2 with the catalyst. In
the second step, CH4 is formed through the reaction of the carbonaceous intermediates on
the catalyst surface with hydrogen species. Various reaction intermediates produced during
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CO2 methanation have been reported [60]. CO, which is produced through the adsorption
of CO2 on the catalyst surface and subsequent decomposition, is reportedly the most likely
intermediate during the methanation process [61]. The CO is then dissociated into C and
O species, and the former is hydrogenated to produce CH4 [62,63]. The CO2 methanation
process can be summarized as equations (1)–(3), with the reverse water gas shift (RWGS)
reaction producing CO, which is then converted to CH4 via CO methanation [64].

CO2 + 4 H2 → CH4 + H2O ∆H = −165 kJ/mol (1)

CO2 + H2 → CO + H2O ∆H = 42.1 kJ/mol (2)

CO + 3 H2 → CH4 + H2O ∆H = −206 kJ/mol (3)

In the CO2 methanation process, the H2/CO2 ratio required for CH4 production is
4, and the reaction occurs at temperatures above 250 ◦C. Although the RWGS reaction is
endothermic, it occurs more readily than the methanation reaction at temperatures above
350 ◦C because of its low enthalpy. However, because the CO methanation reaction is
exothermic and its enthalpy is very high, the overall CO2 methanation process is exothermic,
which is disadvantageous for reaction at high temperatures. Therefore, a high-activity
catalyst suitable for low-temperature reactions is desirable for CO2 methanation.

4.2. Catalyst Synthesis and Experimentation

In the present study, Ni-Mg-Al catalysts characterized by a high activity and CH4
affinity were utilized. The synthesis process is illustrated in Figure 15. The catalysts were
synthesized by mixing Ni(NO3)2·6H2O, Al(NO3)2·9H2O and Mg(NO3)2·6H2O, followed
by stirring at 60 ◦C to produce catalysts with 20, 40, and 60 wt% Ni loadings. A precipitant
was added to the mixture while maintaining a constant pH, and the solution was stirred
for 1 h to induce precipitation. The precipitated catalyst precursor was repeatedly washed
with distilled water and filtered using a press until the pH was approximately 7.0. The
catalyst precursor was dried in an oven at 150 ◦C for 12 h and then heated at 600 ◦C for
4 h to obtain the 20, 40, and 60 wt% Ni-Mg-Al catalysts. The prepared catalyst is used as a
reaction catalyst after raising the reduction temperature within 2 h, while flowing a mixed
gas of 20% H2 and 80% N2 at 100 mL/min and maintaining it for 4 h. The CO2 conversion
significantly increased as the reduction temperature of the Ni-Mg-Al catalysts increased in
the 450–700 ◦C range, while changes in the 600–700 ◦C range were minor [41]. Therefore,
700 ◦C was selected as the reduction temperature in the present study.
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The plug-flow system utilized as a reactor for experiments in the present study is
shown in Figure 16. A temperature sensor was installed in the reactor, and an isothermal
experiment was performed, while maintaining the reaction temperature with an error
of ± 1.0 ◦C by the PID controller under atmospheric conditions (1 bar). The catalyst
(0.5 g) was layered on the bottom of the reactor and a mesh was installed to support this
layer. A water trap at the outlet of the reactor served for the removal of water generated
as a byproduct, and a check valve was installed to prevent the backflow of gas. The
products from the reactor were characterized using a gas chromatography (GC) system
(YL Instrument 6500, Youngin chromass, Anyang, Korea), which was equipped with an SS
COL 10 ft 1/8” Matrix Porapak N (model: 13052-U) column with a 13X 45/60 mesh. The
H2, CH4, and CO concentrations were measured using a thermal conductivity detector,
while the CO2 concentration was analyzed using a flame ionization detector with a CO2
methanizer. For analyses, the GC oven was maintained at 35 ◦C for 6 min and then the
temperature was raised to 170 ◦C at a ramp rate of 15 ◦C /min. Approximately 35 mL/min
of H2 and 300 mL/min of O2 were injected into the flame ionization detector for analysis
at 250 ◦C, while 35 and 20 mL/min of H2 and Ar, respectively, were analyzed using the
thermal conductivity detector at 150 ◦C.
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Figure 16. Schematic representation of the plug-flow system used for CO2 methanation.

Experiments were conducted with a reactant gas flow rate of 250 mL/min, a reaction
temperature of 350 ◦C, a GHSV of 30,000/h, and an H2/CO2 ratio of 4. Other parame-
ters were varied as indicated in Table 5. The reaction temperature was varied between
200 ◦C and 450 ◦C and the GHSV between 10,000 and 50,000/h at different H2/CO2 ratios
to evaluate their effects on CO2 and H2 conversion. The H2/CO2 ratio was adjusted with
the balance gas N2. The effect of the initial CH4 concentration (0%~16.8%) of biogas was
investigated by CO2 and H2 conversion and CH4 production.

CO2 conversion (XCO2, %) [21], H2 conversion (XH2, %), CH4 selectivity (SCH4, %),
CH4 productivity (PCH4, %), and product (mole) were calculated using Equations (4)–(8).

XCO2(%) = 1− CO2, O

CH4,o + COO + CO2,O
× 100 (4)

XCO2(%) = 1− CO2, O

CH4,o + COO + CO2,O
× 100 (5)

SCH4(%) =
CH4

CH4 + CO
× 100 (6)
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PCH4(%) =
CH4, product

CO2 + H2 + N2 + (CH4 or CO)
× 100 (7)

Product(mole) = CO2(mole)× XCO2 × SCH4 (8)

Table 5. Experimental conditions used for the methanation reaction.

Parameter Conditions

Temperature (◦C) 200~450

Pressure(bar) 1

GHSV (/h) 10,000~50,000

N2 (vol%) Balance gas

CO2 (vol%) 6, 10, 16, 20

H2/CO2 3.5, 4, 4.5, 5

CH4 (vol%) 0, 6.3, 10.8, 16.8

5. Conclusions

In the present study, CO2 methanation experiments were conducted over a Ni-Mg-
Al catalyst to produce CH4 from biogas. The following results were obtained through
experiments on the effect of catalyst reduction temperature, catalyst content, initial CH4
concentration in biogas, CO2 concentration, GHSV, and H2/CO2 ratio on CH4 production.

(1) As the reaction temperature increased, the CO2 conversion rate increased and then
decreased after 400 ◦C. The highest CH4 selectivity and yield were obtained at approxi-
mately 350 ◦C. CO2 conversion decreased at temperatures above 400 ◦C because of the
thermodynamic equilibrium limitation, while CH4 selectivity decreased at temperatures
above 350 ◦C because of the RWGS reaction. These processes suppressed the methanation
reaction and thus increased the amount of CO generated. The activation energy obtained
for the methanation process in the present study was 59.7 kJ/mol;

(2) As the Ni content increased, the CO2 conversion rate, H2 conversion rate, and CH4
product increased. A CO2 conversion of 72% and H2 conversion of 45% were obtained
using the catalyst containing 60 wt% Ni. This is because the Ni active sites increased as
the Ni content increased and the Ni dispersion was well maintained uniformly; this was
consistent with the increase in active Ni sites revealed by XRD analysis and the increase in
TOF values, which reflect the reactivity;

(3) An increase in the initial CH4 concentration in the biogas from 0 to 16.8 vol%
decreased CO2 conversion by 20%. This behavior is explained by Le Chatelier’s principle,
where the conversion to CH4 is suppressed because of the initial CH4 among the reactants;

(4) As CO2 concentration in the reaction gas increased, H2 conversion, CH4 produc-
tivity and product increased. As the H2/CO2 ratio increased, H2 conversion decreased,
while CH4 productivity and product increased slightly. As GHSV increased, H2 and CH4
productivity decreased slightly, while CH4 product increased with or without N2;

(5) A stability test of CO2 methanation over the Ni-Mg-Al catalyst containing 60 wt%
Ni conducted at 350 ◦C for 130 h revealed a constant CO2 conversion and CH4 selectivity of
71% and 95%, respectively. These results demonstrated that the catalyst has good stability
during CO2 methanation.
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