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Abstract: The lack of an efficient and stable electrocatalyst for oxygen evolution reaction (OER) greatly
hinders the development of various electrochemical energy conversion and storage techniques. In
this study, we report a facile synthesis of FeCoNiCuIr high-entropy alloy nanoparticles (HEA NPs)
by a one-step heat-up method. The involvement of glucose made the NPs grow uniformly and
increased the valence of Ir. The resulting FeCoNiCuIr NPs exhibit excellent OER performance in
alkaline solution, with a low overpotential of 360 mV to achieve a current density of 10 mA cm−2 at
a Tafel slope of as low as 70.1 mV dec−1. In addition, high stability has also been observed, which
remained at 94.2% of the current density after 10 h constant electrolysis, with a constant current of
10 mA cm−2. The high electrocatalytic activity and stability are ascribed to the cocktail effect and
synergistic effect between the constituent elements. Our work holds the potential to be extended to
the design and synthesis of high-performance electrocatalysts.

Keywords: high entropy alloy; oxygen evolution reaction; electrocatalyst; nanoparticle

1. Introduction

The development of highly efficient water-splitting electrocatalysts is essential for
addressing the worsening energy crisis and long-term environmental pollution [1–5]. How-
ever, the large-scale application of water-splitting devices is limited by the slow kinetics
of the oxygen evolution reaction (OER) at the anode [6–11]. Currently, Ir-based materials
represent the most active electrocatalyst candidate for catalyzing OER [12–18]. Unfortu-
nately, Ir is a very rare element with an abundance about 10 times lower than that of Pt,
resulting in the high cost of Ir-based electrocatalysts [14]. Therefore, how to reduce the
usage of noble Ir, while maintaining the high catalytic activity, becomes the main focus of
researchers. An effective strategy to both reduce the usage of noble metals and improve
the catalytic activity is to make multimetallic alloys with transition metals, owing to the
synergistic effects between various components. The alloyment with distinct elements can
facilitate the adsorption/desorption of various reaction intermediates or regulate charge
transfer, thus promoting the overall reaction rate. In addition, structural optimization of
multimetallic alloys is crucial for maximizing the exposure of active sites and improving
long-term stability. Although tremendous efforts have been devoted in this direction, there
remains a large room for further tuning the electronic structure of alloyed catalysts and
improving the catalytic efficiency.

High-entropy alloys (HEAs), defined as single-phase alloys containing five or more
elements, have attracted extensive attention in the electrocatalysis community, owing to the
unusual physicochemical and mechanical properties [19–22]. The synergistic effect of alloy
elements led to HEAs with stable and tunable electronic structures, which demonstrated
notable, metal-like catalytic activities and enhanced durability [23]. The catalytic interfaces
of HEAs consist of numerous atomic coordination environments as active sites, where the
local structural and electronic properties could be optimized to overcome the limitations
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of conventional catalysts [24,25]. Tuning the binding energy of reaction intermediates has
been regarded as an essential way to optimize the catalytic performance [19,26]. Therefore,
it is reasonable to deduce that Ir-based HEAs hold the potential to tune the electronic
structure of Ir sites by combining with cheap transition metals, which remain in their
infancy stage [27]. In addition, control of size of HEA nanostructures is believed to improve
catalytic performance. However, reliable and scalable synthesis strategy of nanosized
HEAs remains a challenging task.

In this work, we describe a facile synthesis for FeCoNiCuIr HEA nanoparticles (NPs)
with a tunable size ranging from 16 to 32 nm. The resulting FeCoNiCuIr NPs exhibit
excellent OER performance in alkaline solution, with a low overpotential of 360 mV to
achieve a current density of 10 mA cm−2 at a Tafel slope of as low as 70.1 mV dec−1. After
10 h of constant electrolysis at a constant current of 10 mA cm−2, the as-obtained HEA
NPs maintained 94.2% of the initial current density, indicative of a high durability. The
high electrocatalytic activity and stability are ascribed to the cocktail effect and synergistic
effect between the constituent elements. This synthesis strategy holds the potential to be
extended to other HEAs with different compositions.

2. Results and Discussion

The FeCoNiCuIr HEA NPs were synthesized through a simple one-pot oil phase
heat-up method at 220 ◦C. Figure 1a,b show the transmission electron microscopy (TEM)
images of FeCoNiCuIr HEA NPs synthesized with and without the presence of glucose,
which display irregular morphologies for both types of HEA NPs. As indicated in the
particle size distribution shown in the insets, the presence of glucose increases the average
diameter of the HEA NPs to ~32 nm with relatively narrow size distribution, while HEA
NPs synthesized without glucose exhibit a smaller diameter (~16 nm) with a larger size
distribution. Figure 1c shows the X-ray diffraction (XRD) pattern of the FeCoNiCuIr HEA
NP, both of which exhibit a face-centered cubic (FCC) structure. The two diffraction peaks at
43.3◦ and 50.4◦ could be ascribed to the (111) and (200) planes. Compared to the diffraction
pattern of iridium, the position of the diffraction peaks is obviously shifted, indicating that
the lattice parameters of the HEA NPs are smaller than those of the iridium unit cell.

As shown in Figure 1d,e, the high-resolution TEM and corresponding fast Fourier
transform (FFT) filtered TEM images show a lattice spacing of 0.21 nm of the as-synthesized
FeCoNiCuIr HEA NPs (Figure S1), which is inconsistent with the XRD analysis. The alloy
effect was also evaluated by the elemental maps (Figure 1f), which demonstrate a homoge-
nous distribution of all elements within a single particle. X-ray photoelectron spectroscopy
was further performed to investigate the electronic structure of Ir sites (Figure S2), which
shows a shift of the binding energy of Ir 4f peaks to higher energies upon the addition of
glucose to the synthesis system. The percentage of Ir4+ in FeCoNiCuIr HEAs with glucose
increased, compared to FeCoNiCuIr HEAs without glucose (Table S1). It indicated that
the valence state of Ir is increased for the glucose-assisted HEA NPs, which holds promise
for OER electrocatalysis [28–30]. Based on these results, the addition of glucose not only
changes the size of the HEA NPs, but also increases the valence state of Ir sites.

In order to evaluate the electrocatalytic performances, the FeCoNiCuIr HEA NPs were
dispersed on high-surface-area carbon black and further treated by calcination at 200 ◦C to
remove residual surfactants. The OER activity and stability of the FeCoNiCuIr HEA NPs
were investigated by a series of electrochemical tests in alkaline solutions. As shown in
Figure 2a, the cyclic voltammetry (CV) curves of the two types of HEA NPs and commercial
IrO2 were obtained in N2-saturated 1 M KOH at a scan rate of 5 mV s−1, which revealed
a higher current density upon the FeCoNiCuIr HEA NPs synthesized in the presence of
glucose. The inset shows the comparison of the overpotentials at 10 mA cm−2. The OER
overpotential of the FeCoNiCuIr HEA NPs decreased from 410 mV to 360 mV after the
introduction of glucose into the synthesis system.
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Figure 2. The CV curves of FeCoNiCuIr HEA NPs and commercial IrO2 normalized by (a) electrode 
surface area and (b) Ir mass obtained in N2-saturated 1 M KOH at a scan rate of 5 mV s−1. Insets 
display (a) the comparison of overpotentials at 10 mA cm−2 and (b) mass activities at 1.53 VRHE of 
both types of HEA NPs. (c) Comparison of the overpotentials at 10 mA cm−2 for metals, bimetallic, 
trimetallic, commercial IrO2, and HEA NPs [31–40]. 

Since the CV method often overestimates the OER activity of oxides, herein, we fur-
ther determined the electrocatalytic activities of the FeCoNiCuIr HEA NPs using steady-
state chronopotentiometry at different current densities. As shown in Figure 3a, the po-
tentials required for current densities of 0.1, 0.5, 1, 2.5, 5, and 10 mA cm−2 have been plot-
ted, which indicates that the optimized FeCoNiCuIr HEA NPs require less voltages to 
achieve the same current density. Moreover, the plateaus remain unchanged over time, 
indicative of a high stability of the HEA NPs. By scrutinizing the Ir-corrected Tafel plots 
based on steady-state measurements (Figure 3b), we observe that the optimized FeCoNi-
CuIr HEA NPs give a smaller Tafel slope of 70.1 mV dec−1, in comparison with the HEA 
NPs synthesized without adding glucose (90.9 mV dec−1). 

Figure 2. The CV curves of FeCoNiCuIr HEA NPs and commercial IrO2 normalized by (a) electrode
surface area and (b) Ir mass obtained in N2-saturated 1 M KOH at a scan rate of 5 mV s−1. Insets
display (a) the comparison of overpotentials at 10 mA cm−2 and (b) mass activities at 1.53 VRHE of
both types of HEA NPs. (c) Comparison of the overpotentials at 10 mA cm−2 for metals, bimetallic,
trimetallic, commercial IrO2, and HEA NPs [31–40].



Catalysts 2022, 12, 1050 4 of 8

Due to the scarcity of Ir element, the mass activity represents an important parameter
for noble-metal-containing electrocatalysts. Figure 2b shows the Ir-mass-normalized CV
curves and corresponding mass activities. The optimized FeCoNiCuIr HEA NPs exhibits a
mass activity as high as 0.121 A mg−1

Ir at 1.53 VRHE, while the electrocatalyst synthesized
without adding glucose displays a mass activity of 0.049 A mg−1

Ir, and commercial IrO2
displays a mass activity of 0.006 A mg−1

Ir. The mass activity of FeCoNiCuIr HEA NPs with
adding glucose also outperforms most of the well-developed OER catalysts in literatures
(Table S2). As shown in Figure 2c and Table S3, the optimized FeCoNiCuIr HEA NPs even
show higher catalytic activity than other previously reported single-element NPs, binary or
ternary alloys, commercial IrO2, and other HEAs catalysts [31–40].

Since the CV method often overestimates the OER activity of oxides, herein, we further
determined the electrocatalytic activities of the FeCoNiCuIr HEA NPs using steady-state
chronopotentiometry at different current densities. As shown in Figure 3a, the potentials
required for current densities of 0.1, 0.5, 1, 2.5, 5, and 10 mA cm−2 have been plotted, which
indicates that the optimized FeCoNiCuIr HEA NPs require less voltages to achieve the
same current density. Moreover, the plateaus remain unchanged over time, indicative of a
high stability of the HEA NPs. By scrutinizing the Ir-corrected Tafel plots based on steady-
state measurements (Figure 3b), we observe that the optimized FeCoNiCuIr HEA NPs
give a smaller Tafel slope of 70.1 mV dec−1, in comparison with the HEA NPs synthesized
without adding glucose (90.9 mV dec−1).
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3. Experimental Section 
3.1. Chemicals 

Figure 3. (a) The steady-state galvanostatic measurement and (b) the corresponding Tafel plots of
both types of FeCoNiCuIr HEA NPs, which were obtained at current densities of 0.1, 0.5, 1, 2.5, 5,
and 10 mA cm−2 in N2-saturated 1 M KOH.

The stability of the as-prepared FeCoNiCuIr HEA NPs was evaluated by both CV
cycling for 2000 cycles and chronoamperometry test at 1.59 VRHE. As shown in Figure 4a,
after 2000 CV cycles, the CV curve displays only slightly decreased current density at high
overpotentials, indicative of the excellent stability. The potential for chronoamperometry
was set at 1.59 VRHE in order to achieve a current density of 10 mA cm−2. After a 10 h
continuous electrolysis, the FeCoNiCuIr HEA NPs maintained 94.2% of its initial current
density (Figure 4b). After the durability test, the microstructure and element distribution
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of the FeCoNiCuIr HEA NPs were investigated (Figure S3). It is revealed that the five
elements are still evenly distributed without obvious element aggregation. These results
demonstrate an excellent stability of the FeCoNiCuIr HEA NPs for OER electrocatalysis.
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3. Experimental Section
3.1. Chemicals

Iron (III) acetylacetonate, cobalt (III) acetylacetonate, nickel (II) acetylacetonate, copper
(II) acetylacetonate, iridium (III) acetylacetonate, molybdenum hexacarbonyl, glucose,
oleylamine, ethanol, and n-hexane were purchased from Macklin Biochemical Technology
Co., Ltd. (Shanghai, China) Commercial iridium oxide (IrO2) was purchased from Aladdin
Chemical. Nafion (5 wt. % in ethanol) solution was purchased from Sigma-Aldrich (Saint
Louis, MO, USA). All chemicals were of analytical grade and used as received.

3.2. Synthesis of FeCoNiCuIr HEA NPs

For the preparation of HEA NPs with an average diameter of 32.6 nm, a combination
of iron acetylacetonate (8.8 mg), cobalt acetylacetonate (8.9 mg), nickel acetylacetonate
(6.4 mg), copper acetylacetonate (6.5 mg), iridium acetylacetonate (12.4 mg), molybdenum
hexacarbonyl (33 mg), and glucose (60 mg) are dissolved in oleylamine (5 mL), followed by
mixing under sonication. The solution was rapidly heated to 220 ◦C under the protection
of nitrogen atmosphere for 2 h. After cooling down, the solution was then centrifuged to
obtain solid precipitate, which was dispersed in hexane. Ethanol was added to wash the
products and subjected to centrifugation. At last, the as-obtained HEA nanoparticles were
dried in vacuum. The synthesis of HEA NPs with an average diameter of 16.1 nm is similar
to the above-described method, except for the absence of glucose.

3.3. Dispersion of FeCoNiCuIr HEA NPs on Carbon Black

A total of 1 mg of HEA and 4 mg of carbon black were dispersed in 10 mL of cyclohex-
ane, followed by sonication to achieve a good mixture. After sonication for 1 h, the product
was collected by centrifugation. After drying, the carbon supported FeCoNiCuIr HEA
NPs (denoted as FeCoNiCuIr/C) were calcined at 200 ◦C for 2 h under air atmosphere to
remove surface capped ligands [41].

3.4. Electrochemical Measurements

The catalyst ink was prepared by dispersing 1 mg FeCoNiCuIr/C catalysts in a
mixture of 495 µL water, 495 µL isopropanol, and 10 µL Nafion solution by sonication for
1 h. Afterwards, FeCoNiCuIr/C catalyst with the concentration of 1 mg mL−1 was obtained.
Electrochemical measurements were conducted on a CHI 760E Electrochemical Workstation
(Chenhua Instrument Corporation, Shanghai, China) in a conventional three-electrode cell.
A Pt wire was used as the counter electrode, and a mercuric oxide electrode was used
as the reference electrode. The working electrode was a glassy carbon electrode (GCE,
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diameter: 3 mm, area: 0.07065 cm2). Ten microliters of the catalyst ink were dropped onto
the GCE surface for further electrochemical tests. All the potentials reported in this work
were converted to the reversible hydrogen electrode (RHE). Electrochemical impedance
spectroscopy (EIS) measurements were measured in the frequency range from 10 kHz to
0.01 Hz in 1 M KOH solution. The OER performance of the catalysts was evaluated by
CV with a scan rate of 5 mV s−1 in 1 M KOH solution, and all polarization curves were
95% Ir-corrected. The durability tests were performed in 1 M KOH solution using the
chronoamperometric method, and 2000 CVs were also measured to evaluate the stability
of catalysts.

3.5. Characterizations

The X-ray diffractometer testing instrument was a SmartLab diffractometer equipped
with a copper X-ray source from Rigaku, Tokyo, Japan—with a power of 9 kW, a tube
voltage of 45 kV, a tube current of 200 mA, a test range of 20–90◦, and a scanning speed
of 10◦/min. The XPS spectra were collected in a Thermo Fisher ESCALAB Xi+ (Waltham,
Massachusetts, USA) with the monochromatic Al Kα X-ray source to analyze the element
content and valence. Transmission electron microscopy (TEM) analysis was performed
on a Tecnai G2 20 (FEI) at an accelerating voltage of 200 kV. High-resolution TEM was
performed on a Titan 80-300 (FEI) microscope operated at an accelerating voltage of 300 kV
(Waltham, MA, USA).

4. Conclusions

In conclusion, we developed a facile oil-phase method for the synthesis of FeCoNiCuIr
HEA NPs. We found that glucose plays an essential role in the formation of HEA NPs,
which could influence the resulting particle size distribution and Ir valence. By adding
glucose to the synthesis system, the optimized FeCoNiCuIr HEA NPs exhibit excellent
OER performance in 1 M KOH, with a low overpotential of 360 mV to achieve a current
density of 10 mA cm−2 at a Tafel slope of as low as 70.1 mV dec−1. The as-synthesized
FeCoNiCuIr HEA NPs also display excellent stability by maintaining 94.2% of the initial
current density after 10 h continuous electrolysis. This facile synthesis strategy is expected
to be extended to other HEAs with different compositions.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/catal12091050/s1, Figure S1: The corresponding lattice distance measurement
data of FeCoNiCuIr HEAs (with glucose); Figure S2: Ir 4f XPS spectra of FeCoNiCuIr HEAs with glucose,
FeCoNiCuIr HEAs without glucose and IrO2; Figure S3: Elemental maps of FeCoNiCuIr HEA NPs
synthesized in the presence of glucose after 10 h of chronoamperometry testing; Table S1: Ratio of Ir0 and
Ir4+ to Ir total in Ir 4f XPS spectra of FeCoNiCuIr HEAs with glucose and FeCoNiCuIr HEAs without
glucose. Data are collected from Figure S2; Table S2. Comparison of mass activity of FeCoNiCuIr HEA
NPs and commercial IrO2 with recently reported catalysts; Table S3: OER performance comparison
FeCoNiCuIr HEA NPs with the literature [31–40,42,43].
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