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Abstract: Metallic glasses (MGs) with a unique atomic structure have been widely used in the catalytic
degradation of organic pollutants in the recent years. Fe78Si9B13 MGs exhibited excellent catalytic
performance for the degradation of oily wastewater in a Fenton-like system for the first time. The oil
removal and chemical oxygen demand (COD) removal from the oily wastewater were 72.67% and
70.18% within 60 min, respectively. Quenching experiments were performed to verify the production
of active hydroxyl radicals (·OH) by activating hydrogen peroxide (H2O2). The formation of ·OH
species can significantly contribute to the degradation reaction of oily wastewater. Fe78Si9B13 MG
ribbons were highly efficient materials that exhibited superior reactivity towards H2O2 activation in
oily wastewater treatment. The study revealed the catalytic capability of metallic glasses, presenting
extensive prospects of their applications in oily wastewater treatment.
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1. Introduction

Waste sludge containing large amounts of mineral oil is produced in the metal manu-
facturing process, which is classified as a high concentration hazardous waste [1–3]. About
10~20 tons of oily wastewater will be produced from cleaning 1 ton of waste sludge. This
leads to a huge discharge of oily wastewater. The organic pollutants in oily wastewater
have certain characteristics, such as high concentration, complex composition, biological
toxicity and refractory [4–7]. At present, a large number of advanced treatment technologies
for oily wastewater are systematically implemented [8–11]. Compared to conventional tech-
niques, advanced oxidation processes (AOPs) have been extensively studied as a promising
technique due to their superior degradation and mineralization efficiency of pollutants in
wastewater [12,13]. Very recently, owing to the advantage of abundant natural resources,
low cost and environmental friendliness, Fe-based catalytic materials have been extensively
used for the degradation of organic contaminants in AOPs system. However, the catalysts
like magnetite (Fe3O4) [14] and zero valent iron (ZVI) [15] still have certain disadvantages,
such as low efficiency, poor reusability, fast decay and secondary pollution [16]. To over-
come the aforementioned limitations, Fe-based MGs are utilized, which could effectively
enhance the catalytic activity by improving the internal atomic arrangement [17] and tuning
the chemical composition [18,19].

Metallic glasses with short range ordered and long range disordered atomic structure
were usually employed as structural materials for different industrial applications due
to improved mechanical properties, soft ferromagnetism and corrosion resistance [20–22].
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Additionally, a great number of studies have been showed that the metallic glasses with
various alloy systems exhibited superior catalytic degradation behaviors of organic pollu-
tants owing to high reactivity [23–25]. For instance, the Cu46Zr42Al7Y5 MG ribbons showed
excellent catalytic performance for acid orange II degradation with a degradation efficiency
of 96.05% and a COD removal of 51.73% [26]. A maximum degradation efficiency of 98%
for congo red is achieved using Mg60Zn35Ca5 MG powders [27]. Moreover, the direct
blue 2B solutions can be completely degraded by Al-based MG ribbons under wide pH
conditions [19]. Similarly, the unexpected organic pollutant degradation performance of
Fe-based MGs was revealed. Amorphous Fe84B16 exhibited degradation of direct blue
6 dye 1.8 and 89 times faster compared to the Fe-B crystalline alloy and commercial iron
powder, respectively [28]. Furthermore, Fe78Si9B13 MGs exhibited excellent production rate
of active radical species among various Fe-based catalysts [29]. As a result, Fe78Si9B13 MGs
have been widely used for wastewater treatment [30–32], providing an environmentally
functional material for the catalytic degradation of organic contaminants.

In this work, oily wastewater degradation and mineralization were investigated using
Fe78Si9B13 MGs. These catalytic materials serve as an alternative Fe2+ releasing source that
can produce ·OH radicals by activating H2O2 (Fenton-like system). Fe78Si9B13 MGs were
found to be highly efficient catalysts that showed improved degradation performance of
oily wastewater in terms of oil removal and COD removal. Moreover, the stability and
durability of Fe78Si9B13 MGs were discussed based on recycling experiments. The catalytic
mechanism was proposed based on the structural and morphological variations of catalysts
combined with free radical quenching experiments.

2. Materials and Methods
2.1. Materials

The alloy ingots with nominal composition of Fe78Si9B13 were prepared by arc melting
of a mixture of Fe, Si and B with greater purity than 99.9 wt% under a Ti-gettered Ar
atmosphere. The master alloy ingot was melted by induction heating in a quartz crucible.
The molten master alloy ingot was ejected onto a chilled copper roll surface to prepare
the as-melt MG ribbons of Fe78Si9B13. The waste oily sludge was supplied by Shenyang
General Magnetic Co., Ltd., Shenyang, China. The oily wastewater was prepared by stirring
for 30 min and centrifuging sludge mixtures with an oil–water ratio of 1:20, 1:40, 1:60 and
1:80 (wt%).

2.2. Characterization

The structural features of the as-melt and reacted Fe78Si9B13 ribbons were characterized
by X-ray diffraction (XRD, Rigaku D/max-2500PC, Tokyo, Japan) with Co-Kα radiation.
The surface morphologies of the ribbons before and after the catalytic organic pollutant
degradation were characterized using a scanning electron microscope (SEM, Zeiss SUPPA
55, Oberkochen, Germany). The crystallization behavior of the melt and reacted ribbons was
characterized by differential scanning calorimetry (Netzsch DSC 404C, Selbu, Germany).

2.3. Analytical Methods

All oily wastewater removal experiments were conducted in a 250 mL glass beaker
with a stirring speed of 300 rpm by a mechanical stirrer (Changzhou Jaboson Instrument
JJ-1, Changzhou, China). The oily wastewater of 200 mL in a glass beaker was placed in a
thermostat water bath at the desired temperature. The solution pH values were adjusted by
diluted HCl solution (1 mol·L−1) and diluted NaOH (0.1 mol·L−1). At every 10 min interval,
about 10 mL aliquot of the reaction mixture was collected and centrifuged. The supernatant
liquid was tested by infrared spectrophotometer (Tianjin Tianguang TJ270-30A, Tianjin,
China) and chemical oxygen demand detector (COD, Beijing Lianhua 5B-3(B), Beijing,
China). The ion concentration of the oily wastewater samples before and after the reactions
was measured by inductively coupled plasma-optical emission spectrometer (ICP-OES 720,
Agilent Technologies Inc., Palo Alto, America). The active radical species were analyzed
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using an electron paramagnetic resonance spectrometer (EPR, Bruker A300, Karlsruhe,
Germany) with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as the spin-trapping agent.

3. Results and Discussion
3.1. Catalytic Capability
3.1.1. Effect of pH Value

Figure 1a shows the effect of pH value (from 2 to 7) on oil removal. It is observed that
the oil removal sharply reduces with increasing of pH value. Oil removal of 72.67% can be
achieved within 60 min at pH = 3. In contrast, only 52.14% oil removal was observed at
pH = 7. The enhanced degradation performance at lower pH value may be due to the influ-
ence of pH on stability of H2O2 [33,34]. As shown in Figure 1b, the COD removal of 70.18%
was achieved within 60 min at pH = 3, indicating the favorable mineralization efficiency of
oily wastewater. Under a high pH system, some side effects lead to reducing the degra-
dation capability due to formation of sediment, following Equations (1) and (2) [35,36].

Fe2+ + 2OH− → Fe(OH)2 (1)

4Fe(OH)2 + 2H2O + O2 → 4Fe(OH)3 (2)
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3.1.2. Effect of H2O2 Concentration

As shown in Figure 2a, the oil removal is 55.10% when the H2O2 concentration is
0.08 mol·L−1. Apparently, the oil removal increased to 63.34% and 70.97% within 60 min
at H2O2 concentrations of 0.10 and 0.14 mol·L−1, respectively. As the H2O2 concentration
increased further to 0.16 mol·L−1, the oil removal decreased. COD removal displayed
the similar results as shown in Figure 2b. The degradation capability of COD removal
increases and then decreases with H2O2 concentration. The reason may be that the quantity
of ·OH radicals play a significant role in the oily wastewater degradation [37,38]. Moreover,
the excessive H2O2 concentration results in ·OH radicals self-quenching to form the weak
oxidizing hydroperoxy radicals (·O2H radicals) via Equations (3) and (4).

H2O2 + ·OH→ ·O2H + H2O (3)

HO2· + HO2· → H2O2 + O2 (4)
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3.1.3. Effect of Catalyst Dosage

As seen from Figure 3a, the oil removal significantly enhanced from 53.35% to 72.23%
within 60 min when the catalyst dosage increased from 0.5 g·L−1 to 1.5 g·L−1. The oil
removal slightly increased with a further increase in catalyst loading to 2.0 g·L−1. COD
removal increased with an increase in the catalyst loading as shown in Figure 3b. When
the MG ribbon dosage is 2.0 g·L−1, the COD removal stabilized at around 72%. Normally,
the organic molecule decomposition takes place via direct surface reaction on active iron
species [39]. Increasing the amount of catalyst provides more active sites, thereby achieving
faster production rate of ·OH radical species. However, excessive addition of catalyst
would provide more Fe3+, which would work against catalytic efficiency [40,41].
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3.1.4. Effect of Oil–Water Mass Ratio

As the oil–water mass ratio increases, the initial oil concentration increases. As seen
in Figure 4a, the faster oil removal is observed for the lower the oil–water mass ratio in
the first 10 min of reaction. Figure 4b shows the effect of the oil–water mass ratio on COD
removal with an oil to water in the ratio (by mass) 1:80 to 1:20. With the increase of the
oil–water mass ratio, the COD removal is obviously reduced. This is because more organic
molecules exist in the system of larger oil–water mass ratio as the reaction progresses,
thereby leading to the weak degradation behaviors in the presence of the same amount of
·OH radicals.
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3.1.5. Effect of Reaction Temperature

Regarding chemical reactions, the reaction temperature can be always considered as
an important experimental parameter. According to the principle of reaction kinetics, the
molecules colliding with each other in solution will be accelerated and energized with
the increase of reaction temperature, thus speeding up the reaction. The evaluation of the
degradation behaviors in temperature ranging from 25 to 45 ◦C as shown in Figure 5a,b.
The oil removal and COD removal remarkably increase along with the increase of reaction
temperature. When the temperature increases to 45 ◦C, the degradation behavior is not
significantly improved.

Catalysts 2022, 12, x FOR PEER REVIEW 5 of 11 
 

 

 

Figure 4. Effect of oil–water mass ratio on (a) oil removal and (b) COD removal (H2O2 concentration: 

0.12 mol·L−1, pH = 3, catalyst dosage: 1.5 g·L−1, temperature: 40 °C). 

3.1.5. Effect of Reaction Temperature 

Regarding chemical reactions, the reaction temperature can be always considered as 

an important experimental parameter. According to the principle of reaction kinetics, the 

molecules colliding with each other in solution will be accelerated and energized with the 

increase of reaction temperature, thus speeding up the reaction. The evaluation of the 

degradation behaviors in temperature ranging from 25 to 45 °C as shown in Figure 5a,b. 

The oil removal and COD removal remarkably increase along with the increase of reaction 

temperature. When the temperature increases to 45 °C, the degradation behavior is not 

significantly improved. 

 

Figure 5. Effect of reaction temperature on (a) oil removal and (b) COD removal. (H2O2 

concentration: 0.12 mol·L−1, pH = 3, catalyst dosage: 1.5 g·L−1, oil–water mass ratio: 1:60). 

3.1.6. Stability and Reusability 

The stability and reusability of metallic glassy catalysts are the extremely important 

capabilities for degradation of organic pollutants [42]. Figure 6 shows the catalytic 

reusability using Fe78Si9B13 MGs from the 1st to 3rd run for degrading oily wastewater. 

Clearly, the COD removal still maintains as high as 68% after 60 min for three cycles, 

suggesting the excellent reuse life. Notably, the COD removal for the 2nd run is little better 

than that for the 1st run due to surface activation. The slight decay is observed on the 

ribbon surface after the 2nd run, forming SiO2 layers during the degradation of oily 

wastewater [8]. Abundant Fe2+ irons can be supplied by falling the oxide layers for 

activating H2O2, thereby further improving the catalytic reusability [43,44]. For the 3rd 

run, the COD removal slightly decreases due to the side effect of oxide deposition. 

Figure 5. Effect of reaction temperature on (a) oil removal and (b) COD removal. (H2O2 concentration:
0.12 mol·L−1, pH = 3, catalyst dosage: 1.5 g·L−1, oil–water mass ratio: 1:60).

3.1.6. Stability and Reusability

The stability and reusability of metallic glassy catalysts are the extremely important
capabilities for degradation of organic pollutants [42]. Figure 6 shows the catalytic reusabil-
ity using Fe78Si9B13 MGs from the 1st to 3rd run for degrading oily wastewater. Clearly,
the COD removal still maintains as high as 68% after 60 min for three cycles, suggesting the
excellent reuse life. Notably, the COD removal for the 2nd run is little better than that for
the 1st run due to surface activation. The slight decay is observed on the ribbon surface after
the 2nd run, forming SiO2 layers during the degradation of oily wastewater [8]. Abundant
Fe2+ irons can be supplied by falling the oxide layers for activating H2O2, thereby further
improving the catalytic reusability [43,44]. For the 3rd run, the COD removal slightly
decreases due to the side effect of oxide deposition.
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0.12 mol·L−1, pH = 3, catalyst dosage: 1.5 g·L−1, oil–water mass ratio: 1:60, temperature: 40 ◦C).

3.2. Structures and Surface Morphology

In order to further investigate stability, the structures and surface morphology of the
ribbons were characterized, respectively. Figure 7a displays the XRD patterns of the as-
received and reused 3rd Fe78Si9B13 metallic glass ribbons. The XRD patterns of as-received
and reused ribbons present a broad diffraction peak at 2θ = 40~50◦, indicating that all the
ribbons are mainly in the amorphous state [45]. However, the 3rd run recycled Fe78Si9B13
metallic glass ribbons have a crystallization peak, indicating crystalline precipitated phase
of α-Fe on the surface of the ribbons [46,47]. As shown in Figure 7b, each of DSC curves
clearly displays the exothermic peak, further obtaining thermodynamic parameters of Tp1
and Tp2. The amorphous nature was also verified by DSC measurements. According to the
existence of two exothermic peaks in DSC curves and the intensity of Tp1 and Tp2 is raised,
the crystallization process can be roughly divided into two steps: one is the precipitation
process of primary α-Fe phase and the other is the precipitation process of boride [48].
According to the Dubois model [49], Fe-Si-B series alloys are composed of Fe-B and Fe-Si
regions. The precipitation of α-Fe may accelerate the decomposition of Fe-B region due to
heteronucleation [50].
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Figure 8 shows the SEM images of the melt-spun, 1st and 3rd reused Fe78Si9B13
ribbons. It can be observed that the surface morphology of melt-spun ribbons is very
smooth without obvious surface defects as shown in Figure 8a. Although the surface of
the ribbons presents a slight decay with several corrosion areas in Figure 8b, most of the
surface remains relative smooth. As seen from Figure 8c, some corrosion products are
precipitated and accumulated on the surface of the ribbons for area B, except for the small
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regions of smooth surface for area A. These products are covered with active substances,
further leading to the reduction of catalytic degradation reaction.
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bons.

3.3. Reaction Mechanism

It has been recognized that the mechanism for degradation of organic contaminants is
attributed to the catalytic oxidation of activated ·OH radicals in the Fenton process. The
o-Phenylenediamine (OPDA) as typical catcher of ·OH radicals was used to verify the
catalytic contribution of ·OH radicals. The OPDA will react with ·OH radicals to form
2,3-diaminophenazine (DAPN) stabilizing in solution for a long time. Figure 9a shows the
effect of OPDA concentration on COD removal from 0 to 20 mmol·L−1. It is observed that
the COD removal sharply decreases with increasing of OPDA concentration. Meanwhile,
the reaction rate rapidly decreases in Figure 9b. The reason may be that the active ·OH
radicals preferentially combine with OPDA to produce DAPN rather than degrading
organic pollutants.
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Figure 9. Effect of OPDA concentration on (a) the normalized as a function of reaction time, (b) COD
removal and reaction rate. (H2O2 concentration: 0.12 mol·L−1, pH = 3, catalyst dosage: 1.5 g·L−1,
oil–water mass ratio: 1:60, temperature: 40 ◦C).

The active radical species were observed by EPR technique with DMPO as spin-
trapping agent. As shown in Figure 10, variation for aliquots of samples collected at
10 min and 20 min of reaction interval in intensity of ·OH radicals is obvious between
3480 and 3540 of magnetic field. The relative intensity of ·OH radicals increased with the
prolongation of reaction time. To combine with the above results, ·OH radicals play an
important role in the whole Fenton-like degradation process of oily wastewater.
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Various ion concentrations of solution system before and after the reactions are ana-
lyzed in Table 1. The variation on majority of ions concentration is slight, whereas iron
ions in solution have a great increased. A mass of Fe2+ and Fe3+ flow into the solution
because of corrosion action and Fe0 plays an important role is confirmed at the same time.
Furthermore, Figure 11 shows the forming process of ·OH radicals in the Fenton reaction.
It is well known that Fe2+ acts as the main active source to activate H2O2 producing active
species for ·OH radicals (Equation (5)) [16]. However, the formation of Fe2+ is more likely
by direct reaction between zero-valent iron in the Fe78Si9B13 ribbons and a small amount
of H2O2 molecules (Equation (6)) [23]. In addition, the electrons of amorphous Fe atom
on 4s2 orbital are extraordinarily unstable and active, thereby leading to forming Fe2+ by
losing electrons (Equation (7)) [11] Besides this, there are reciprocal transitions between
the iron ions for the Fe2+ and Fe3+ under certain conditions as the reaction continues
(Equations (8)–(10)). According to the continuous reaction process, the Fe2+ will react with
H2O2 to produce moderate activated ·OH radicals, contributing to enhancing the catalytic
degradation reaction [9]. Therefore, the major reaction equations are as the following
Equations (5)–(10):

Fe2+ + H2O2 → Fe3+ + OH− + ·OH (5)

Fe0 + H2O2 → Fe2+ + 2OH− (6)

Fe0 → Fe2+ + 2e− (7)

Fe3+ + H2O2 → Fe2+ + O2H + H+ (8)

Fe3+ + ·O2H→ Fe2+ + O2 + H+ (9)

Fe0 + 2Fe3+ → 3Fe2+ (10)

Table 1. Comparative variations of ion concentration before and after the reaction.

Ion
Ion Concentration (mg·L−1)

Before Reaction After Reaction

Li+ <0.2 <0.2
K+ 6.4 8.1

Mg+ 5.4 7.1
Fe2+/Fe3+ 2.5 251.3

Ca2+ 29.9 40.3
Si4+ 4.0 10.7
B3+ 5.8 11.7
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4. Conclusions

In this work, the Fe78Si9B13 MGs as efficient catalysts demonstrate excellent catalytic
degradation behavior towards oily wastewater treatment in H2O2 activation system. The
conclusions are as follows:

(1) The oil removal and COD removal of oily wastewater are achieved as high as
72.67% and 70.18% within 60 min using Fe78Si9B13 MG ribbons under the optimum condi-
tions, respectively.

(2) The Fe78Si9B13 MGs present the superior stability and reusability for 3 times with
high COD removal during oily wastewater degradation.

(3) The enhanced degradation performance may be mainly attributed to activate H2O2
molecules to generate ·OH radicals in the EPR analysis and quenching experiments. The
Fe78Si9B13 MGs provide a potential strategy for activating abundant ·OH radicals during
oily wastewater degradation.
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