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Abstract: A systematic study of the kinetics of supported-ionic-liquid-phase (SILP) Au catalysis
(Au-IL/AC) has been established in the continuous gas-phase hydrochlorination of acetylene. We
reveal that the effect of ionic liquid (IL) film on substrate diffusion can be eliminated. The reaction
order of the catalyst indicates that Au is confirmed to exist as a monomer in the IL film of the Au-
IL/AC system, which is different from the fast equilibrium of the “Au dimer and monomer” for the
classical Au/AC catalyst. The homogeneous reaction micro-environment is confirmed for Au-IL/AC
since the activation energy was little changed under both heterogeneous and homogeneous catalysis,
further verifying the monatomic characteristics of Au in Au-IL/AC. Due to the supported IL film, the
reaction order of hydrogen chloride was decreased from 1 to 0.5 while creating a hydrogen chloride
enrichment system around Au, which provides the possibility of producing vinyl chloride with
an equal substrates feed ratio. This kinetic-perspective-based revelation of the catalytic behavior
of the metal active sites confined in IL film enriches and expands the SILP catalytic system for
acetylene hydrochlorination.

Keywords: kinetics; SILP; ionic liquid film; reaction order; acetylene hydrochlorination

1. Introduction

Polyvinyl chloride (PVC) is a widely used plastic in the world because of its high
resistance to photo and chemical degradation [1–5]. During the past decade, acetylene
hydrochlorination has dominated about 70% of total PVC production in China [3–5]. The
acetylene hydrochlorination reaction, catalyzed by mercuric chloride (HgCl2), is a dominant
process in manufacturing vinyl chloride monomer (VCM). However, the strong exothermic
nature of the reaction promotes the sublimation of HgCl2, resulting in a severe waste of
resources and ecological damage [6]. Thus, exploring an environmentally friendly catalytic
system is imperative. Most studies have concentrated on Au-based catalysts to replace Hg-
based catalysts in acetylene hydrochlorination since the commercialization of this catalyst
in China by the Hutchings group [2]. Contemporaneously, Hutchings showed that the
intrinsically active surface species is the Au monomer entity, which is unstable and easily
deactivated due to the reduction of Aun+(n = 3, 1) by C2H2 [1].

To restrain the reduction of the oxidized Au species while enhancing the activity of the
Au catalyst, some strategies were adopted to stabilize the oxidized Au as well as improve the
dispersion of Aun+. For example, choosing Au complexes with higher stability constants,
such as Na3Au(S2O3)2 (stability constants: 5·1028 compared to 1026 of AuCl3), as the precursor
has been successfully verified as an effective method [2]. Reducing the valence state of gold
species from Au3+ to Au+ (AuCl3→AuCl) is also a feasible method [7]. In addition, the
modification of Au-based catalysts by adding a second metal component (Bi [7], Cu [8–10],
Ba [11], Co [12], Ni [13], La [12], Cs [14,15], Sn [16], Y [17], Co [18], La [19], and Ir [20])
may be an effective strategy as well. Despite the promising initial catalytic activity, to
date, there has been no public announcement of any process for the installation of the
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above catalysts. One important reason that should not be ignored is that the price required
to run a full catalytic life cycle with these catalysts is not attractive to existing industrial
systems [1,2,21]. The substantial research on Au-based catalysts suggests that the efforts to
construct an efficient and stable gold-based catalyst for acetylene hydrochlorination should
circumvent the sintering of Au while increasing the concentration of effective active species
and maintaining a higher oxidation state since the activity of the highly active catalysts
comprising cationic Au monomers correlates with the ratio of Aun+ [1,22,23].

In our previous works, a highly active supported-ionic-liquid-phase (SILP) Au catalyst
was first reported for acetylene hydrochlorination, showing superior activity and stability
after immobilizing a thin ionic liquid film onto activated carbon support because of the
high dispersion of gold [24,25]. In this system, the active Au species was confined in the
supported ionic liquid film. Although this experimentally demonstrated that such systems
(SILP systems) may exhibit outstanding catalytic performance compared to the uncoated
analogy, the inevitable cause-and-effect relationship between the origins of such effects
and the thin ionic liquid film and its related kinetics is not yet understood. In this work,
the kinetics of the Au-SILP system were studied on how the ionic liquid interacts with the
active centers and effective concentrations of the substrates, including the mass transport
limitations in the ionic liquid film, the activation energy (Ea), the homogeneous nature of
the catalyst, the kinetic reaction orders for the catalyst, C2H2, and HCl, and the solubility
of gaseous reactants in the ionic liquid film. The results illustrate that Au-IL/AC is a
promising mercury-free catalyst for acetylene hydrochlorination reactions.

2. Results and Discussion
2.1. Activity and Stability

The Au-IL/AC and Au/AC catalysts were tested at the temperature of 463 K for 10 h
with a 1,2-feed mole ratio of HCl to C2H2. The activity of the catalysts and the selectivity of
VCM were in good agreement with our previous reports [24,25]. During the test time of
10 h on stream, the C2H2 conversion of the Au-IL/AC catalyst remained unchanged, as
shown in Figure 1, which implied that the addition of ionic liquid (IL) not only caused the
higher activity of C2H2 but also accelerated the reaction at the initial stage of the reaction.
It should be highlighted that for both Au-based catalysts, the selectivity for the formation
of VCM was above 99.8%, corroborating the performance of a typical Au system catalyst
in this field. Hutchings mentioned that the induction period for Au−based catalysts was
allotted to the redox coupling of the Au3+/Au+ sites [1]. Our recent results have shown
that the ultra-high Au3+/Au+ contents in the Au-SILP system should be a necessary factor
for its high activity compared with reference Au/C [25]. However, the kinetic effect on
catalytic performance should not be ignored when the Au species is confined in IL film,
which is lacking in the existing IL catalytic system.
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Figure 1. Comparison of catalytic performance between 1 wt.% Au-IL/AC and 1 wt.% Au/AC.
Reaction conditions: T = 463 K, GHSV (C2H2) = 370 h−1, V(HCl)/V(C2H2) = 1.2. The standard
deviations (SDs) for the black and red data are 8.43 and 8.36, respectively.
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2.2. Kinetics
2.2.1. Effect of IL Film on Substrate Diffusion

The concept of catalytic SILP materials may be influenced by mass transport limitations
in two-phase systems [26,27] because of the relatively long diffusion film of substrate
molecules to the active center compared to conventional heterogeneous catalysts, which
may play an important role in the effective reaction rate. In the typical SILP system, the
Mears criterion, CMears, is often used to evaluate the effect of IL film on substrate diffusion
according to Equation (1) [28].

CMears =
re f f ·ρCat·

dp
2 ·n

Cbulk·k f ilm
≤ 0.15 (1)

The reaction rate reff is calculated from the molar substrate flow, the conversion, and
the catalyst mass according to Equation (2).

re f f =
n·X
mCat

(2)

The molecular diffusion coefficient can be estimated from Equation (3) [29].

Di,IL = 5.28× 10−18 T
η0.66

IL V1.04
mol,i

(3)

The film diffusion rate constant kfilm is calculated from the mass flow density J12 using
correlations in Equations (4) and (5) [30,31].

J12 = 0.84·Re−0.51 (4)

J12 =
Sh

Re·Sc0.33 =
k f ilm·η0.67

u·D0.67
i,IL

(5)

All necessary calculation parameters are shown in Table 1.

Table 1. The data points for film diffusion estimations.

Parameter Symbols Unit Value

Temperature T K 463.15
Pressure P Pa 101,325

Gas mixture concentration C mol·m−3 26.31
Particle diameter dp m 1.78·10−4

Viscosity of gas mixture η m2·s−1 1.35·10−5

Gaseous density ρg kg·m−3 0.83
Inner tube diameter dR m 0.01

Gas velocity u m·s−1 1.43
Reynolds number Re / 880.38

Gas mixture volume Vmol,i m3·mol−1 3.40·10−5

Molecular diffusion coefficient Di,IL m2·s−1 1.77·10−7

Porosity εp / 0.50
Film diffusion rate constant kfilm m·s−1 2.07·10−3

gas mixture molar flow
.
n mol·s−1 7.44·10−10

gas mixture conversion X / 0.20
gas mixture molar mass M kg·kmol−1 31.65

Mass SILP catalyst mCat kg 2.00·10−4

Mass-related effective reaction rate reff mol·kgcat−1 s 7.43·10−7

Density of catalyst bed ρcat kg·m−3 100
Reaction order n / 1.50
Mears criterion CM / 1.82·10−4



Catalysts 2022, 12, 1012 4 of 9

The calculated Reynolds number Re was 880.38, which was sufficiently little to ensure
the flow properties are approximately laminar flow [32]. Additionally, the calculated
CMears = 1.82·10−4 was smaller than the lower limit of the standard value. In this case, the
effect of substrate diffusion in the IL film can be completely eliminated [28]. This result is
meaningful because it shows that the distribution of the substrates in the IL film during the
reaction of the SILP system (where the gas first contacts the IL film and then reacts with the
active center) is negligible, even if the Au species is dissolved in the IL phase instead of
being exposed on the surface of the carbon carrier.

2.2.2. Effect of IL Film on the Dispersion of Active Sites

To intuitively compare the catalytic activity of the Au-IL/AC and Au/AC catalysts,
as well as to further study the relationship between the ionic liquid and the active center,
the activation energy (Ea), rather than turnover frequencies (TOFs), has been selected for
measurement [33]. It is due to the fact that a suitable method has not been identified to accu-
rately calculate the active sites on the Au-IL and Au/AC catalysts. To determine the values
of Ea over Au-IL/AC and Au/AC, respectively, the VCM formation rate (R) was measured
as a function of temperature (T) in the range of 443.15–493.15 K under ambient pressure
with the HCl/C2H2 molar ratio of 1.2 [28,32]. The kinetic parameters of Ea were calculated
based on the Arrhenius plots (ln(R) versus 1/T) for the Au-IL/AC (black line) and Au/AC
(red line) catalysts, shown in Figure 2. The straight line indicates that the mass transfer
limitations were negligible [33], which verified that the reaction was kinetics-controlled un-
der the above conditions. A relatively steeper slope was observed for the Au/AC catalyst,
corresponding to Ea-Au/AC = 50 kJ/mol. By contrast, the Au-IL/AC catalyst significantly
promoted the acetylene hydrochlorination reaction with Ea-Au-IL/AC = 26 kJ/mol.
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Figure 2. Arrhenius plot for the VCM formation rate over the 1 wt.% Au-IL/AC (black) and Au/AC
(red) catalysts. The SDs for the black and red data are 0.29 and 0.52, respectively.

It is well-known that in SILP catalysis, transition metal dissolves in the ionic liq-
uid phase, supported on a solid surface, which then works as a homogeneous cata-
lyst [24,25,28,34,35]. Hence, proving the homogeneous nature of this SILP catalysis is
more important than usual. Although this area is not yet highly developed, some useful
spectroscopic methods, such as IR spectroscopy, have successfully proven that Rh-SILP
catalysts behaved similarly to analogous rhodium–xanthene catalysts dissolved in the
homogeneous phase for the hydroformylation of propene [36]. However, few studies have
reported the homogeneous nature of SILP catalysts by kinetic experiments. In Figure 2, the
effective activation energy for the gas–liquid Au-IL catalyst is calculated to be 30 kJ/mol
(Figure S2), similar to 26 kJ/mol for the Au-IL/AC SILP system, suggesting the active Au
center over the Au-IL/AC surface is homogeneous, presenting a catalytic characteristic of
“macro-heterogeneous and micro-homogeneous”.
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As shown in Figure 1, the addition of ionic liquid plays a dramatic promotion role in
both the activity and stability of the catalyst, with a C2H2 conversion increase of 30–70%
during the entire evaluation time. As previously stated, the catalytic activity depends on
the number of active sites [24]. We conjectured that the addition of ionic liquid may have a
positive influence on the number of active surface sites. Thus, the above hypothesis was
validated by determining the reaction order to the concentration of the catalyst. As shown
in Figure 3, lnR was plotted against ln[Cat.] ([Cat.]: concentration of catalyst). For the
Au/AC catalyst, the linear fitting was 0.5. According to the literature, a 0.5 catalyst order
implies that a fast equilibrium between the Au dimer and the active Au monomer [37,38]
exists on the surface of the Au/AC catalyst. The Au monomer has been determined as
the active site for acetylene hydrochlorination [1–3]. For the typical Au/AC, it has been
confirmed that the Au dimer exists without the participation of IL [1]. Similar results
have been proven in other catalytic reactions, such as the Fe-catalyzed allylic amination
of olefins [39], Ir-catalyzed borrowing-hydrogen processes [40], Rh-catalyzed selective
partial hydrogenation of alkynes [41], Pd-catalyzed arene C-H acetoxylation [42], and
Cu-catalyzed phosphodiester hydrolysis [43], demonstrating that an equilibrium between
the active monomer species and its dimer species exists.
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In comparison, IL was added to the Au/AC catalyst. In this case, the fitting result
(the black line shown in Figure 3) indicated that the reaction order to Au-IL/AC was
0.99, which can be approximately regarded as 1. This significant result implies that an
interaction between IL and AuCl3 exists [24,25], restraining the self-aggregation of AuCl3
and further avoiding the formation of the non-active dimer entirely. Adding IL to the Au/C
system avoids the self-aggregation of the active Au species, ensuring the existing state
of the Au monomer. The homogeneous distribution of Au was confirmed in Au-IL/AC
(Figure S1). This result confirms our speculation that the studied Au-IL/AC system follows
the characteristics of “macro-heterogeneous and micro-homogeneous”.

2.2.3. Effect of IL Film on the Enrichment of Substrates

The kinetic reaction orders for C2H2 and HCl with respect to the formation rate of
VCM were determined under the following reaction conditions: 463K, 16.8 mL/min HCl,
and the molar ratio of C2H2/HCl was adjusted from 0.3, 0.5, 0.7, 0.9 to 1.0. The value of
n(C2H2) for Au-IL/AC was calculated according to the slope, which can be easily obtained
from the lnR-ln (C2H2) relationship (Figure 4). The reaction order of C2H2 over Au-IL/AC
was 1, corroborating the reaction mechanism proven in previous literature [32]: the reaction
process is triggered by C2H2 adsorption [1,2,44]. Measuring the reaction order to HCl, all
reaction factors except the molar ratio of HCl/C2H2 were kept constant. The molar ratio
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of HCl/C2H2 varied from 0.3 to 1.0. The reaction order of HCl, n(HCl), was 0.5 over the
Au-IL/AC system, which was different from C2H2.
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To our knowledge, IL can modify the effective concentrations of the substrates [34,35]
so that the solubility of gaseous reactants in IL differs in an appropriate manner from that
in the initial gas-phase concentration. As mentioned above, the kinetic reaction order for
C2H2 and HCl were 1 and 0.5, respectively, probably due to the solubility of the substrates
in IL film. Additionally, some reports have shown that C2H2 and HCl could be physically
and chemically adsorped into ILs. Meanwhile, ILs with relatively strong basicity often
show impressive performance in the substrate molecule’s solubility and activate C2H2 and
HCl effectively [45–47]. Specifically, the hydrogen-bond interaction between anions of ionic
liquid and reaction gas (C2H2 and HCl) forms C2H2-Cl and [HCl2]− species [48–51]. The
two advantages may facilitate the different reaction orders for C2H2 and HCl. In view of
this, gas solubility was tested in this work. The solubility evaluation of C2H2 and HCl in
Prmim−Cl, with the test temperatures and pressures, were 5.58 and 0.14 mol/L, and the
ratio of the solubility of HCl to C2H2 was nearly 40 (see the supporting information for more
details). Obviously, the ultra-high enrichment ratio obtained means that HCl is enriched,
decreasing the reaction order of HCl in the supported IL film. This HCl-enriched strategy
provides the possibility of producing vinyl chloride with an equal acetylene/hydrogen
chloride feed ratio of 1:1.

3. Materials and Methods

Catalyst Preparation: The supported Au catalysts were prepared using a wet impreg-
nation technique. A series of carbon-supported gold-based catalysts were prepared via
a wet impregnation method. Firstly, HAuCl4·xH2O (Alfa Aesar, 99.9%) was dissolved in
hydrochloric acid (Fisher, 32 wt.%). Then, 1-propyl-3-methylimidazolium chloride (Prmim-
Cl, Lanzhou Greenchem Co., Ltd., Lanzhou, China, 99%) was added to the Au-containing
solution and mixed uniformly. After that, the previous mixture was added dropwise into
activated carbon (10 g) under vigorous stirring. Subsequently, the impregnated sample
was laid overnight. Finally, the sample was dried at 393 K for 16 h under nitrogen flow
to obtain the catalyst, labeled as Au-IL/AC, with a nominal total metal loading of 1 wt.%.
The IL loading in all the catalysts was fixed at 10 wt.%. Due to the nature of the catalyst
preparation procedure used, wet impregnation, with no filtration of the carbon or catalyst
washing, was carried out; the metal loading should be considered equal to the nominal
amount of metal impregnated into the hosts.

Activity Tests and Kinetic Experiments: The catalytic performance was determined
in a tubular reactor setup. After 0.2 g of the catalyst was loaded into the reactor, the
reactor was heated up to the reaction temperature at a ramp rate of 10 K/min and held for
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30 min under a nitrogen atmosphere. Then, the C2H2/HCl (Jingong Special Gas Co., Ltd.,
Hangzhou, China) mixed gas was fed into the reactor and reacted under the catalysis of
the Au-based catalyst. The off-gas from the reactor was sent through a bubbler containing
aqueous sodium hydroxide solution to neutralize the free hydrogen chloride, then analyzed
using gas chromatography. Kinetic experiments were performed at the range of the reaction
temperature, from 443 to 493 K. The feed ratio of HCl to C2H2 was modulated by changing
the volume flow of each gas, which was controlled by a gas mass flow controller. The
catalyst activity is presented in terms of the VCM formation rate, R [mol·min−1·g Cat−1],
representing the moles of VCM formation on 1 g of catalyst in one minute.

4. Conclusions

In conclusion, the following results of a supported-ionic-liquid-phase Au catalyst for
acetylene hydrochlorination were revealed from kinetic experiments:

(I). Gas diffusion in the ionic liquid film was negligible.
(II). The reaction activation energy, Ea-Au-IL/AC = 26 kJ mol−1, is consistent with the

activation energy for the gas–liquid catalyst, Ea-Au-IL=30 kJ mol−1, confirming a
homogeneous reaction micro-environment for the Au-SILP system.

(III). The addition of ionic liquid produces an increase in the reaction order with respect to
the concentration of the catalyst, which, in turn, partially avoids the self-aggregation
of the active gold species.

(IV). A hydrogen chloride enrichment system around Au is created, providing the possibil-
ity of producing vinyl chloride with an equal substrates feed ratio.

In perspective, we believe that the results presented in this article are of extreme
importance for the development of new SILP catalysts for acetylene hydrochlorination.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/catal12091012/s1. Figure S1: High-angle annular dark-field images
together with the elemental mapping of Au-IL/AC catalyst, Figure S2: Arrhenius plot for the VCM
formation rate over the Au–IL/AC (black) and Au-IL (blue) catalysts.
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