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Abstract: The association of a commercially-available iron (III) chloride hexahydrate (FeCl3·6H2O)
with cationic 2,2′-bipyridyl in water was proven to be an operationally simple and reusable catalytic
system for the highly-selective reduction of nitroarenes to anilines. This procedure was conducted
under air using 1–2 mol% of catalyst in the presence of nitroarenes and 4 equiv of hydrazine mono-
hydrate (H2NNH2·H2O) in neat water at 100 ◦C for 12 h, and provided high to excellent yields of
aniline derivatives. After separation of the aqueous catalytic system from the organic product, the
residual aqueous solution could be applied for subsequent reuse, without any catalyst retreatment or
regeneration, for several runs with only a slight decrease in activity, proving this process eco-friendly.

Keywords: iron (III) chloride hexahydrate; nitroarene reduction; water; reusable catalyst;
green chemistry

1. Introduction

Aniline and its derivatives are important key intermediates in the chemical industry,
widely-used for the preparation of dyes, drugs, agrochemicals, and polymers [1–3]. The
common process for the preparation of anilines is the reduction of nitroarenes utilizing
transition metals as catalysts, with various hydrogen sources [4]. Catalyzation of nitroarene
reduction by precious metal complexes, such as Re [5], Ru [6–19], Rh [20,21], Pd [20,22–25],
Ir [20], Pt [20,26,27], Au [28,29], and Ir-Au bimetallic [30], and first series metal complexes,
such as Cr [31], Mn [32], Co [33–35], Ni [36,37], Cu [35,38], and Zn [39], has been well-
documented. Alternatively, transition metal nanoparticles have also been widely applied
to catalyze the reduction of nitroarenes recently [4,40–52].

Iron, as the most abundant, cheapest, and nontoxic transition metal, is an ideal catalyst
candidate instead of other transition metals for nitroarene reduction. Its single atom [53–57],
powder [58–64], salts [65–71], and complexes [6,22,72–81] are widely applied to mediate
or catalyze the reduction of nitroarenes to anilines in organic or organic/H2O mixed
solvents. Recently, iron-based heterogeneous catalysts have also been applied for the
reduction of nitroarenes [40–51]. However, such nanocatalysts are usually obtained through
precursor hydrothermal treatment, complex pyrolysis, or treatment with moisture-sensitive
reagents, which may limit their widespread application. On the other hand, water is
an idea solvent to reduce the environmental impact and costs due to its environmental
compatibility, nontoxicity, abundance, and low cost. When neat water has been used as the
reaction medium, however, an excess amount of iron was usually required for nitroarene
reduction [82,83]. Only rare examples, including Fe(II)-citrate in situ forming nanoscale
zero-valent iron (nZVI) with sodium borohydride (NaNH4), catalyzing the reduction of
p-nitrophenol [84], and iron carbonyl clusters (Fe3E2(CO)9, E = S, Se, Te) with hydrazine
monohydrate (N2H4·H2O) catalyzing the reduction of nitroarenes in neat water [85], have
been reported.
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Iron (III) chloride hexahydrate (FeCl3·6H2O) is one of the most readily available iron
sources; however, its reduction of nitroarenes usually requires stoichiometric or excess
amounts to accomplish the transformation, leading to wastage of the metal [66,71]. An ex-
ample of successful catalysis employed largely excess amounts of N,N-dimethylhydrazine
against nitroarenes under refluxed methanol [65]. Therefore, the development of an eco-
friendly protocol using this commonly-available iron source, without the requirement
for high temperature or moisture-sensitive reagent pretreatment, in neat water to reduce
wastage of metal and eliminate the use of an organic solvent as the reaction medium, is
highly desirable (See Table 1 for the comparison of the Fe catalysts). As part of our interest
in FeCl3·6H2O catalysis under an aqueous phase [86–88], in this report, the association of
FeCl3·6H2O with a water-soluble cationic bipyridyl ligand acted as a green catalytic system
to accomplish nitroarene reduction for the formation of anilines in neat water. In order
to avoid the manipulation of hazardous H2 under high pressure at high temperature, the
safe-to-handle and low-cost dihydrogen precursor hydrazine monohydrate (N2H4·H2O)
was employed as the reducing agent, because H2 and N2 are generated in situ in the
presence of a catalytic amount of transition metal, leaving no residual waste [89]. Moreover,
after separation of the catalytic system from the organic products by simple extraction,
the residual aqueous phase could be reused for the next run immediately without any
retreatment or regeneration (Scheme 1).

Table 1. Comparison of the reaction conditions of iron catalysts for the reduction of nitroarenes.

Type of Iron Catalyst H2 Source Solvent Temp. (◦C) Ref.

Iron single atom site
FeSA@NC-20A (0.42 mol%) N2H4·H2O (3 equiv) EtOH rt [53]
Fe1/N-C H2 (5 bar) iPrOH 160 [54]
FeSAs/Fe2O3ACs/NPC N2H4·H2O (40 equiv) EtOH rt [55]
Fe-P900-PCC H2 (4 Mpa) Heptane 150 [56]
Fe1/N−C N2H4·H2O (5 equiv) EtOH 60 [57]

Iron powder (stoichiometric or excess)
Fe/NH4Cl MeOH/H2O Reflux [58]
Fe/CaCl2 EtOH/H2O 60 [59]
Fe/HCl EtOH 70 [60]
Fe/NH4Cl H2O/Acetone Reflux [61]
Fe/AcOH EtOH/H2O Sonication [62]
Activated Fe H2O 210 [63]
Fe/HCl EtOH/H2O 65 [64]

Iron salts
FeCl3·6H2O (1.33 mol%) H2NNMe2 (10.5 equiv) MeOH Reflux [65]
FeCl3·6H2O (3 equiv)/Zn DMF/H2O 100 [66]
Fe(acac)3 (10 mol%) TMDS (4 equiv) THF 60 [67]
FeS2 (0.83 equiv) H2 (50 bar) THF/H2O 120 [68]
Fe(OTf)3 (10 mol%) NaBH4 (20 equiv) EtOH rt [69]
FeS (5 equiv)/NH4Cl MeOH/H2O Reflux [70]
FeCl3·6H2O (1 equiv)/In MeOH/H2O Sonication [71]

Iron complex
Fe(CO)3(PPh3)2 (0.5 mol%) or
Fe(CO)3(AsPh3)2 (0.5 mol%) H2 (80 atm) C6H6/EtOH 125 [6]

FeSO4·7H2O/Na2EDTA (0.075 mol%) H2 (400 psi) CH3C6H5/H2O 150 [72]
FeBr2/PPh3 (10 mol%) PhSiH3 (2.5 equiv) CH3C6H5 110 [73]
FePc/FeSO4·7H2O (0.5 mol%) N2H4·H2O (2 equiv) H2O/EtOH 120 [74]
Fe(BF4)2 6H2O/PP3 (4 mol%) HCO2H (4.5 equiv) EtOH 40 [75]
[FeF(PP3)][BF4] (2 mol%) H2 (20 bar) t-AmOH 120 [76]
Fe(III)(Furf) (2 mol%) HSi(OEt)3 (4 equiv) CH3CN 80 [77]
Fe(CO)4(IMes) (5 mol%) PhSiH3 (3 equiv) CH3C6H5 90, hν [78]
ImmFe-IL (3 mol%) N2H4·H2O (3 equiv) Ethylene glycol 110 [79]
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Table 1. Cont.

Type of Iron Catalyst H2 Source Solvent Temp. (◦C) Ref.

(TPP)Fe(III)Cl (0.06 mol%) NaBH4 (1.6 equiv) Diglyme 30 [80]
PcFe(II) (2 mol%) NaBH4 (2 equiv) Diglyme rt [81]
Carbonyl iron powder (5 equiv) NH4Cl (3 equiv) H2O 45 [83]
FeSO4/Citrate (1 mol%) NaBH4 (400 equiv) H2O rt [84]
Fe3Se2(CO)9 (3 mol%) N2H4·H2O (2 equiv) H2O 110 [85]

This work
FeCl3·6H2O/Cationic 2,2′-
bipyridyl (1–2 mol%) N2H4·H2O (4 equiv) H2O 100

Abbreviations are as follows: TMDS = 1,1,3,3-tetramethyldisiloxane; Pc = phthalocyanine; PP3 = tetraphosphine;
Furf = tetrahydro-2-furanyl; IMes = 1,3-bis(2,4,6-trimethyl-phenyl)imidazol-2-ylidene; ImmFe-IL = immobilized
iron metal-containing ionic liquid; TPP = tetraphenylporphyrin.
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2. Results and Discussion

First, various readily-available iron salts were associated with the water-soluble bipyridyl
ligand, L, in water in order to evaluate the efficiency for reduction of 1-nitronaphthalene
1a. The reaction was conducted using 1a (1.0 mmol) and N2H4·H2O (4.0 mmol) as the
reducing agent in water (2 mL) at 100 ◦C for 6 h (Table 2, Entries 1–7). Among the iron
salts, FeCl3·6H2O (≥99% purity) was found to be the best catalyst, which rendered 1-
naphthylamine 2a in a 69% yield (Entry 7). As expected, the reduction did not take place
in the absence of the iron salt (Entry 8). Therefore, the FeCl3·6H2O/L system (1 mol%)
was then selected for further optimization. A reaction duration of 12 h was found to
be sufficient to obtain a near-quantitative yield of 2a (Entries 9 and 10). Reducing the
amount of N2H4·H2O or lowering the reaction temperature led to decreasing product
yields (Entries 11 and 12). Ligand L plays a decisive role in obtaining a high yield of
2a in the reaction and, hence, an inferior yield of 2a resulted when the reaction was
conducted in the absence of L (Entry 13). This result was consistent with a published
paper stating that the combination of FeCl3·6H2O and N2H4·H2O for nitroarene reduction
is ineffective [65]. In addition, only 43% of 2a was furnished when L was replaced with
neutral 2,2′-bipyridine (Entry 14). Lipshutz et al. reported that Fe/ppm Pd nanoparticles
prepared from commercially-available FeCl3 (≥97% purity, contains 300 to 350 ppm Pd)
or doped with 350 ppm Pd(OAc)2 were able to catalyze Suzuki–Miyaura coupling [90].
Alternatively, Fe/80 ppm Pd nanoparticles can be applied to reduce nitroarenes to anilines
in the presence of NaBH4 as the reducing agent [91,92]. In order to exclude catalysis
resulting from contaminated metals in commercially-available sources, the palladium
impurity was analyzed by inductively coupled plasma mass (ICP-MASS) spectrometry,
which showed that FeCl3·6H2O (≥99% purity) contained only 0.8 ppm of Pd [87]. A further
reaction performed with a 99.99% purity of FeCl3 as the catalyst provided 2a in a 98%
yield, which indicated that this reduction is indeed catalyzed by iron (Entry 15). Other
common reducing agents, such as NH4Cl and HCOONH4, failed to reduce 1a and, hence,
1a remained intact (Entries 16 and 17). It is worth mentioning that a large-scale reaction
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employing 10 mmol of 1a and 40 mmol of N2H4·H2O under the conditions of Entry 9 was
achieved, giving rise to 2a in a 97% isolated yield (Entry 18).

Table 2. Iron-catalyzed hydrogenation of 1-nitronaphthalene in water a.
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of cardiac arrhythmias, could be synthesized using this protocol in an excellent yield (En-
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Entry Iron Salt Duration (h) Yield (%) b

1 FeCl2·4H2O 6 34
2 FeBr2 6 35
3 FeC2O4·2H2O 6 33
4 FeSO4·7H2O 6 11
5 FeBr3 6 32
6 Fe2O3·2H2O 6 0
7 FeCl3·6H2O 6 69
8 none 6 0
9 FeCl3·6H2O 12 98
10 FeCl3·6H2O 24 98

11 c FeCl3·6H2O 24 73
12 d FeCl3·6H2O 12 41
13 e FeCl3·6H2O 12 18
14 f FeCl3·6H2O 12 43
15 g FeCl3 12 98
16 h FeCl3·6H2O 12 0
17 i FeCl3·6H2O 12 0
18 j FeCl3·6H2O 12 97

a Reaction conditions are as follows: 1-nitronaphthalene 1a (1.0 mmol), Fe/L (1 mol%), N2H4·H2O (4.0 mmol),
H2O (2 mL) at 100 ◦C for 12 h. b Isolated yields. c 3 equiv of N2H4·H2O were employed. d At 80 ◦C. e In the
absence of L. f Neutral 2,2′-bipyridine was employed instead of L. g 99.99% purity of FeCl3 was used. h HCOONH4
was used as the reducing agent. i NH4Cl was used as the reducing agent. j 1-Nitronaphthalene 1a (10 mmol),
FeCl3·6H2O/L (1 mol%), N2H4·H2O (40 mmol), H2O (20 mL) at 100 ◦C for 12 h.

Following identification of the optimal conditions, a variety of nitroarenes were ap-
plied to the FeCl3·6H2O/L system to assess the scope and limitations of this process
(Table 3). It was found that this catalytic system reduced 4-halonitrobenzenes 1b–1d ef-
ficiently, producing corresponding 4-haloanilines 2b–2d in excellent yields with no side
products of hydrodehalogenation compounds (Entries 1–3), which has been observed in sev-
eral hydrogenation processes [93–95]. When applying activating groups at the 4-position,
the reduction took place smoothly under 1–2 mol% catalyst loading, and high yields of
corresponding aniline derivatives 2e–2l were obtained (Entries 4–11). This catalytic system
also worked efficiently with nitroarenes bearing cyano, ester, and amide groups (1m–1o),
giving 2m–2o in excellent yields (Entries 12–14). Procainamide 2p, a drug for the treatment
of cardiac arrhythmias, could be synthesized using this protocol in an excellent yield (Entry
15). These results indicated that the FeCl3·6H2O/L system possessed excellent tolerance to
a wide variety of reducible functional groups. Multi-substituted nitroarenes 1q–1v, except
for sterically-hindered 1v, were reduced to the corresponding products smoothly (Entries
16–21). In general, this reduction was clean. For instance, no intermediates or by-products
were detected after 12 h in the reduction of 1v, which gave only 2v and unreacted 1v (Entry
21). This may indicate that the intermediates were more reactive than the nitroarene in
our system [64]. This protocol was applicable to the reduction of heterocyclic substrates,
which are important intermediates for pharmaceuticals [96]. Hence, 1w–1z were reduced
smoothly, giving 2w–2z in high yields (Entries 22–25). Nitroarenes bearing formyl (3a)
and keto (3b) groups can react with hydrazine to give hydrazone compounds [19,35,65];
4a and 4b were, therefore, obtained in 83% and 90% yields, respectively (Entries 26 and



Catalysts 2022, 12, 924 5 of 12

27). The reduction of a nitroarene with a terminal C=C bond showed no selectivity, and
both nitro group and π-bonds were reduced (Entry 28). With internal alkene 3d, the double
bond was partially protected, which gave 4d/4d′ in a 7.9/1 ratio (Entry 29). Similar results
have also been observed in a FePc/FeSO4·7H2O system using N2H4·H2O as the reducing
agent [74]. Dinitro compounds, such as 5a and 5b, were reduced efficiently and, hence,
furnished 4,4′-oxydianiline 6a and diaminodiphenyl sulfone (Dapsone) 6b in high yields
(Entries 30 and 31).

Table 3. Iron–catalyzed hydrogenation of substituted nitroarenes in water a.

Entry Nitroarene Product Yield (%) b

1
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1v (Entry 21). This may indicate that the intermediates were more reactive than the ni-
troarene in our system [64]. This protocol was applicable to the reduction of heterocyclic 
substrates, which are important intermediates for pharmaceuticals [96]. Hence, 1w–1z 
were reduced smoothly, giving 2w–2z in high yields (Entries 22–25). Nitroarenes bearing 
formyl (3a) and keto (3b) groups can react with hydrazine to give hydrazone compounds 
[19,35,65]; 4a and 4b were, therefore, obtained in 83% and 90% yields, respectively (Entries 
26 and 27). The reduction of a nitroarene with a terminal C=C bond showed no selectivity, 
and both nitro group and π-bonds were reduced (Entry 28). With internal alkene 3d, the 
double bond was partially protected, which gave 4d/4d′ in a 7.9/1 ratio (Entry 29). Similar 
results have also been observed in a FePc/FeSO4∙7H2O system using N2H4∙H2O as the re-
ducing agent [74]. Dinitro compounds, such as 5a and 5b, were reduced efficiently and, 
hence, furnished 4,4′-oxydianiline 6a and diaminodiphenyl sulfone (Dapsone) 6b in high 
yields (Entries 30 and 31). 
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1v (Entry 21). This may indicate that the intermediates were more reactive than the ni-
troarene in our system [64]. This protocol was applicable to the reduction of heterocyclic 
substrates, which are important intermediates for pharmaceuticals [96]. Hence, 1w–1z 
were reduced smoothly, giving 2w–2z in high yields (Entries 22–25). Nitroarenes bearing 
formyl (3a) and keto (3b) groups can react with hydrazine to give hydrazone compounds 
[19,35,65]; 4a and 4b were, therefore, obtained in 83% and 90% yields, respectively (Entries 
26 and 27). The reduction of a nitroarene with a terminal C=C bond showed no selectivity, 
and both nitro group and π-bonds were reduced (Entry 28). With internal alkene 3d, the 
double bond was partially protected, which gave 4d/4d′ in a 7.9/1 ratio (Entry 29). Similar 
results have also been observed in a FePc/FeSO4∙7H2O system using N2H4∙H2O as the re-
ducing agent [74]. Dinitro compounds, such as 5a and 5b, were reduced efficiently and, 
hence, furnished 4,4′-oxydianiline 6a and diaminodiphenyl sulfone (Dapsone) 6b in high 
yields (Entries 30 and 31). 
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1v (Entry 21). This may indicate that the intermediates were more reactive than the ni-
troarene in our system [64]. This protocol was applicable to the reduction of heterocyclic 
substrates, which are important intermediates for pharmaceuticals [96]. Hence, 1w–1z 
were reduced smoothly, giving 2w–2z in high yields (Entries 22–25). Nitroarenes bearing 
formyl (3a) and keto (3b) groups can react with hydrazine to give hydrazone compounds 
[19,35,65]; 4a and 4b were, therefore, obtained in 83% and 90% yields, respectively (Entries 
26 and 27). The reduction of a nitroarene with a terminal C=C bond showed no selectivity, 
and both nitro group and π-bonds were reduced (Entry 28). With internal alkene 3d, the 
double bond was partially protected, which gave 4d/4d′ in a 7.9/1 ratio (Entry 29). Similar 
results have also been observed in a FePc/FeSO4∙7H2O system using N2H4∙H2O as the re-
ducing agent [74]. Dinitro compounds, such as 5a and 5b, were reduced efficiently and, 
hence, furnished 4,4′-oxydianiline 6a and diaminodiphenyl sulfone (Dapsone) 6b in high 
yields (Entries 30 and 31). 

Table 3. Iron‒catalyzed hydrogenation of substituted nitroarenes in water.a. 
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1v (Entry 21). This may indicate that the intermediates were more reactive than the ni-
troarene in our system [64]. This protocol was applicable to the reduction of heterocyclic 
substrates, which are important intermediates for pharmaceuticals [96]. Hence, 1w–1z 
were reduced smoothly, giving 2w–2z in high yields (Entries 22–25). Nitroarenes bearing 
formyl (3a) and keto (3b) groups can react with hydrazine to give hydrazone compounds 
[19,35,65]; 4a and 4b were, therefore, obtained in 83% and 90% yields, respectively (Entries 
26 and 27). The reduction of a nitroarene with a terminal C=C bond showed no selectivity, 
and both nitro group and π-bonds were reduced (Entry 28). With internal alkene 3d, the 
double bond was partially protected, which gave 4d/4d′ in a 7.9/1 ratio (Entry 29). Similar 
results have also been observed in a FePc/FeSO4∙7H2O system using N2H4∙H2O as the re-
ducing agent [74]. Dinitro compounds, such as 5a and 5b, were reduced efficiently and, 
hence, furnished 4,4′-oxydianiline 6a and diaminodiphenyl sulfone (Dapsone) 6b in high 
yields (Entries 30 and 31). 

Table 3. Iron‒catalyzed hydrogenation of substituted nitroarenes in water.a. 
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1v (Entry 21). This may indicate that the intermediates were more reactive than the ni-
troarene in our system [64]. This protocol was applicable to the reduction of heterocyclic 
substrates, which are important intermediates for pharmaceuticals [96]. Hence, 1w–1z 
were reduced smoothly, giving 2w–2z in high yields (Entries 22–25). Nitroarenes bearing 
formyl (3a) and keto (3b) groups can react with hydrazine to give hydrazone compounds 
[19,35,65]; 4a and 4b were, therefore, obtained in 83% and 90% yields, respectively (Entries 
26 and 27). The reduction of a nitroarene with a terminal C=C bond showed no selectivity, 
and both nitro group and π-bonds were reduced (Entry 28). With internal alkene 3d, the 
double bond was partially protected, which gave 4d/4d′ in a 7.9/1 ratio (Entry 29). Similar 
results have also been observed in a FePc/FeSO4∙7H2O system using N2H4∙H2O as the re-
ducing agent [74]. Dinitro compounds, such as 5a and 5b, were reduced efficiently and, 
hence, furnished 4,4′-oxydianiline 6a and diaminodiphenyl sulfone (Dapsone) 6b in high 
yields (Entries 30 and 31). 

Table 3. Iron‒catalyzed hydrogenation of substituted nitroarenes in water.a. 
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1v (Entry 21). This may indicate that the intermediates were more reactive than the ni-
troarene in our system [64]. This protocol was applicable to the reduction of heterocyclic 
substrates, which are important intermediates for pharmaceuticals [96]. Hence, 1w–1z 
were reduced smoothly, giving 2w–2z in high yields (Entries 22–25). Nitroarenes bearing 
formyl (3a) and keto (3b) groups can react with hydrazine to give hydrazone compounds 
[19,35,65]; 4a and 4b were, therefore, obtained in 83% and 90% yields, respectively (Entries 
26 and 27). The reduction of a nitroarene with a terminal C=C bond showed no selectivity, 
and both nitro group and π-bonds were reduced (Entry 28). With internal alkene 3d, the 
double bond was partially protected, which gave 4d/4d′ in a 7.9/1 ratio (Entry 29). Similar 
results have also been observed in a FePc/FeSO4∙7H2O system using N2H4∙H2O as the re-
ducing agent [74]. Dinitro compounds, such as 5a and 5b, were reduced efficiently and, 
hence, furnished 4,4′-oxydianiline 6a and diaminodiphenyl sulfone (Dapsone) 6b in high 
yields (Entries 30 and 31). 

Table 3. Iron‒catalyzed hydrogenation of substituted nitroarenes in water.a. 

Entry Nitroarene Product Yield (%) b 

1 
 1b  2b 

99 

2 
 1c  2c 

97 

3 
 1d  2d 

97 

4 
 1e  2e 

83 

5 
 1f  2f 

92 

6 c 
 1g  2g 

99 

7 c 
 1h  2h 

88 

8 c 
 1i  2i 

72 

9 c 
 1j  2j 

78 

10 c 
 1k  2k 

70 

11 c 
 1l  2l 

89 

12 
 1m  2m 

90 

2e
83

5

Catalysts 2022, 12, x FOR PEER REVIEW 5 of 12 
 

 

1v (Entry 21). This may indicate that the intermediates were more reactive than the ni-
troarene in our system [64]. This protocol was applicable to the reduction of heterocyclic 
substrates, which are important intermediates for pharmaceuticals [96]. Hence, 1w–1z 
were reduced smoothly, giving 2w–2z in high yields (Entries 22–25). Nitroarenes bearing 
formyl (3a) and keto (3b) groups can react with hydrazine to give hydrazone compounds 
[19,35,65]; 4a and 4b were, therefore, obtained in 83% and 90% yields, respectively (Entries 
26 and 27). The reduction of a nitroarene with a terminal C=C bond showed no selectivity, 
and both nitro group and π-bonds were reduced (Entry 28). With internal alkene 3d, the 
double bond was partially protected, which gave 4d/4d′ in a 7.9/1 ratio (Entry 29). Similar 
results have also been observed in a FePc/FeSO4∙7H2O system using N2H4∙H2O as the re-
ducing agent [74]. Dinitro compounds, such as 5a and 5b, were reduced efficiently and, 
hence, furnished 4,4′-oxydianiline 6a and diaminodiphenyl sulfone (Dapsone) 6b in high 
yields (Entries 30 and 31). 

Table 3. Iron‒catalyzed hydrogenation of substituted nitroarenes in water.a. 
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1v (Entry 21). This may indicate that the intermediates were more reactive than the ni-
troarene in our system [64]. This protocol was applicable to the reduction of heterocyclic 
substrates, which are important intermediates for pharmaceuticals [96]. Hence, 1w–1z 
were reduced smoothly, giving 2w–2z in high yields (Entries 22–25). Nitroarenes bearing 
formyl (3a) and keto (3b) groups can react with hydrazine to give hydrazone compounds 
[19,35,65]; 4a and 4b were, therefore, obtained in 83% and 90% yields, respectively (Entries 
26 and 27). The reduction of a nitroarene with a terminal C=C bond showed no selectivity, 
and both nitro group and π-bonds were reduced (Entry 28). With internal alkene 3d, the 
double bond was partially protected, which gave 4d/4d′ in a 7.9/1 ratio (Entry 29). Similar 
results have also been observed in a FePc/FeSO4∙7H2O system using N2H4∙H2O as the re-
ducing agent [74]. Dinitro compounds, such as 5a and 5b, were reduced efficiently and, 
hence, furnished 4,4′-oxydianiline 6a and diaminodiphenyl sulfone (Dapsone) 6b in high 
yields (Entries 30 and 31). 

Table 3. Iron‒catalyzed hydrogenation of substituted nitroarenes in water.a. 

Entry Nitroarene Product Yield (%) b 

1 
 1b  2b 

99 

2 
 1c  2c 

97 

3 
 1d  2d 

97 

4 
 1e  2e 

83 

5 
 1f  2f 

92 

6 c 
 1g  2g 

99 

7 c 
 1h  2h 

88 

8 c 
 1i  2i 

72 

9 c 
 1j  2j 

78 

10 c 
 1k  2k 

70 

11 c 
 1l  2l 

89 

12 
 1m  2m 

90 

2f
92

6 c

Catalysts 2022, 12, x FOR PEER REVIEW 5 of 12 
 

 

1v (Entry 21). This may indicate that the intermediates were more reactive than the ni-
troarene in our system [64]. This protocol was applicable to the reduction of heterocyclic 
substrates, which are important intermediates for pharmaceuticals [96]. Hence, 1w–1z 
were reduced smoothly, giving 2w–2z in high yields (Entries 22–25). Nitroarenes bearing 
formyl (3a) and keto (3b) groups can react with hydrazine to give hydrazone compounds 
[19,35,65]; 4a and 4b were, therefore, obtained in 83% and 90% yields, respectively (Entries 
26 and 27). The reduction of a nitroarene with a terminal C=C bond showed no selectivity, 
and both nitro group and π-bonds were reduced (Entry 28). With internal alkene 3d, the 
double bond was partially protected, which gave 4d/4d′ in a 7.9/1 ratio (Entry 29). Similar 
results have also been observed in a FePc/FeSO4∙7H2O system using N2H4∙H2O as the re-
ducing agent [74]. Dinitro compounds, such as 5a and 5b, were reduced efficiently and, 
hence, furnished 4,4′-oxydianiline 6a and diaminodiphenyl sulfone (Dapsone) 6b in high 
yields (Entries 30 and 31). 

Table 3. Iron‒catalyzed hydrogenation of substituted nitroarenes in water.a. 
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1v (Entry 21). This may indicate that the intermediates were more reactive than the ni-
troarene in our system [64]. This protocol was applicable to the reduction of heterocyclic 
substrates, which are important intermediates for pharmaceuticals [96]. Hence, 1w–1z 
were reduced smoothly, giving 2w–2z in high yields (Entries 22–25). Nitroarenes bearing 
formyl (3a) and keto (3b) groups can react with hydrazine to give hydrazone compounds 
[19,35,65]; 4a and 4b were, therefore, obtained in 83% and 90% yields, respectively (Entries 
26 and 27). The reduction of a nitroarene with a terminal C=C bond showed no selectivity, 
and both nitro group and π-bonds were reduced (Entry 28). With internal alkene 3d, the 
double bond was partially protected, which gave 4d/4d′ in a 7.9/1 ratio (Entry 29). Similar 
results have also been observed in a FePc/FeSO4∙7H2O system using N2H4∙H2O as the re-
ducing agent [74]. Dinitro compounds, such as 5a and 5b, were reduced efficiently and, 
hence, furnished 4,4′-oxydianiline 6a and diaminodiphenyl sulfone (Dapsone) 6b in high 
yields (Entries 30 and 31). 

Table 3. Iron‒catalyzed hydrogenation of substituted nitroarenes in water.a. 
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1v (Entry 21). This may indicate that the intermediates were more reactive than the ni-
troarene in our system [64]. This protocol was applicable to the reduction of heterocyclic 
substrates, which are important intermediates for pharmaceuticals [96]. Hence, 1w–1z 
were reduced smoothly, giving 2w–2z in high yields (Entries 22–25). Nitroarenes bearing 
formyl (3a) and keto (3b) groups can react with hydrazine to give hydrazone compounds 
[19,35,65]; 4a and 4b were, therefore, obtained in 83% and 90% yields, respectively (Entries 
26 and 27). The reduction of a nitroarene with a terminal C=C bond showed no selectivity, 
and both nitro group and π-bonds were reduced (Entry 28). With internal alkene 3d, the 
double bond was partially protected, which gave 4d/4d′ in a 7.9/1 ratio (Entry 29). Similar 
results have also been observed in a FePc/FeSO4∙7H2O system using N2H4∙H2O as the re-
ducing agent [74]. Dinitro compounds, such as 5a and 5b, were reduced efficiently and, 
hence, furnished 4,4′-oxydianiline 6a and diaminodiphenyl sulfone (Dapsone) 6b in high 
yields (Entries 30 and 31). 

Table 3. Iron‒catalyzed hydrogenation of substituted nitroarenes in water.a. 
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1v (Entry 21). This may indicate that the intermediates were more reactive than the ni-
troarene in our system [64]. This protocol was applicable to the reduction of heterocyclic 
substrates, which are important intermediates for pharmaceuticals [96]. Hence, 1w–1z 
were reduced smoothly, giving 2w–2z in high yields (Entries 22–25). Nitroarenes bearing 
formyl (3a) and keto (3b) groups can react with hydrazine to give hydrazone compounds 
[19,35,65]; 4a and 4b were, therefore, obtained in 83% and 90% yields, respectively (Entries 
26 and 27). The reduction of a nitroarene with a terminal C=C bond showed no selectivity, 
and both nitro group and π-bonds were reduced (Entry 28). With internal alkene 3d, the 
double bond was partially protected, which gave 4d/4d′ in a 7.9/1 ratio (Entry 29). Similar 
results have also been observed in a FePc/FeSO4∙7H2O system using N2H4∙H2O as the re-
ducing agent [74]. Dinitro compounds, such as 5a and 5b, were reduced efficiently and, 
hence, furnished 4,4′-oxydianiline 6a and diaminodiphenyl sulfone (Dapsone) 6b in high 
yields (Entries 30 and 31). 

Table 3. Iron‒catalyzed hydrogenation of substituted nitroarenes in water.a. 
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1v (Entry 21). This may indicate that the intermediates were more reactive than the ni-
troarene in our system [64]. This protocol was applicable to the reduction of heterocyclic 
substrates, which are important intermediates for pharmaceuticals [96]. Hence, 1w–1z 
were reduced smoothly, giving 2w–2z in high yields (Entries 22–25). Nitroarenes bearing 
formyl (3a) and keto (3b) groups can react with hydrazine to give hydrazone compounds 
[19,35,65]; 4a and 4b were, therefore, obtained in 83% and 90% yields, respectively (Entries 
26 and 27). The reduction of a nitroarene with a terminal C=C bond showed no selectivity, 
and both nitro group and π-bonds were reduced (Entry 28). With internal alkene 3d, the 
double bond was partially protected, which gave 4d/4d′ in a 7.9/1 ratio (Entry 29). Similar 
results have also been observed in a FePc/FeSO4∙7H2O system using N2H4∙H2O as the re-
ducing agent [74]. Dinitro compounds, such as 5a and 5b, were reduced efficiently and, 
hence, furnished 4,4′-oxydianiline 6a and diaminodiphenyl sulfone (Dapsone) 6b in high 
yields (Entries 30 and 31). 

Table 3. Iron‒catalyzed hydrogenation of substituted nitroarenes in water.a. 
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1v (Entry 21). This may indicate that the intermediates were more reactive than the ni-
troarene in our system [64]. This protocol was applicable to the reduction of heterocyclic 
substrates, which are important intermediates for pharmaceuticals [96]. Hence, 1w–1z 
were reduced smoothly, giving 2w–2z in high yields (Entries 22–25). Nitroarenes bearing 
formyl (3a) and keto (3b) groups can react with hydrazine to give hydrazone compounds 
[19,35,65]; 4a and 4b were, therefore, obtained in 83% and 90% yields, respectively (Entries 
26 and 27). The reduction of a nitroarene with a terminal C=C bond showed no selectivity, 
and both nitro group and π-bonds were reduced (Entry 28). With internal alkene 3d, the 
double bond was partially protected, which gave 4d/4d′ in a 7.9/1 ratio (Entry 29). Similar 
results have also been observed in a FePc/FeSO4∙7H2O system using N2H4∙H2O as the re-
ducing agent [74]. Dinitro compounds, such as 5a and 5b, were reduced efficiently and, 
hence, furnished 4,4′-oxydianiline 6a and diaminodiphenyl sulfone (Dapsone) 6b in high 
yields (Entries 30 and 31). 

Table 3. Iron‒catalyzed hydrogenation of substituted nitroarenes in water.a. 
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1v (Entry 21). This may indicate that the intermediates were more reactive than the ni-
troarene in our system [64]. This protocol was applicable to the reduction of heterocyclic 
substrates, which are important intermediates for pharmaceuticals [96]. Hence, 1w–1z 
were reduced smoothly, giving 2w–2z in high yields (Entries 22–25). Nitroarenes bearing 
formyl (3a) and keto (3b) groups can react with hydrazine to give hydrazone compounds 
[19,35,65]; 4a and 4b were, therefore, obtained in 83% and 90% yields, respectively (Entries 
26 and 27). The reduction of a nitroarene with a terminal C=C bond showed no selectivity, 
and both nitro group and π-bonds were reduced (Entry 28). With internal alkene 3d, the 
double bond was partially protected, which gave 4d/4d′ in a 7.9/1 ratio (Entry 29). Similar 
results have also been observed in a FePc/FeSO4∙7H2O system using N2H4∙H2O as the re-
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a Reaction conditions are as follows: nitroarene (1.0 mmol), FeCl3∙6H2O/L (1 mol%), N2H4∙H2O (4.0 
mmol), H2O (2 mL) at 100 °C for 12 h. b Isolated yield. c 2 mol% FeCl3∙6H2O/L was used. d 4d/4d′ = 
7.9/1. e 2 mol% FeCl3∙6H2O/L and 8.0 mmol N2H4∙H2O were used. 

It is recognized that the reusability of a catalytic aqueous solution is one of the major 
advantages of performing the reaction in neat water, thus, reducing the environmental 
impact and cost of the procedure. The reusability of this green catalytic system was, there-
fore, examined, and 1a and 1h were selected as the representative reactants. As shown in 
Table 4, the reduction of 1a with 1 mol% catalyst loading resulted in the formation of 2a 
in a 98% yield in the initial run. After extracting the reaction mixture with EtOAc (3 × 5 
mL), the residual aqueous phase was applied for subsequent reuse studies without any 
retreatment or regeneration. It was observed that, at the third reuse run, an 80% isolated 
yield of 2a could still be achieved (Entry 1). In addition, the catalyst reuse studies for 1h 
were performed with a 2 mol% catalyst loading, and a 78% yield of 2h was obtained in 
the third reuse run (Entry 2). The gradual decrease in catalytic activity in reuse studies 
might be due to the deactivation of the catalyst or a gradual decrease in the catalyst con-
centration upon successive extraction of the aqueous solution. 

Table 4. Reuse studies of the Fe‒catalyzed reduction of nitroarenes. 

 

Entry Product 
Isolated Yield (%) 

Initial Run 1st Reuse Run 2nd Reuse Run 3rd Reuse Run 
1 a 2a 98 94 87 80 
2 b 2h 99 93 86 78 

a FeCl3∙6H2O/L (1 mol%). b FeCl3∙6H2O/L (2 mol%). 

3. Materials and Methods 
3.1. Instruments and Reagents 

Iron salts and most nitroarenes were acquired from commercial suppliers and were 
used without further purification. Here, 1j [97], 1k [98], 1n [99], 1p [100], and 3d [101] were 
synthesized according to published procedures. The water-soluble bipyridyl ligand L was 
obtained by our published method [102]. The 1H- and 13C-NMR spectra were obtained at 
25 °C in CDCl3, DMSO-d6 or acetone-d6 solution on a Bruker Biospin AG 300 NMR spec-
trometer (Bruker Co., Faellanden, Switzerland), in which the chemical shifts (δ in ppm) 
were established with respect to CHCl3, non-deuterated DMSO, and acetone, which were 
employed as the reference (1H-NMR as follows: CHCl3 at 7.24, non-deuterated DMSO at 
2.49, and non-deuterated acetone at 2.05 ppm; 13C-NMR as follows: CDCl3 at 77.0, DMSO-
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FeCl3·6H2O/L and 8.0 mmol N2H4·H2O were used.

It is recognized that the reusability of a catalytic aqueous solution is one of the major
advantages of performing the reaction in neat water, thus, reducing the environmental
impact and cost of the procedure. The reusability of this green catalytic system was,
therefore, examined, and 1a and 1h were selected as the representative reactants. As shown
in Table 4, the reduction of 1a with 1 mol% catalyst loading resulted in the formation
of 2a in a 98% yield in the initial run. After extracting the reaction mixture with EtOAc
(3 × 5 mL), the residual aqueous phase was applied for subsequent reuse studies without
any retreatment or regeneration. It was observed that, at the third reuse run, an 80% isolated
yield of 2a could still be achieved (Entry 1). In addition, the catalyst reuse studies for 1h
were performed with a 2 mol% catalyst loading, and a 78% yield of 2h was obtained in the
third reuse run (Entry 2). The gradual decrease in catalytic activity in reuse studies might
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3. Materials and Methods
3.1. Instruments and Reagents

Iron salts and most nitroarenes were acquired from commercial suppliers and were
used without further purification. Here, 1j [97], 1k [98], 1n [99], 1p [100], and 3d [101] were
synthesized according to published procedures. The water-soluble bipyridyl ligand L was
obtained by our published method [102]. The 1H- and 13C-NMR spectra were obtained
at 25 ◦C in CDCl3, DMSO-d6 or acetone-d6 solution on a Bruker Biospin AG 300 NMR
spectrometer (Bruker Co., Faellanden, Switzerland), in which the chemical shifts (δ in ppm)
were established with respect to CHCl3, non-deuterated DMSO, and acetone, which were
employed as the reference (1H-NMR as follows: CHCl3 at 7.24, non-deuterated DMSO at
2.49, and non-deuterated acetone at 2.05 ppm; 13C-NMR as follows: CDCl3 at 77.0, DMSO-
d6 at 39.5, and acetone-d6 at 29.9 ppm). The spectral data of all nitroarene reduction products
and copies of their 1H and 13C NMR spectra can be found in the Supplementary Materials.
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3.2. Experimental Method
3.2.1. General Procedure for Reduction of Nitroarenes

A 20 mL sealable glass tube equipped with a magnetic stirrer bar was charged with
FeCl3·6H2O (2.7 mg for 1 mol% or 5.4 mg for 2 mol% reactions), L (4.6 mg for 1 mol% or
9.2 mg for 2 mol% reactions), and H2O (2 mL). This mixture was stirred at room temperature
for 30 min to give a wine-red solution. After the addition of nitroarene (1 mmol) and
H2NNH2·H2O (0.2 mL, 4 mmol), the tube was sealed under air and stirred at 100 ◦C for
12 h. After cooling the reaction to room temperature, the aqueous solution was extracted
with EtOAc (3 × 5 mL), the combined organic phase was dried over MgSO4, and the
solvent was removed under vacuum. Column chromatography on silica gel eluted with
n-hexane/EtOAc (2/1) provided the desired products.

3.2.2. General Procedure for Catalyst Reuse Studies

After finishing the initial run and separating the product from the aqueous phase as
mentioned above, the residual aqueous solution was recharged with nitroarene (1 mmol)
and H2NNH2·H2O (0.2 mL, 4 mmol). The tube was then sealed and stirred at 100 ◦C for
12 h for the reuse run.

4. Conclusions

In conclusion, we have successfully developed an operationally simple and reusable
protocol for the reduction of nitroarenes to anilines catalyzed by a green catalytic system
in water. This procedure features (i) inexpensive, nontoxic, and commonly-available
iron salt as the catalyst, and the greenest solvent, water, as the sole reaction medium;
(ii) compatibility with a broad spectrum of functional groups; and (iii) potential for reuse
of the catalytic aqueous solution several times without any retreatment or regeneration,
proving it an eco-sustainable process.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/catal12080924/s1: spectral data and copies of 1H- and 13C-NMR
spectra for all products.
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