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Abstract: The inclusion of transition metal elements within metal–organic frameworks (MOFs) is
considered one of the most promising approaches for enhancing the catalytic capability of MOFs. In
this study, MOF-253 containing bipyridine coordination sites is investigated for possible transition
metal chelation, and a consequent possible CO2 reduction mechanism in the formation of formic
acid. All transition metal elements of the third, fourth and fifth periods except hafnium and the
lanthanide series are considered using density functional theory calculations. Two distinct types of
CO2 reduction mechanisms are identified: (1) the five-coordination Pd center, which promotes formic
acid generation via an intramolecular proton transfer pathway; (2) several four-coordination metal
centers, including Mn, Pd, and Pt, which generate formic acid by means of heterolytic hydrogen
activation. The MOF-253 environment is found to promote beneficial steric hindrance, and to
constrain metal–ligand orientation, which consequently facilitates the formation of formic acid,
particularly with the tetrahedral Mn center at high-spin electronic state.

Keywords: metal-organic framework; carbon dioxide reduction; density functional theory; transition
metal catalysts

1. Introduction

Metal-organic frameworks (MOFs) are synthetic materials based upon coordination
chemistry and supramolecules. MOF structures are periodically constructed, with metal
ions or metal oxide clusters as the connectors and organic linkers, extending multidimen-
sionally to form porous crystalline materials. In addition to this, the geometric advantages
of MOFs such as large surface area, tunable pore size, and structural design flexibility can
provide a basis for applications in gas adsorption and storage, mixture separation, molecule
recognition, and drug delivery. The diverse chemical functionality of organic linkers can be
also used to advantage in sensing, catalysis, optical and luminescence applications [1].

The pioneer study of MOF-5 synthesis using zinc oxide clusters and 1,4-benzenedicarboxylic
acid (bdc) demonstrated the achievement of stable porosity without the presence of guest
molecules, thus preventing the structure from collapsing, resulting in the formation of
a zeolite-like architecture [2]. In later work, a sub-network of inorganic connectors was
formed in one or two dimensions, instead of the three dimensions of MOF-5, by using
M(III)-oxide clusters, M = Cr and Al, and a bdc linker, to form MIL-53 [3,4]. The resulting
MIL-53 architecture contained an array of one-dimensional pore channels; however, its
accompanying breathing phenomena limit the utilization of its surface area [5]. In order to
understand the origin of the breathing effect, Senkovska et al. introduced 2,6-naphthalene
dicarboxylate (ndc) and 4,4′-biphenyl dicarboxylate (bpdc) linkers to the Al-oxide connec-
tors and produced non-porous DUT-4 and permanent-porous DUT-5, with specific pore
volumes of 0.68 and 0.81 g/cm3, respectively [6].

Gotthardt et al. functionalized a bpdc linker by introducing an additional amine,
azide, alkyne, or nitro group at the 2-position [7]. The crystalline characters of these

Catalysts 2022, 12, 890. https://doi.org/10.3390/catal12080890 https://www.mdpi.com/journal/catalysts

https://doi.org/10.3390/catal12080890
https://doi.org/10.3390/catal12080890
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com
https://orcid.org/0000-0002-7696-0222
https://orcid.org/0000-0001-9189-5572
https://doi.org/10.3390/catal12080890
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com/article/10.3390/catal12080890?type=check_update&version=2


Catalysts 2022, 12, 890 2 of 11

functionalized cases were found to remain similar to the parent DUT-5, except in the case of
the azide group which decayed to form carbazole. The specific surface area measurements
showed a noticeable reduction from 1880 m2/g for the parent materials to 1570, 1270, and
550 m2/g for the amine, alkyne, and nitro substituted versions, respectively. The authors
also synthesized mixed linker versions containing a reduced number of amine groups for
the post-synthetic modification (PSM), and the dilution of amine site density helped raise
the peak surface area after PSM to a level close to that of the parent materials [7].

Bloch et al. introduced 2,2′-bipyridine-5,5′-dicarboxylic acid (bpydc) as linkers to
aluminum oxide connectors, resulting in the formation of MOF-253 architecture [8]. The
hard and oxophilic Al cations were found to preferentially bind with the hard carboxylate
groups and left the soft bipyridine moiety for the subsequent metal ion chelation during the
PSM process. PdCl2 was, therefore, successfully chelated to the bpydc binding site—a con-
clusion validated by extended X-ray adsorption fine structure (EXAFS) spectroscopy—with
improved selective CO2(g) adsorption over N2(g).

Considering such a coordination environment as the MOF-253 architecture already
mentioned, intuition suggests that it may be worthwhile to investigate possible CO2 re-
duction reactivity with respect to the various types of transition metal chelation. In a
recent review by Wang and Astruc, abundant results from the literature were summa-
rized as evidence for catalysis of organic reactions, electrocatalysis, and photocatalysis,
using MOF-based or MOF-derived nanocatalytic materials [9]. However, only non-MOF-
253 systems such as Ni/ZIF-8-C [10], Cu/Zn@C-submm [11], Pt/Au@Pd@UIO-66 [12],
Ni@UIO-66 [13], 20Ni@MIL-101 [14], PZ8-400 [15], and FeZnK-NC [16] produced positive
results for thermal-driven CO2 reduction catalysis. The full potential utilization of the
bidentate bipyridine moiety of MOF-253, particularly for the purpose of CO2 reduction,
still remains unclear, and it is, therefore, a matter worthy of further computational study.
In the case of electrochemical catalysis, CO2 reduction using MOF-based materials is gener-
ally considered to be hindered by its insufficient electrical conductivity which results in
excessive overpotential. For photocatalytic catalysis, a few instances of incorporation of Re
and Ru into MOF-253 architecture were achieved by Li and coworkers [17–19].

To assess the diversity of transition metal chelation during the post-synthesis mod-
ifications process with MOF-253 architecture, we systematically investigated theoretical
CO2 reduction mechanisms for various transition metal centers using density functional
theory (DFT) calculations. The current computational study starts with a chlorinated metal
site, followed by suitable hydride generation and CO2 hydrogenation, with respect to
all transition metals of the periodic table under the MOF-253 architecture. In summary,
this comprehensive theoretical analysis surveys the chelation selections and electronic
structure profiles, step by step through the mechanistic process, and provides insightful
information which may be beneficial for the development of chemical applications using
MOF-253 materials.

2. Results and Discussion
2.1. Energetics and Structures of Metal Chloride Coordinated in MOF-253

The pristine MOF-253 supercell containing eight available N, N′–chelation sites is
shown in Figure S1a. The energetics describing Pd or Sc coordination to the N, N′–chelation
sites were investigated using MCl2 precursor presumptively, and the corresponding results
are summarized in Table S1. Scenarios for six-to-eight coordinations are calculated for
PdCl2 while four-to-eight-coordination scenarios are calculated for Sc. There are multiple
geometric combinations for simulating the double vacancy; notations for labeling these
vacancies are shown in Figure S1b and include the aa-type denoting two vacant sites
(highlighted by two red circles) with positioning along the lattice a–vector. The choice of Pd
or Sc as binding metal centers is based upon the molecular calculations of organometallic
complex models, and the corresponding results are summarized in later sections.

As shown in Table S1, the average formation energy (Eavg) of nMCl2 coordination
for both Pd and Sc cases appears to remain fairly consistent regardless of the amount of
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MCl2 chelation. Such a constant level of energetics suggests that the localized characteristic
of metal chloride coordination to MOF-253 is well described within the first coordination
shell. Consequently, an isolated organometallic complex model can qualitatively describe
the electronic structure of metal-center reactivity. A substantial structural difference is
identified with these two metal centers; the PdCl2 coordination (singlet d8 center) promotes
a planar structure with respect to the bipyridine linker and ScCl2 (doublet d1 center) retains
a tetrahedral structure. This structural difference has the potential to affect the CO2RR
mechanistics and will be discussed in a later section.

Table S2 summarizes the structural deviation from the pristine MOF-253 subject to
PdCl2 coordination. The ∠Al-O-Al′ bending angle, as depicted in Figure S1c, represents
the strain along the one-dimensional aluminum oxide backbone due to the introduction
of PdCl2 coordination. The pristine MOF-253 angle is estimated at 131.80 degrees in cases
where seven–coordination or eight–coordination slightly deform the Al–O–Al chain. Such
a trivial deformation suggests that high catalyst loading to MOF-253 could be enthalpically
assessable despite the presence of vacant coordination sites produced by entropy effects.
The dihedral angles (φ) of the linker–Al–Al′–linker′, as shown schematically in Figure S1d,
also suggest a similar deformation effect corresponding to PdCl2 coordination. The rotation
angle (τbpy) of bipyridine moiety along the C–C bond to the carboxylate group anchoring
on the aluminum oxide backbone is depicted in Figure S1e. The pristine MOF-253 is
found to have τbpy = 7.27◦ while the bpy moiety and carboxylate group retains a fairly
coplanar structure to maximize its π conjugation. With the introduction of PdCl2, τbpy
increases substantially to values above 20◦ in order to reduce the steric hindrance between
the metal chloride and the neighboring linker. Upon vertical removal of PdCl2, the angles
of τbpy for the optimized structures do not fall back to 7.27◦, thus indicating the floppiness
of bpy rotation.

2.2. Metal-Based CO2 Reduction Mechanism

For the remainder of the discussion, the notation for the bpydc ligand is simplified by
use of the term L in the expressions of metal complexes. For example, the M(bpydc)Cl2(H)2
complex is expressed as LMCl2(H)2. The mechanistic steps of CO2RR are depicted schemat-
ically in Figure 1, starting from the metal chloride coordination, followed by hydrogen
activation and the subsequent CO2 hydrogenation.
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Figure 1. Proposed reaction pathways of CO2 reduction by LMCl2 complexes. The gray pathways
are unfavorable cases; green and blue pathways are accessible cases.

The proposed catalytic mechanism focuses on the reaction pathways in the gas phase
starting from LMCl2 + H2(g) + CO2(g). This assumed gas phase was chosen to avoid the
chemical instability of MOFs resulting from an aqueous environment. On the basis of this
assumption, four possible pathways are discussed in this study. The proposed four CO2
reduction pathways are: (a) CO2 reacting with six-coordination LMCl2(H)2 resulting from
H2 cleavage on metal site; (b) CO2 reacting with five-coordination LMCl2(H) resulting
from hydrogen atom transfer (HAT) of LMCl2(H)2; (c) CO2 reacting with five-coordination
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LMCl(H)2 resulting from H2 cleavage on LMCl; (d) CO2 reacting with four-coordination
LMCl(H) resulting from HAT of LMCl(H)2.

Figure 2a shows the adsorption energy of H2 on LMCl2 complexes, taking into account
all possible electronic configurations, and Figure 2b shows the CO2 desorption energies
of low-spin LMCl2(CO2) intermediates. The adsorption energies of H2 on LMCl2 are
predicted to be noticeably weaker than in the majority of CO2 cases, and this implies that
CO2 adsorption could competitively hinder H2 activation on the metal sites. Consequently,
as increase in hydrogen gas pressure is important for the experimental design, as this
should promote H2 activation. The metal back-donation to the σ* orbital of H2 on LMCl2,
leading to H–H bond elongation, is fairly trivial, except in the case of the triplet LCrCl2
complex (s = 1) which binds H2 at −4.32 kcal/mol with rHH at 0.7724Å (not shown in
Figure 2a).
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None of the optimized LMCl2(H)2 models are able to carry out hydride transfer (HdT)
to the incoming CO2 and form a stable LMCl2(H)(HCO2) structure at the low-spin states
of all metal centers. The hydrido ligands are found to preferentially coordinate with
the metal centers. The presence of two chloro ligands decreases metal center electron
density subsequently hinders hydricity. Additionally, some of the metal centers cannot
even activate H2 and undergo oxidative addition to form stable dihydrido intermediates,
as shown in Table S4.

The insufficient hydricity of the six-coordination LMCl2(H)2 intermediates can be
addressed by hydrogen atom transfer (HAT) or chlorine atom transfer (ClAT) steps, leading
to the formation of five-coordination LMCl2H or LMCl(H)2 intermediates.. The recom-
mendation of possible reaction reagents for carrying out these atom-transfer processes in
the gas phase is beyond the scope of this study, and only the bonding-breaking energet-
ics of HAT or ClAT are reported herein. The free energies of HAT and ClAT processes
from LMCl2(H2) are summarized in Figure S2. The HAT step is defined with respect
to LMCl2(H2) containing hydrogen in molecular form, and this reference selection pro-
vides the equal basis for comparing all metal candidates. The ClAT process appears to be
generally more energy-consuming than the corresponding HAT process.

2.3. Metal Screening
2.3.1. Five-Coordination Acting Catalysts

After one ClAT step, the hydricity of LMCl(H)2 is improved with respect to the
di-chloro counterparts. Most of the calculated LMCl(H)2 models at the low-spin state,
i.e., M = Sc–Zn, Y–Cd, and Hf–Hg, exhibit stable geometries, except in the particular cases
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of M = Mn, Fe, Ni, Cu, and Ag. These unstable cases were found to favor the molecular
hydrogen form as LMCl(H2). Among the stable LMCl(H)2 cases, M = Sc, Ti, Y, Zr, and
Pd models were able to react with CO2 and subsequently form the hydride transferred
intermediates. Table 1 summarizes the reaction energetics of the successful hydride transfer
reactions for M = Sc, Ti, Y, Zr, and Pd cases at the low-spin state. Only three types of
HdT intermediates are identified in Table 1, i.e., ScClH(η2-OCOH), TiClH(η1-OCHO),
and PdClH(η1-HCO2). The M = Y and Zr cases were found to have similar coordination
geometries to the Ti case.

Table 1. The hydride transfer results of MCl(H)2 + CO2 →MCl(H)(HCO2) step 1,3.

Metal Multi 4 ∆E 2
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The LPdCl(H)2 complex is predicted to be the acting catalyst for formic acid generation
resulting from gaseous H2 and CO2 molecules. The proposed catalytic energetics are
summarized in Figure 3 which illustrates how LPd(H)(HCO2) is formed via the HdT
step. The thermal rotation could facilitate the reorientation of the HCO2 ligand and
result in a more stable oxygen-coordinated LPdCl(H)(OCHO) intermediate, followed by
intramolecular deprotonation to form formic acid—LPdCl(HCOOH)—as shown in the
legend of Figure 3. Upon the desorption of HCOOH, the bare LPdCl complex is capable of
undergoing oxidative addition with the second equivalent H2(g) to regenerate the acting
LPdCl(H)2 complex. The most energy-consuming step is predicted to be formic acid
desorption, at a level of 18.5 kcal/mol.
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complex with H2(g) + CO2(g).

The second type of five-coordination complexes—LMCl2(H)—resulting from the HAT
process of LMCl2(H)2 are presumed to be catalytic-inactive for CO2 reduction as noted
in Figure 1. Even if the hydride-transferred intermediate—LMCl2(HCO2)—was able to
form, such a saturated coordinated metal center would prohibit further H2 activation, and
prevent the regeneration of LMCl2(H) and release of HCOOH.
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2.3.2. Four-Coordination Acting Catalysts

The four-coordination LMCl(H) complexes are generally considered to be hydricity-
enhanced forms in comparison with their five-coordination LMCl(H)2 counterparts. The
formation of LMCl(H) complexes can be achieved by one step of HAT from the five-
coordination LMCl(H)2 complexes. Table S5 summarizes the calculated HAT energetics
with respect to the lowest-energy electronic configuration of LMCl(H) and LMCl(H)2
complexes. Several metal centers appear to possess sizable and exothermic HAT energies,
i.e., M = V, Cr, Mn, Zn, Pd, Cd, Pt, and Hg, indicating the possible stability of these acting
catalytic forms. As an example, Figure 4 shows the predicted catalytic mechanism of formic
acid formation using tetrahedral LMnCl(H) complex in which the oxidation state of metal
center is determined as Mn2+ with s = 5/2. The hydrido ligand is able to react with the
incoming CO2 molecule exothermically, and subsequently form LMnCl(HCO2) complex.
The HCO2

− ligand could further reorient to form a bidentate coordination, and facilate the
H2 heterolytic cleavage process, being cooperatively influenced by the cationic Mn center.
The atomic charges of H2 of the approximated transition state (see Figure S3) indicate
the presence of a strongly polarized inter-hydrogen bond. However, the back-donation
effect from Mn center is subtle, and this is supported by the calculated net charge of H2 of
almost zero. The energy for the heterolytic H2 activation is approximated as 53.1 kcal/mol
with respect to the stable H2-adsorbed intermediate—LMnCl(HCO2)(H2)—as shown in
Figure S3. Because the bond dissociation energy of a gaseous H2 molecule is estimated to
be 109.9 kcal/mol at the current DFT level, the LMnCl(HCO2) intermediate is considered
to substantially activate the H–H bond in a heterolytic manner. Once H2 is successfully
activated, one proton is predicted to bond with the HCO2

– ligand, forming HCOOH, and
the hydride is predicted to react with the bpydc ligand. With the desorption of HCOOH,
the Mn center becomes spatially available to interact with another CO2 molecule and form
a four-coordination CO2-containing (carbon-on) intermediate. The hydrogenated bpydc
ligand of HLMnCl(CO2) intermediate could presumably undergo a proton-coupled electron
transfer process to form the LMnCl(COOH) intermediate and require only 4.8 kcal/mol
reaction energy. As shown in Figure S4, two vibrational modes of LMnCl(COOH) are
identified which initiate the regeneration of the acting form of LMnCl(H) through COOH
ligand reorientation and the consequent CO2 desorption.
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Figure 4. The predicted catalytic mechanism of formic acid generation by high-spin (s = 5/2)
(bpydc)MnCl(H) complex with H2(g) + CO2(g). [TS*] denotes the approximate transition state.

Two square planar LMCl(H), M = Pd and Pt, complexes are also identified as catalyti-
cally active for the purposes of formic acid generation. The predicted mechanistic profiles
for Pd and Pt cases are fairly similar, as can be seen in Figure 5 which shows how CO2
can be adsorbed by the metal centers exothermically, this being followed by the highly
accessible hydride transfer step to form LMCl(HCO2) intermediates. The cleavage of H2 by
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both metal centers is found to be more substantially accessible (~38 kcal/mol) than in the
aforementioned Mn case due to the presence of a noticeable back-donation effect from these
late-transition metal centers. In Figure S5, the values of the net charge balance of H2 for
the approximated transition state structures are shown to deviate substantially from zero.
This could imply the electronic density transferred from the complex moiety is nontrivial,
subsequently facilitating the H2 bond breaking step.
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M = Pd or Pt complex with H2(g) + CO2(g). The solid black and dashed red lines denote the catalytic
pathways conducted by Pd and Pt complexes, respectively, and share the same text labels as the
predicted intermediates. [TS*] denotes the approximate transition state.

The schematic H2 activation profiles for other four-coordination LMCl(H) complexes
are summarized in Figure S6. The V, Zn, Cd, and Hg cases appear to follow heterolytic
H2 activation pathways with energy demands close to the Mn model; the remaining
metal centers are not considered as actively catalytic on account of their low stability, or
non-physical H2 activation profiles.

2.4. Confirming the LMnCl(H) Model in MOF-253

In order to assess the viability of the formic acid generation mechanism predicted by
the molecular models, the high-spin Mn complexes were explicitly incorporated in MOF-253,
being represented by a periodic boundary condition model with experimental lattice constants.
The high-spin LMnCl(H) model would favor tetrahedral coordination, and such a structure
would be significantly repelled by the neighboring linker in the MOF environment. Conversely,
the five-coordination LMCl(H)2 and four-coordination square planar LMCl(H) complexes
would be more spatially feasible in the MOF-253 environment. Figure 6 shows the energetic
profile (blue line) of LmofMnCl(H) where Lmof denotes the bpy binding site of MOF-253.
The predicted profile of MOF-253 is consistent with that of the molecular model (gray line),
though with a more moderate energy requirement. Despite this difference in profile between
the molecular model and periodic model, which might be attributed to the use of different DFT
functionals, at least in part, the steric hindrance introduced by the MOF environment appears
to be the dominant factor involved, and thus facilitates formic acid generation.

In Figure 7, three characteristic structural features of the MOF environment which
benefit the catalytic mechanism are identified. A comparison of Figure 7a–d shows that the
LmofMnCl(HCO2) model retains a distorted square planar geometry, while the correspond-
ing molecular LMnCl(HCO2) model favors tetrahedral-like coordination (the η2-HCO2
ligand is qualitatively accounted as monodentate). Such a distorted square planar geom-
etry could subsequently enhance H2 adsorption. In Figure 7b, the HLMnCl(HCOOH)
intermediate described by the molecular model appears to have substantial out-of-plane
distortion at the carboxylate groups, due to the intrinsic quality of negative-charged Hbpy
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moiety and the hydrogen bond interaction between the HCOOH ligand and the carboxylate
group. Such an unfavorable distortion is suppressed by the carboxylated–Al coordination
of MOF, consequently constraining the bpydc ligand to a coplanar geometry and enhancing
HCOOH desorption. In Figure 7c, the molecular model of HLMnCl(CO2) intermediate
contains the out-of-plane distortion of the Hbpy moiety. However, the constrained planar
geometry of Hbpy moiety in MOF (see Figure 7f) can improve hydride transfer back to the
CO2 ligand, subsequently forming the LmofMnCl(COOH) intermediate.
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3. Computational Methodology

The CO2 reduction mechanism was assessed using a series of single M(bpydc)Cl2
complex models in the gaseous condition without including the aluminum secondary
building unit (SBU) computationally in the models. The transition metal elements, includ-
ing Sc–Zn, Y–Cd, and Hf–Hg, were investigated. The energetics of possible intermediates
during the reduction mechanism process were optimized with the hybrid B3LYP func-
tional [20–22], in which elements H, C, N, and O were described by basis set of 6–31 g with
diffuse functions [23], with the addition of a polarized function [24] to the heavy atoms.
This hybrid function has been commonly adopted for theoretical characterizations of the
formic acid generation mechanism by organometallic complexes [25–32] The transition
metals were described by triple-zeta quality LANL2TZ pseudopotential basis set except
Hf [33]. The van der Waals interactions were taken into account using the D3 version of
Grimme’s dispersion with Becke–Johnson damping [34,35]. The minimum structures were
determined by frequency calculations. All the DFT calculations using the complex models
were carried out by the Gaussian 16 package [36].

Several of the selected transition metal centers, which were recommended by the
complex modeling and will be discussed in later sections, were subsequently investigated
for the presence of SBU. The unit cell was taken from the experimental orthorhombic
morphology with corresponding lattice constants (a = 23.59 Å, b = 6.91 Å, c = 19.84 Å) [8].
The periodic boundary condition (PBC) models were a 1 × 2 × 1 supercell with extension
along the Al-O-Al chain in order to take into account eight binding sites in the models.
The periodic models were calculated with generalized gradient approximation (GGA)
using Perdew–Burke–Ernzerh (PBE) [37] exchange–correlation functional and projector
augmented-wave (PAW) [38,39] methods. The plane wave basis set was expanded to a
cutoff energy level of 400 eV. The van der Waals interactions of the solid materials were
also described by the D3 version of Grimme’s dispersion Becke–Johnson damping. The
convergence criteria were determined as 10−5 eV for total energy change and 0.04 eV/Å
for all forces for optimization, with the lattice constants remaining frozen. All periodic
simulations were carried out by Vienna Ab initio Simulation Package (VASP 5.3.5) [40–42].

4. Conclusions

A series of M(bpydc)Cl2, M = Sc–Zn, Y–Cd, and Ta–Hg complexes were computa-
tionally investigated for formic acid generation resulting from CO2 and H2. Two types of
catalytic pathways were proposed using five-coordination LMCl(H)2 and four-coordination
LMCl(H) complexes. LPdCl(H)2 was selected to undergo an intramolecular proton transfer
mechanism with an energy consumption level of below 20 kcal/mol. LMCl(H), M = Mn
(high spin), Pd, and Pt were the representative four-coordination acting catalysts with char-
acteristic heterolytic hydrogen activation steps where the most energy-consuming steps are
greater than 40 kcal/mol. With the metal coordination to MOF-253 materials, the electronic
structure of the bpydc ligand appeared to be localized to a single metal site, as suggested
by the energetics of the periodic model simulations. However, the steric hindrance of
linker in MOF was found to enhance the catalytic energetics of the tetrahedral-type four-
coordination Mn center, particularly in the case of the hydride-transferred LMnCl(HCO2),
HLMnCl(HCOOH), and HLMnCl(CO2) intermediates. For the square pyramidal five-
coordination and square planar four-coordination types of metal centers, the beneficial
role resulting from the steric effect of linker is likely trivial. The current computational
study provides new insights into catalytic mechanisms involved in formic acid generation
in MOF materials, as well as establishing a helpful modeling protocol for the post-synthesis
of transition metal coordination to MOF materials.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/catal12080890/s1. Figure S1: the geometric label definition used in
MOF-253 model; Figure S2: energetic comparison between H atom transfer and Cl atom transfer for
low-spin LMH2Cl2 complexes; Figure S3: the calculated energetics along H–H interatomic distance of
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LMnCl(HCO2)(H2) complex; Figure S4: the identified vibrational modes of LMnCl(COOH) minimum
structures; Figure S5: the calculated energetics along H–H interatomic distance of LPdCl(HCO2)(H2)
and LPtCl(HCO2)(H2) complexes; Figure S6: the H2 activation profiles of MCl(HCO2), M = V, Zn,
Cd, and Hg complexes; Table S1: various MCl2, M = Pd and Sc, formation energetics in MOF-253;
Table S2: calculated structural information of MOF-253 upon PdCl2 coordination; Table S3: the labels
of the spin states of LMCl2(H2) intermediates; Table S4: the H-H bond lengths of the optimized 6-
coordinated LMCl2(H)2 intermediates; Table S5: the H-H bond lengths of the optimized 5-coordinated
LMCl(H)2 intermediates.
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