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Abstract: Iron porphyrin molecules such as hemin and iron(III) 4,4′,4′′,4′′′-(porphine-5,10,15,20-
tetrayl)tetrakis(benzoic acid) (FeTBAP) have previously been shown to influence insulin signaling
and glucose metabolism. We undertook this study to determine whether a catalytic action of iron
porphyrin compounds would be related to their stimulation of insulin signaling and glucose uptake
in C2C12 myotubes. FeTBAP did not display nitrite reductase activity or alter protein S-nitrosylation
in myotubes, eliminating this as a candidate mode by which FeTBAP could act. FeTBAP dis-
played peroxynitrite decomposition catalytic activity in vitro. Additionally, in myotubes FeTBAP
decreased protein nitration. The peroxynitrite decomposition catalyst Fe(III)5,10,15,20-tetrakis(4-
sulfonatophenyl)porphyrinato chloride (FeTPPS) also decreased protein nitration in myotubes, but
the iron porphyrin Fe(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachlorideporphyrin pentachlo-
ride (FeTMPyP) did not. FeTBAP and FeTPPS, but not FeTMPyP, showed in vitro peroxidase activity.
Further, FeTBAP and FeTPPs, but not FeTMPyP, increased Akt phosphorylation and stimulated
glucose uptake in myotubes. These findings suggest that iron porphyrin compounds with both
peroxynitrite decomposition activity and peroxidase activity can stimulate insulin signaling and
glucose transport in skeletal muscle cells.

Keywords: metalloporphyrins; peroxynitrite; insulin signaling

1. Introduction

Biological and synthetically derived metalloporphyrins play roles in generation or
scavenging of reactive nitrogen species (RNS). For example, it has been established that
deoxymyoglobin has the ability to act as a nitrite reductase and thus catalyze the reduction
of nitrite (NO2

−) to form nitric oxide (NO) [1–3]. NO is a gaseous free radical that takes on a
key role as a signaling molecule regulating physiological functions while also contributing
to pathological progressions in skeletal muscle [4–7].

Peroxynitrite is a reactive nitrogen species (RNS) formed from the reaction between
superoxide and nitric oxide [8]. Various iron-containing porphyrin compounds such as
Fe(III)5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato chloride (FeTPPS) and Fe(III)tetr-
akis(1-methyl-4-pyridyl)porphyrin pentachlorideporphyrin pentachloride (FeTMPyP) have
been characterized as peroxynitrite decomposition catalysts due to their ability to catalyti-
cally scavenge peroxynitrite [9,10]. Peroxynitrite acts as a mediator of protein oxidation
and nitration and can contribute to forms of metabolic dysfunction including insulin
resistance [10–12].

Both NO and peroxynitrite have been shown to impair insulin signaling in skeletal
muscle [4,5,12,13]. Nitric oxide increases S-nitrosylation of proteins due to its ability to react
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with cysteine residues [14,15]. This posttranslational modification prevents normal tyrosine
phosphorylation of insulin receptor β with downstream suppression of phosphorylation
of insulin receptor substrate 1 (IRS-1). Injection of mice with the peroxynitrite donor
3-morpholinosydnonimine (SIN-1) increased nitration of skeletal muscle IRS-1 and AKT [12].
This increase in nitrotyrosine was concomitant with decreased insulin signaling at the level
of phosphatidylinositol 3-kinase activity and Akt phosphorylation [12].

We have recently shown that the metalloporphyrin iron(III) 4,4′,4′′,4′′′-(porphine-
5,10,15,20-tetrayl)tetrakis(benzoic acid) (FeTBAP) could stimulate insulin signaling and
glucose transport in skeletal muscle [16]. We attributed this to the peroxidase activity
of FeTBAP. However, the stimulation of insulin signaling by FeTBAP occurred without
a decrease in intracellular peroxide levels [16]. This suggests that some other action of
FeTBAP mediates its effects on insulin signaling. Thus, we hypothesized that nitrite
reductase or peroxynitrite decomposition activity of FeTBAP would be associated with the
effects of FeTBAP on insulin signaling.

Here, we show that FeTBAP is a peroxynitrite decomposition catalyst and that it
decreases protein nitration. We also show that FeTBAP and FeTPPS, which have both per-
oxidase and peroxynitrite decomposition activities, stimulate Akt phosphorylation and glu-
cose transport in myotubes. These findings suggest potential roles of metallophorphryins
with combined peroxidase and peroxynitrite decomposition activities in stimulation of
insulin signaling and glucose uptake in skeletal muscle.

2. Results
2.1. FeTBAP Does Not Act as a Nitrite Reductase

Given the similarity in structure of FeTBAP to the heme group of myoglobin and the
reports of the capabilities of deoxymyoglobin as a nitrite reductase [1–3], this study aimed
at elucidating whether FeTBAP had similar function. Absorbance spectra monitoring the
Soret band of FeTBAP illustrated a decrease in peak intensity after addition of reducing
agents: dithionite, NADPH, or Trolox (Figure 1). Additionally, there was a further decrease
in intensity of the Soret band upon the addition of nitrite (Figure 1). To corroborate
these findings, S-nitrosylation was monitored in C2C12 myotubes. If FeTBAP acted as
a nitrite reductase, this would result in nitric oxide production and thus an increase in
S-nitrosylation [2,17,18]. However, after treatment with FeTBAP there was no difference in
S-nitrosylation versus the control (data not shown). This suggests that under our conditions
FeTBAP does not act as a nitrite reductase.

2.2. FeTBAP Acts as a Peroxynitrite Decomposition Catalyst

Next, we examined a role of FeTBAP in relation to peroxynitrite. Previous studies
have shown that iron porphyrins such as FeTMPyP and FeTPPS act as peroxynitrite
decomposition catalysts [9,10]. As shownin Figure 2A, incubation with peroxynitrite
causes a shift and an increase in peak intensity of the FeTBAP Soret band. This spectral
shift and increase in peak intensity is consistent with previous findings in studies of Fe-
porphyrins as peroxynitrite decomposition catalysts [9]. Decomposition of peroxynitrite
was then monitored at 302 nm. Peroxynitrite rapidly decomposed in the presence of
FeTBAP (Figure 2B, * p < 0.05 versus (−) FeTBAP). Taken together, these data suggest that
FeTBAP is a peroxynitrite decomposition catalyst.

2.3. FeTBAP Decreases Nitration of Tyrosine Residues

Previous studies have shown that peroxynitrite causes nitration of tyrosine residues
on various proteins including IRS-1 and Akt [12]. This prevents tyrosine phosphorylation,
resulting in inhibition of insulin-stimulated glucose uptake [12]. Having established that
FeTBAP acts as a peroxynitrite decomposition catalyst, we asked whether FeTBAP would
affect protein nitration levels. Treatment of C2C12 myotubes with FeTBAP for 18 h caused a
decrease in nitrotyrosine levels on a prominent band at about 35 kDa (Figure 3A,B, * p < 0.05



Catalysts 2022, 12, 849 3 of 12

versus control). FeTPPS caused a decrease in nitration at a prominent band at about 65 kDa
(Figure 3C,D).

1 
 

 
Figure 1. Decreased Soret band absorbance upon reduction is not reversed by nitrite. Absorbance
spectra were obtained for 20 µM FeTBAP (black), FeTBAP after addition of reducing compounds
((A). 100 µM dithionite, (B). 100 µM NADPH, (C). 100 µM Trolox; red), and after addition of 200 µM
nitrite to reduced FeTBAP (blue).
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Figure 2. FeTBAP acts as a peroxynitrite decomposition catalyst. (A) Absorbance spectra of 20 µM
FeTBAP before (black curve) and after (red curve) the addition of 300 µM peroxynitrite. (B) Peroxyni-
trite composition monitored at 302 nm for 20 µM FeTBAP. * p < 0.05 versus control without FeTBAP,
n = 3–4/group.
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Figure 3. FeTBAP and FeTPPS decrease nitrotyrosine levels in C2C12 myotubes. C2C12 myotubes
were incubated in the absence or presence of 150 µM FeTBAP, FeTPPS, or FeTMPyP for 18 h.
(A,B) Western blot and quantitation for 3-nitrotyrosine and glyceraldehyde phosphate dehydrogenase
(GAPDH) after incubation with FeTBAP. (C–E) Western blot and quantitation for 3-nitrotyrosine and
GAPDH after incubation with FeTBAP, FeTPPS, or FeTMPyP. * p < 0.05 vs. control.
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2.4. FeTBAP and FeTPPS Increase Akt Phosphorylation and Glucose Transport

Certain iron-containing porphyrins, such as FeTPPS, have been shown to rescue
muscle cells from insulin resistance following treatment with peroxynitrite [12,13]. Further,
we have recently reported that FeTBAP stimulates insulin signaling and glucose transport in
skeletal muscle [16]. Thus, we asked whether Fe-porphyrin compounds, in general, have the
ability to stimulate Akt phosphorylation and glucose transport. As shown in Figure 4A–C,
treatment with FeTPPS or FeTBAP increased Akt phosphorylation in C2C12 myotubes
(* p < 0.05 versus control). In contrast, FeTMPyP had no effect on Akt phosphorylation. We
next determined whether the Fe-porphyrins would increase glucose uptake. Pretreatment
with either FeTBAP or FeTPPS caused a significant increase in glucose transport (Figure 4D,
* p < 0.01 versus basal control). However, pretreatment with FeTMPyP had no effect on
glucose uptake.
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Figure 4. FeTBAP and FeTPPS increase insulin signaling and glucose transport in C2C12 myotubes.
C2C12 myotubes were incubated in the absence or presence of 150 µM FeTBAP, FeTPPS, or FeTMPyP
for 2 h. (A–C) Western blot and quantitation for for P-Akt (S473), P-Akt (Thr308), and Akt. * p < 0.05,
**** p < 0.0001 versus control. (D) C2C12 myotubes were serum starved and incubated in the presence
or absence of 150 µM FeTBAP, FeTPPS, or FeTMPyP for 2 h followed by an incubation in the presence
or absence of 100 nM insulin and assay of 2-deoxyglucose (2DG) uptake. * p < 0.05 versus basal control.

2.5. FeTPPS and FeTBAP Act as Peroxidases

Given that FeTPPS and FeTMPyP have been characterized as peroxynitrite decompo-
sition catalysts [9,10], we investigated whether these two porphyrins exhibited peroxidase
activity as well. As shown in Figure 5, FeTBAP and FeTPPS both display peroxidase activity,
while FeTMPyP does not.
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Figure 5. FeTPPS and FeTBAP display peroxidase activity while FeTMPyP does not. Peroxidase
activity was monitored via spectrophotometric peroxidase assays containing 150 µM TMB, 150 µM
FeTPPS, FeTMPyP, FeTBAP, and 150 µM hydrogen peroxide. *** p < 0.001, **** p < 0.0001 for
comparisons indicated.

3. Discussion

This study shows that FeTBAP has peroxynitrite scavenging abilities and decreases
nitrotyrosine levels in skeletal muscle cells. Additionally, FeTPPS, a well-characterized per-
oxynitrite decomposition catalyst [9,19], increases insulin signaling and glucose transport in
C2C12 myotubes and acts as a peroxidase. However, FeTMPyP, another well-characterized
peroxynitrite decomposition catalyst [9,10], had no effect on Akt phosphorylation or glucose
transport and did not exhibit peroxidase activity.

Due to its highly reactive nature, peroxynitrite contributes to disrupted cell signaling,
apoptosis, and cell death [20]. Moreover, reactive nitrogen species have been implicated in
various forms of pathophysiological complications and diseases including stroke, aging,
cancer, and insulin resistance/diabetes [10,20]. Peroxynitrite leads to insulin resistance via
the nitration of tyrosine residues on key proteins in the insulin-signaling pathway [12].

Previous work has demonstrated actions of peroxynitrite decomposition catalysts to
rescue cells from insulin resistance [12,13,21]. Effects of these compounds are summarized
in Table 1. Our data suggest that part of the mechanism of these compounds might be
direct activation of insulin signaling and glucose transport as opposed to reversal of insulin
resistance. In our previous work on FeTBAP, we found that its peroxidase activity protected
skeletal muscle cells from peroxide-related insulin resisance [16]. However, FeTBAP also
increased insulin signaling and glucose transport in cells that were not exposed to H2O2,
even though FeTBAP did not decrease intracellular H2O2 in these cells. This suggests
that some other property of FeTBAP contributes to stimulation of insulin signaling and
glucose transport.

The heme breakdown product hemin has been investigated for its potential role in
prevention of insulin resistance. For example, daily injections of hemin decreased whole-
body glucose uptake during a hyperinsulinemic-euglycemic clamp for mice on a high fat
diet [22]. Similarly, hemin injections twice a week for mice on a high fat diet decreased
fasting and non-fasting plasma glucose concentrations toward the levels in chow-fed
animals [23]. Likewise, hemin injections decreased fasting glucose and glucose area under
the curve during an insulin tolerance test in fat-fed mice [24]. These improvements in
glucoregulation were concomitant with increased insulin-stimulated phosphorylation of
the insulin receptor and Akt in liver [24]. As reviewed by Schaer et al. [25], hemin regulates
expression of antioxidant enzymes including heme oxygenase-1. Hemin also serves as a
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ligand for the nuclear receptor REV-ERB, which regulates expression of genes involved
in processes including glucose metabolism [25]. Thus, hemin may act through changes in
gene expression to influence glucoregulation. The current data demonstrate a role of iron
porphoryins in acute regulation of insulin signaling and glucose uptake, suggesting that
these compounds can act before any changes in gene expression would be realized.

Table 1. Effects of Fe-porphyrin treatment in insulin resistant or diabetic mice.

Fe-Porphyrin Author(s) Conditions Results

FeTPPS Zhou et al. [12] Insulin resistant high fat
diet-fed (HFD) mice

Administration of FeTPPS improved
muscle insulin signaling and whole body

insulin sensitivity

FeTPPS Duplain et al. [13] Insulin resistant high fat
diet-fed mice

FeTPPS treatment restored insulin
signaling and glucose uptake.

Diminished HFD-induced insulin
resistance in mice

FeTMPS Drel et al. [21] Streptozotocin induced type 1
diabetic mice

Alleviated various symptoms associated
with diabetic neuropathy including
manifest motor and sensory nerve

conduction velocity deficits

Only a small number of proteins are nitrated, reflected in studies of the nitrated pro-
teome that usually find 110 or fewer nitrated proteins [26]. A list of nitrated mouse proteins
from DeepNitro [27,28], a curated database of tyrosine nitrated and S-nitrosylated sites,
contains 120 proteins known to be nitrated (Table S1). None of the nitrated proteins with
molecular weights approximating the molecular weights of the prominent nitrated protein
bands in the current study appear to have overt roles in insulin signaling. It is possible that
these bands serve of markers of overall nitration, and other nitrated proteins with roles
in insulin signaling are under the threshold for detection. Future work should focus on
identification of roles of nitration in insulin signaling and action. A focus in future investi-
gation might be on proteins that can be nitrated or phosphorylated on the same tyrosine
site. Nitration prevents phosphorylation of the hydroxyl group on a tyrosine [29]. Likewise,
tyrosine phosphorylation impedes nitration of that tyrosine residue [29]. Thus, it will be
important to understand the competitive effects of tyrosine nitration and phosphorylation
in insulin signaling. Overall, our data suggest that compounds that possess both peroxidase
and peroxynitrite decomposition activity are able to stimulate Akt phosphorylation and
glucose transport in skeletal muscle cells. This suggests that in addition to protective
effects against RNS and H2O2, these compounds can directly improve insulin signaling
and glucose transport into skeletal muscle cells.

4. Materials and Methods
4.1. Materials

Phosphate buffered saline (PBS), trypsin-EDTA, penicillin-streptomycin, and Dul-
becco’s modified Eagle’s medium (DMEM), 4,4′,4′′,4′′′-(porphine-5,10,15,20-tetrayl)tetrak-
is(benzoic acid) (TBAP), iron (II) sulfate heptahydrate, Chelex-100, (+)-6-Hydroxy-2,5,7,8-
tetramethyl-chromane-2-carboxylic acid (Trolox), sodium nitrite, sodium hydrosulfite
(dithionite), peroxynitrite, and primary antibody against 3-nitrotyrosine (Sigma-Aldrich
Cat N5538, RRID:AB1840351, St. Louis, MO, USA) were purchased from Sigma Aldrich
(St. Louis, MO, USA). Primary antibodies against phosphorylated-Akt (Ser473: Cell Sig-
naling Technology Cat 9271, RRID:AB329825, Danvers, MA, USA), phosphorylated-Akt
(Thr308: Cell Signaling Technology Cat 9275, RRID:AB329828), and pan Akt (Cell Sig-
naling Technology Cat 9272, RRID:AB329827) were purchased from Cell Signaling Tech-
nologies (Danvers, MA, USA). S-nitrosocysteine primary antibody (Abcam Cat ab94930,
RRID:AB10697568, Cambridge, MA, USA) was acquired from Abcam (Cambridge, MA,
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USA). D-glucose, sodium hydroxide, Pierce BCA protein assay kit, the secondary anti-
body goat anti-mouse conjugated to HRP, and the secondary antibody goat anti-rabbit
conjugated to HRP were acquired from ThermoFisher Scientific (Rockford, IL, USA). Fe-
talPlex was obtained from Gemini Bio-Products (Woodland, CA, USA). Horse serum
was procured from Gibco Technologies (Gaithersburg, MD, USA). 4–20% SDS-PAGE
gels were purchased from Expedeon (San Diego, CA, USA). Western Lighting Plus en-
hanced chemiluminescence reagent was obtained from Perkin Elmer (Hopkinton, MA,
USA). Blotting Grade Blocker was procured from Bio-Rad Laboratories (Des Plaines,
IL, USA). NADPH was purchased from Enzo (Farmingdale, NY, USA). Fe(III)5,10,15,20-
tetrakis(4-sulfonatophenyl)porphyrinato chloride (FeTPPS) and Fe(III)tetrakis(1-methyl-
4-pyridyl)porphyrin pentachlorideporphyrin pentachloride (FeTMPyP) were purchased
from Cayman Chemical (Ann Arbor, MI, USA). FeTBAP was prepared as previously de-
scribed [16]. Structures of the metalloporphyrins are shown in Figure 6.
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Figure 6. Metalloporphyrin structures. (A). structure of MnTBAP [30]. The FeTBAP structure is the
same except for iron in the spot occupied by manganese. (B). structure of FeTPPS [31]. (C). structure
of FeTMPyP [32]. These structure images are reused without special permission needed, according
to the PubChem citation guidelines on reusing the 2D or 3D structure image of a compound or
substance record.

4.2. Potential Role of FeTBAP as a Nitrite Reductase

In order to determine a possible role of FeTBAP as a nitrite reductase, the Soret
band of 20 µM FeTBAP was monitored around 412 nm utilizing a UV-2501PC UV-Vis
spectrophotometer purchased from Shimadzu Scientific (Columbia, MD, USA). FeTBAP
was then reduced with one of the following reducing agents: 100 µM dithionite, 100 µM
NADPH, or 100 µM Trolox. The spectrum was taken monitoring the Soret band around
412 nm. After reduction of FeTBAP, 200 µM sodium nitrite was added to the cuvette and
absorbance spectra taken around 412 nm in order to monitor the effect on the Soret band
of FeTBAP.

4.3. Cell Culture

C2C12 myoblasts were obtained from the American Type Culture Collection (Manassas,
VA, USA). Cells were cultured following standard procedures [33,34] in low-glucose Dul-
becco’s Modified Eagle’s medium (DMEM) without phenol red supplemented with 10%
(v/v) FetalPlex (Gemini Bio, Atlanta, GA, USA) and containing penicillin-streptomycin.
Cells were incubated in 5% CO2 at 37 ◦C. Myoblasts were monitored and passaged every
other day. Once cells reached about 70% confluence, myoblasts were differentiated into
myotubes for two days in low glucose DMEM without phenol red containing 2% (v/v)
horse serum and penicillin-streptomycin.



Catalysts 2022, 12, 849 9 of 12

4.4. Effect of FeTBAP on S-Nitrosylation

To evaluate an effect of FeTBAP treatment on levels of S-nitrosylation, a spontaneous
modification of cysteine side chains by NO, C2C12 myotubes of a 12-well plate were pre-
treated for 2 h with 150 µM FeTBAP in DMEM without phenol red. Following treatment
with FeTBAP, samples were harvested in lysis buffer comprised of 50 mM HEPES pH 7.4,
150 mM NaCl, 10% (v/v) glycerol, 1.5 mM MgCl, 1 mM EDTA, 10 mM Na4O7P2, 100 mM
NaF, 2 mM Na3VO4, 10 mg/mL leupeptin, 10 mg/mL aprotinin, 0.5 mg/mL pepstatin, and
1 mM phenylmethylsulfonyl fluoride. Whole cell homogenate protein content was quanti-
fied with a bicinchoninic acid (BCA) protein assay (Thermo Scientific Pierce BCA Protein
Assay Kit). Western blot analysis was then performed for S-nitrosocysteine and GAPDH.

4.5. Western Blot Analysis

After samples were run on 4–20% gels, they were transferred to nitrocellulose mem-
branes. Membranes were blocked in 5% (w/v) nonfat dry milk (Bio-Rad, Hercules, CA,
USA) in TRIS-buffered saline (TBS) with 0.1% (v/v) Tween-20 (TBST) and then incubated
with primary antibodies in 1% (w/v) nonfat dry milk. After washing with TBST, membranes
were incubated with horseradish peroxidase-linked secondary antibodies. Membranes
were washed with TBST and then TBS before incubation with Western Lightning Plus
(PerkinElmer, Waltham, MA, USA) enhanced chemiluminescence reagent, followed by CCD
imaging (iBright CL1000, ThermoFisher Scientific). The primary antibody against GAPDH
(Cell Signaling Technology Cat 8884, RRID:AB11129865) was conjugated to horseradish
peroxidase, so there was not a need for incubation with secondary antibodies.

4.6. Peroxynitrite Decomposition Activity

In order to determine a possible role of FeTBAP as a peroxynitrite decomposition
catalyst, the Soret band of 20 µM FeTBAP was first monitored around 412 nm following
similar studies [9]. After the spectrum of FeTBAP was obtained, 300 µM peroxynitrite
was added to the 1 mL cuvette, and absorbance spectra were taken around 412 nm to
monitor the effect on the Soret band of FeTBAP. The decomposition of peroxynitrite was
then monitored at 302 nm. This involved a preliminary read of the absorbance of 20 µM
FeTBAP at 302 nm. 300 µM peroxynitrite was then added to the 1 mL quartz cuvette,
and absorbance was recorded every 10 s for 50 s at 302 nm with a Spectronic Genesys 5
(Fitchburg, WI, USA). Readings were done in 0.1 M NaOH, pH 12.4, to prevent spontaneous
decomposition of peroxynitrite.

4.7. Nitrotyrosine Levels in C2C12 Myotubes

As our data indicated that FeTBAP can catalyze peroxynitrite decomposition, we then
determined the effect of treatment with FeTBAP on nitrotyrosine levels in cultured muscle
cells. C2C12 myotubes were treated for 18 h with 150 µM FeTBAP in low-glucose DMEM
without phenol red. Myotubes were harvested in lysis buffer, and whole cell homogenate
protein content was quantified via a BCA protein assay. Western blot analysis was then
performed for 3-nitrotyrosine and GAPDH.

4.8. Insulin Signaling

We previously reported that FeTBAP stimulates insulin signaling and glucose transport
in skeletal muscle [16]. To determine if, in general, all iron containing porphyrins increase
insulin action by C2C12 myotubes, cells were pretreated with 150 µM FeTBAP, FeTPPS,
or FeTMPyP for 2 h in DMEM without phenol red. Following pretreatment, myotubes
were incubated for 20 min in the presence or absence of 10 nM insulin. Samples were
then harvested in lysis buffer, and whole cell homogenate protein content was quantified.
Western blot analysis was then performed for P-Akt (Ser473), P-Akt (Thr308), and total Akt.
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4.9. Glucose Transport

2-DG transport assays were performed as previously described [16]. C2C12 myotubes
in 24-well plates were serum starved for 3 h and pretreated for 2 h with 150 µM FeTPPS,
FeTBAP, or FeTPMyP. Following pretreatment, samples were incubated in the presence
or absence of 100 nM insulin. To correct for background, some wells of myotubes were
incubated for 20 min in the presence of 10 µM cytochalasin B, which prevents glucose
uptake via glucose transport (GLUT) proteins. All wells were then washed with HEPES-
buffered saline (HBS) (20 mM HEPES sodium salt, 140 mM sodium chloride, 5 mM KCl,
2.5 mM MgSO4, 1 mM CaCl2). Myotubes were incubated for 10 min in transport medium
(10 µM 2-deoxyglucose and 1 µCi/mL 3H-2-deoxyglucose tracer in HBS) in the presence
or absence of 100 nM insulin, with background wells containing 10 µM cytochalasin B.
Transport medium was removed, and cells were washed with cold 0.9% (w/v) NaCl.
Samples then incubated while shaking in 0.2 N NaOH with 0.2% (w/v) SDS for 30 min.
Ultima Gold scintillation fluid was added to aliquots of each sample, and vials were read
on a Tri-Carb 3100 TR liquid scintillation counter (PerkinElmer, Waltham, MA, USA). Data
were normalized to protein content of the samples.

4.10. Peroxidase Activity

Peroxidase activity of FeTBAP, FeTPPS, and FeTMPyP was monitored utilizing TMB.
150 µM FeTBAP, FeTPPS, and FeTMPyP were reacted with 150 µM hydrogen peroxide and
150 µM TMB in a 100 mM sodium phosphate buffer pH 7.4. Absorbance was monitored
every minute for 10 min at 653 nm. Oxidation of TMB was quantified using the extinction
coefficient: 39 mM−1cm−1 [35].

4.11. Statistics

Comparisons of two means were done with Student’s t tests. Time course data
were analyzed with a repeated measures ANOVA followed by post hoc comparisons of
the experimental group versus the control group for each time point. Multiple group
comparisons were performed by ANOVA followed by Dunnett post hoc tests when there
was a control group or LSD post hoc tests to compare all groups.

4.12. Nitrated Mouse Proteins

A list of known nitrated proteins was obtained from the DeepNitro [27,28] database of
nitrated and S-nitrosylated proteins from humans, mice, yeast, Arabidopsis, and Drosophila.
These 761 proteins were cross-referenced against the entire mouse UniProt database [36,37]
to obtain a group of 120 mouse proteins known to be tyrosine-nitrated. Molecular weights
for these proteins were obtained from UniProt.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/catal12080849/s1, Table S1: List of curated nitrated mouse proteins from DeepNitro database
with molecular weights from UniProt database.
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