

Article

Tungsten Trioxide and Its TiO₂ Mixed Composites for the Photocatalytic Degradation of NO_x and Bacteria (Escherichia coli) Inactivation

Ermelinda Falletta ¹, Claudia Letizia Bianchi ¹, Franca Morazzoni ^{2,*}, Alessandra Polissi ³, Flavia Di Vincenzo ³ and Ignazio Renato Bellobono ⁴

- Dipartimento di Chimica, Università degli Studi di Milano, Via Camillo Golgi 19, 20133 Milano, Italy; ermelinda.falletta@unimi.it (E.F.); claudia.bianchi@unimi.it (C.L.B.)
- ² Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Via Roberto Cozzi, 55, 20125 Milano, Italy
- ³ Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Giuseppe Balzaretti, 9, 20133 Milan, Italy; alessandra.polissi@unimi.it (A.P.); flavia.divincenzo@unimi.it (F.D.V.)
- 4 Dipartimento di Fisica, Università degli Studi di Milano, Via Giovanni Celoria, 16, 20133 Milano, Italy; i.r.bellobono@alice.it
- * Correspondence: franca.morazzoni@unimib.it

Abstract: The increased air pollution and its impact on the environment and human health in several countries have caused global concerns. Nitrogen oxides (NO₂ and NO) are principally emitted from industrial activities that strongly contribute to poor air quality. Among bacteria emanated from the fecal droppings of livestock, wildlife, and humans, *Escherichia coli* is the most abundant, and is often associated with the health risk of water. TiO₂/WO₃ heterostructures represent emerging systems for photocatalytic environmental remediation. However, the results reported in the literature are conflicting, depending on several parameters. In this work, WO₃ and a series of TiO₂/WO₃ composites were properly synthesized by an easy and fast method, abundantly characterized by several techniques, and used for NO₃ degradation and *E. coli* inactivation under visible light irradiation. We demonstrated that the photoactivity of TiO₂/WO₃ composites towards NO₂ degradation under visible light is strongly related to the WO₃ content. The best performance was obtained by a WO₃ load of 20% that guarantees limited e⁻/h⁺ recombination. On the contrary, we showed that *E. coli* could not be degraded under visible irradiation of the TiO₂/WO₃ composites.

Keywords: photocatalysts; visible light; tungsten trioxide; composites

Citation: Falletta, E.; Bianchi, C.L.; Morazzoni, F.; Polissi, A.; Di Vincenzo, F.; Bellobono, I.R. Tungsten Trioxide and Its TiO₂ Mixed Composites for the Photocatalytic Degradation of NO₈ and Bacteria (*Escherichia coli*) Inactivation. *Catalysts* **2022**, *12*, 822. https://doi.org/10.3390/catal12080822

Academic Editor: Meng Li

Received: 5 July 2022 Accepted: 22 July 2022 Published: 26 July 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/license s/by/4.0/).

1. Introduction

Due to growing industrialization, urban environments have faced chronic air pollution issues in the last decades. Exhaust gases and burning fuels from factories represent the primary sources of air pollutants on a global scale, causing a significant impact on human health, animal and plant life, and climate [1]. Although natural sources responsible for air pollutants production, such as broad forest fires, volcanic eruptions, and soil erosion, can play a role in air pollution, the emissions resulting from human activities, such as motor vehicle exhaust, combustion of fossil fuels, and industrial processes, are the most active and concerning cause of air quality decline [2].

Nitrogen monoxide (NO) and nitrogen dioxide (NO₂), known as nitrogen oxides (NO_x), are relevant pollutants whose emissions are directly related to human health problems [3], as they affect respiratory and immune systems [4], to the production of tropospheric ozone, acid rains, and in general to global air pollution.

Over the years, different techniques have been developed for NO_x abatement. Among the traditional techniques, selective catalytic reduction (SCR) with ammonia in

Catalysts 2022, 12, 822 2 of 17

the presence of oxygen is the most used, mainly applied to reduce NO_x emission from combustion processes [5], as well as absorption, adsorption, or electrical discharge processes [6]. However, all these methods are characterized by several limitations and disadvantages that make actual application hard. Moreover, the growing environmental constraints invoke restrictions regarding NO_x emission, requiring more efficient techniques for NO_x abatement.

In addition, awareness about the importance of supplying adequate drinking water has recently increased. In 2012, the United Nations estimated that nearly 11% of the world's population did not have access to improved drinking water sources. African water resources indeed contain high levels of microbial pathogens, including bacteria, viruses, and protozoa, as well as chemical contaminants. Escherichia coli and related bacteria constitute approximately 0.1% of gut flora, and fecal—oral transmission is the primary route through which pathogenic strains of the species cause disease. For that reason, new disinfection technologies are currently in development to fulfill the WHO Guidelines for drinking-water quality (World Health Organization, 2008). The traditional disinfection methods lead to chloro-organic disinfection by-products (DBPs) with carcinogenic and mutagenic effects.

In both study cases, using a TiO₂ semiconductor as a catalyst under UV or visible irradiation seems the most promising method.

Titania (TiO₂) has been considered the most efficient photocatalyst for a wide variety of applications, such as pollution abatement [7,8], water and air purification [9], antimicrobial applications [10], and energy conversion [11]. However, TiO₂ in its photoactive anatase phase has a wide band gap of 3.2 eV, limiting the photoactivity of the semiconductor only under UV irradiation [12]. Moreover, because of its suspected carcinogenic nature [13], researchers are willing to replace TiO₂ with new low-cost and visible-light-active smart materials.

Though many studies have focused on using TiO₂ [14–18], WO₃ and its composites have been poorly investigated to date [19–22].

WO₃ is a cheap, physiochemically stable, and mechanically robust semiconductor with a narrow band gap energy (2.4–2.8 eV), making it a visible-light-responsive photocatalyst for different applications [23–30]. Therefore, WO₃ represents a suitable choice for photocatalytic degradation under visible light irradiation.

As described in Figure 1, because the VB (valence band) edge potential of WO₃ is lower than that of TiO₂, upon photon absorption, electrons can be transferred from the conduction band of TiO₂ to WO₃, whereas photogenerated holes move in the opposite direction from electrons.

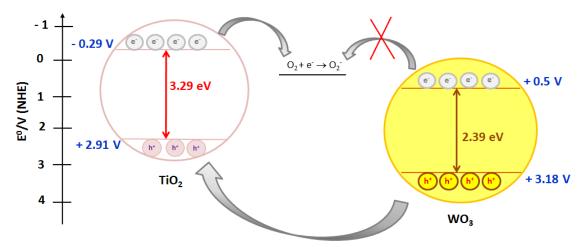


Figure 1. Photocatalytic mechanism of WO₃-loaded TiO₂ under light irradiation.

Catalysts 2022, 12, 822 3 of 17

The transfer of photogenerated carriers is accompanied by consecutive W⁶⁺ reduction into W⁵⁺ by capturing photogenerated electrons at trapping sites in WO₃. In addition, W⁵⁺ ions on the surface of WO₃ are reoxidized into W⁶⁺. However, the reduction potential value for the photogenerated electrons in the conduction band is not high enough for the single electron reduction in O₂ (Figure 1) [30]. The holes accumulated in the TiO₂ VB take part in the oxidation process to make OH⁻ or OH⁻ hydroxyl radical reactive species. These processes in WO₃/TiO₂ heterostructures restrain the recombination of electron–hole pairs significantly.

Different approaches have been developed to produce highly active TiO₂/WO₃ composites aiming to optimize the WO₃ content [31]. It has been demonstrated that the influence of WO₃ on TiO₂ photoactivity depends on several factors, such as crystal phase, electrons accumulation ability of WO₃, type of pollutants, and degradation pathways involved [31].

Yang et al. investigated the role of amorphous WO_x species, demonstrating that they are more active than the crystalline ones toward methylene blue degradation [32].

Other experiments by Žerjav et al. explained the correlation between the photocatalytic performance of TiO₂/WO₃ and their shallow and deep electron trapping states [33].

However, concerning WO_3 and its mixed oxides, the obtained results are conflicting because in the same cases, the presence of WO_3 seems to positively affect the photoactivity and the performances of TiO2. In other cases, the results worsen [19,31,32,34].

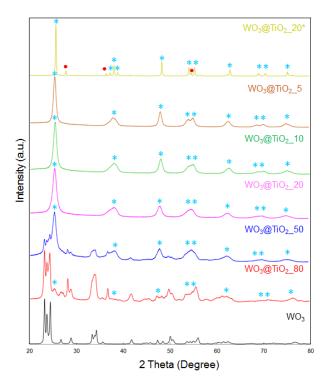
Regarding NO_x degradation, Luévano-Hipólito et al. demonstrated that WO₃ with a polyhedral shape leads to 50% NO oxidation to NO₂ [19]. On the other hand, Yu and coworkers noticed for the first time the photo-transformation of NO₂ into NO in the presence of N₂ on the surface of a WO₃ photocatalyst under UV/visible light irradiation [20].

Recently, Mendoza et al. proposed TiO_2/WO_3 composites as efficient materials for NO_x abatement under visible light, leading to 90% of photodegradation in 1 h [22], whereas Paula and coworkers observed the decay of the photocatalytic activity of TiO_2/WO_3 heterostructures as a function of the W(VI) content [31].

Jawwad A. Darr et al. reported the easy disinfection of water by TiO₂/WO₃ mixed composites, which induce bacterial inactivation after 30 min of photo-irradiation [35].

In order to clarify the behavior of WO₃ and TiO₂/WO₃ heterostructures in the photocatalytic degradation of NO_x under visible light irradiation, in this work, WO₃ and a series of TiO₂/WO₃ composites were synthesized by a fast and cost-effective chemical procedure and tested for the photodegradation of NO_x and the inactivation of *E. coli* under visible light irradiation.

The role of the calcination temperature in the TiO_2/WO_3 preparation has been investigated and critically discussed, as well as the effect of the WO_3 loading in the final composites. Differently from the recent literature, the results proved that high calcination temperatures could cause complete or partial WO_3 sublimation with adverse effects on the activity of the TiO_2/WO_3 heterostructures.


Finally, while the synthesized catalysts were active in NO₂ photodegradation, they were inert to the antibacterial activity under visible light irradiation, in line with the scientific literature [36].

Catalysts 2022, 12, 822 4 of 17

2. Results

2.1. Materials Characterization

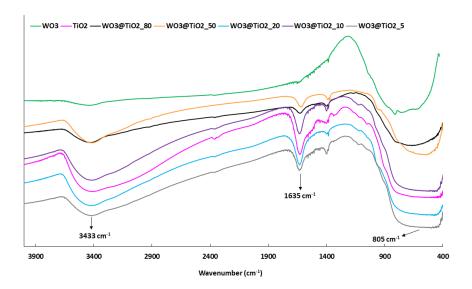
Figure 2 shows the XRD patterns of all the synthesized materials.

Figure 2. XRD patterns of the samples of Table1 (* peaks of TiO₂ anatase, • peaks of TiO₂ rutile).

 TiO_2 exhibits the characteristics of diffraction peaks of anatase, as confirmed by the peaks at 25.3°, 37.7°, 48.0°, 53.8°, and 55.0°, with (101), (004), (200), (105), and (211) diffraction planes, respectively. The XRD pattern of WO₃ shows a crystalline phase characterized by diffraction peaks at 23.1°, 23.6°, 24.4°, and 34.2°, corresponding to the (002), (020), (200), and (202) crystal planes of monoclinic phase.

As expected, in the WO₃@TiO₂ composites, the intensity of the diffraction peaks of WO₃ declines by decreasing the percentage of WO₃; on the contrary, anatase peaks intensity increases or appears with the higher concentration of TiO₂ in each composite.

Based on its XRD pattern, WO₃@TiO₂_20* exhibits higher crystallinity degree if compared to the others and the appearance of new diffraction peaks can be observed.


As reported in the literature [37], it is directly correlated to the high temperature (600 $^{\circ}$ C) used for the calcination of this material. The degree of crystallinity increases with the temperature, and in the case of TiO₂-based compounds, at 600 $^{\circ}$ C the phase conversion from anatase to rutile starts.

According to the literature [22,34], when the WO₃ content in the composite materials is 20% or lower, the diffraction peaks of this semiconductor are undetected. Some authors justify this result with the presence of highly dispersed WO₃ small particles in TiO₂/WO₃ composites, which makes it hard to detect them by this technique [22,34]. In addition, Yang et al. demonstrated that when the loading amount of WO₃ was below 3 mol%, it exists in highly dispersed amorphous species that do not respond to XRPD. However, accurate quantification of WO₃ loading on TiO₂ after calcination is necessary to verify unequivocally the WO₃/TiO₂ composite formation rather than a superficial W doping on the TiO₂ surface. In the present work, this was easily carried out by the reaction yield calculation (Equation (2)) and by EDS analysis (Table S1) for two composites with a nominal WO₃ load of 20% (WO₃@TiO₂_20 and WO₃@TiO₂_20*) calcined at two different temperatures (400 °C and 600 °C). From the results of the reaction yield, the

Catalysts 2022, 12, 822 5 of 17

WO₃@TiO₂_20* composite calcined at 600 °C exhibits a mass loss of approximately 40%, unlike the same sample calcined at 400 °C, obtained with a yield of 94.8%. Since WO₃ is a low-temperature sublimation material [38], it cannot be excluded that by increasing the calcination temperature, a complete or partial WO₃ sublimation can occur, as also confirmed by the EDS results (Table S1), where the measured percentage of WO₃ in the final composite is lower than 3%, whereas the material calcined at 400 °C shows a 27% of WO₃.

Figure 3 displays the FT-IR for all the synthesized composites calcined at 400 °C.

Figure 3. FT-IR spectra of the samples calcined at 400 °C.

The FT-IR spectrum of WO₃ exhibits characteristic vibration bands, such as those at approximately 3433 cm⁻¹ and 1635 cm⁻¹, that can be associated with the symmetric stretching vibrations of WO₃ and intercalated water molecules and the deformation vibrations of H–O–H bonds of the adsorbed water molecules, respectively, and the signal at 805 cm⁻¹, attributed to O–W–O stretching modes of WO₃ [39].

On the other hand, the FT-IR spectrum of TiO₂ nanoparticles is characterized by several peaks. The OH stretching mode of the hydroxyl groups is responsible for the broad band observed in the range of 3600–3000 cm⁻¹, indicating the presence of moisture in the sample. The band at approximately 1605 cm⁻¹ is due to the OH bending vibrations of the absorbed water molecules. Finally, the broadband between 1000 and 500 cm⁻¹ can be related to the Ti–O stretching and Ti–O–Ti bridging stretching modes [40].

As expected, in the FT-IR spectra of the composites, the WO₃ characteristic bands are covered by the more intense ones of TiO₂.

The optical properties of the synthesized WO₃/TiO₂ series calcined at 400 $^{\circ}$ C, as well as of single-phase semiconductors, were investigated by UV–Vis scanning spectrophotometry (Figure 4).

Catalysts 2022, 12, 822 6 of 17

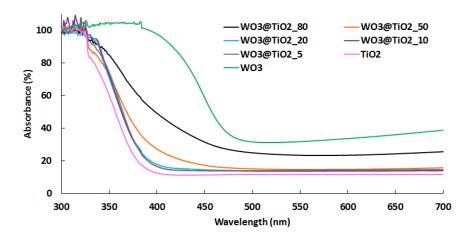
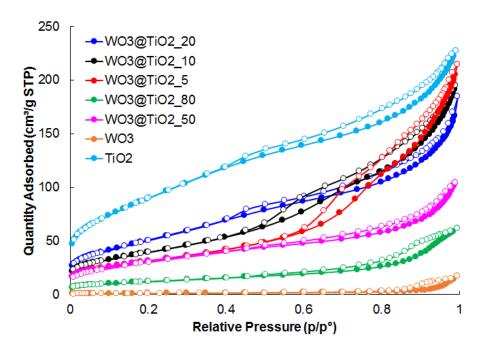


Figure 4. UV–Vis absorption spectra of the WO₃/TiO₂ composites series calcined at $400\,^{\circ}\text{C}$.

The main absorption edges of the samples are all around 400 nm, attributing to the excitation of electrons from the valence band to the conduction band. As reported in the literature [41], the empty orbitals of W^{6+} (W 5d) are closed to the Ti 3d orbitals of the conduction band. Therefore, the O_2 — W^{6+} charge transfer transitions are overlapped with the O_2 — T^{14+} charge transfer transitions. Increasing the WO_3 loading, the absorption edge of photocatalysts red-shifts. If this is only slightly noticeable up to 10%, increasing the WO_3 percentage to 50% and above, the effect is much more evident, and the absorption edges of these materials are shifted at higher wavelengths.

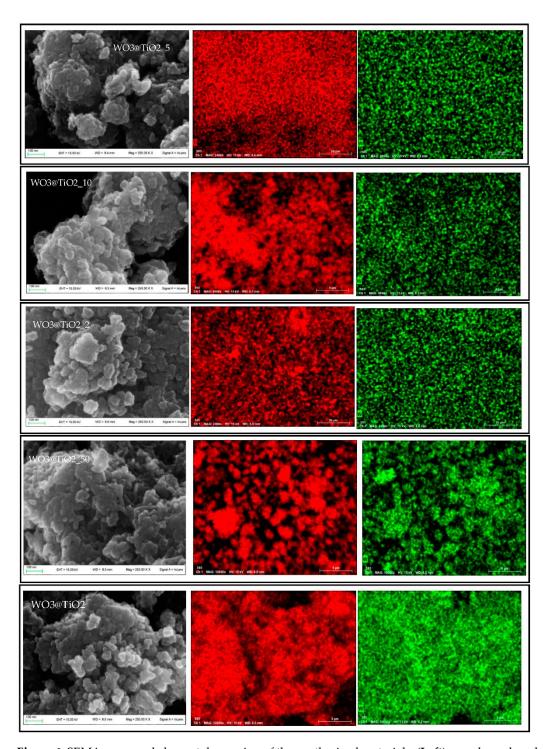
The band gaps of the materials, estimated by the Kubelka–Munk function, are summarized in Table 1, and the Tauc plots are reported in Figure S2.


Table 1. Energy of band gap (eV), specific surface area, CBET, Vm, and mean pore diameter of the
WO ₃ /TiO ₂ composites series calcined at 400 °C. * Surface area by BET equation (2-parameters), **
mean pore diameter by BJH model from isotherm desorption branch ($0.3 < p/p0 < 0.95$).

Sample	Band Gap (eV)	* Specific Surface Area (m²/g)	CBET	Vm (cm³/g)	** Mean Pore Di- ameter (nm)
WO_3	2.39	4.00	75.75	0.94	21.17
WO3@TiO2_80	2.63	42.78	123.22	9.92	8.6
WO3@TiO2_50	3.05	110.65	98.11	25.87	6.4
WO3@TiO2_20	3.14	179.78	75.50	43.26	6.0
WO3@TiO2_10	3.26	139.47	94.7	33.15	6.8
WO3@TiO2_5	3.20	111.08	112.87	31.29	9.1
TiO ₂	3.29	318.00	84.48	75.50	4.70

Samples Eg decreases, increasing the tungsten content, due to the formation of defective energy levels within the forbidden band gap of WO₃. On the other hand, by increasing the TiO₂ content, the total band gap of the photocatalyst decreases [42].

According to the shape of nitrogen adsorption–desorption isotherms reported in Figure 5 and the IUPAC classification [43], all the photocatalysts calcined at 400 °C can be classified as mesoporous materials of type IV, as confirmed by the values of CBET in Table 1, containing other quantitative data.


Catalysts 2022, 12, 822 7 of 17

 $\textbf{Figure 5.}\ \ \text{Nitrogen adsorption-desorption isotherms for the synthesized samples}.$

Figure 6 displays the SEM images and the elemental mapping of Ti and W for the synthesized composites, whereas the EDX spectra are reported in the Supplementary Information (Table S1).

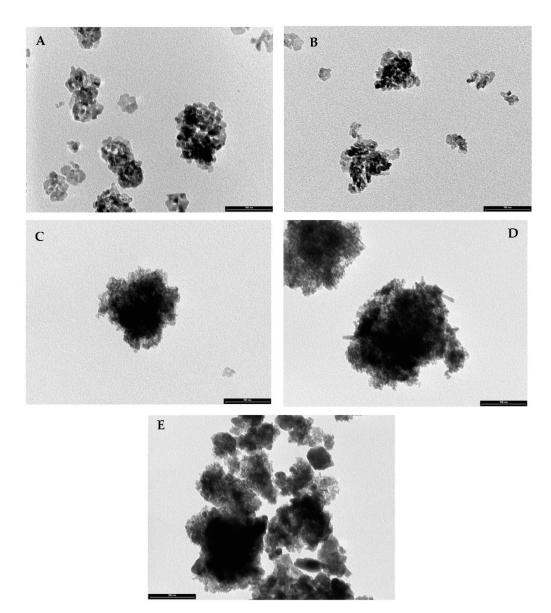
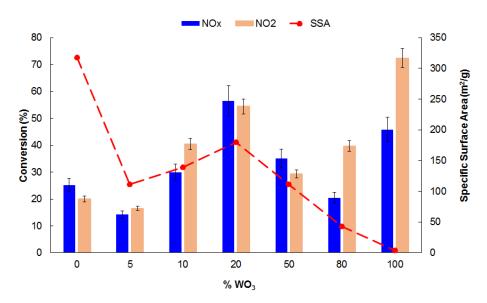

Catalysts 2022, 12, 822 8 of 17

Figure 6. SEM images and elemental mapping of the synthesized materials. (**Left**) sample analyzed, (**middle**, red-colored) titanium map, (**right**, green-colored) tungsten map.

The elemental maps of W and Ti by X-ray energy dispersion (EDX) in the composites demonstrate that TiO₂ and WO₃ are well dispersed in each material. All the WO₃@TiO₂ show a globular-like morphology with particle sizes ranging from 60 to 5 nm. The particles are aggregated by sharing corners or edges that probably involve the formation of Ti–O–W bonds [44]. The same information was obtained by TEM investigations (Figure 7) showing nanoparticles of 12–35 nm that gradually aggregate with the WO₃ load, reaching up to 60 nm in size.

Catalysts 2022, 12, 822 9 of 17


Figure 7. TEM images of WO₃@TiO₂_5 (**A**), WO₃@TiO₂_10 (**B**), WO₃@TiO₂_20 (**C**), WO₃@TiO₂_50 (**D**), WO₃@TiO₂_80 (**E**).

2.2. Photocatalytic and Biological Activities of Catalysts

2.2.1. NO_x Photocatalytic Degradation

The photocatalytic activity of the TiO_2/WO_3 composites, as well as single-phase photocatalysts, referred to both NO_x (NO + NO₂) and NO₂ conversion under visible light irradiation (Figure 8).

Catalysts 2022, 12, 822 10 of 17

Figure 8. Dependence of NO_x and NO₂ photodegradation on WO₃ content and specific surface area (SSA) of the materials.

According to the literature [22,31,45], for this type of material the photocatalytic degradation of NO_x consists of a photo-oxidation process, where both NO and NO₂ species are first adsorbed on the surface of the heterostructures and then converted into the corresponding oxidation product (NO₃-) under light irradiation. Although the formation of the oxidation products was well documented in the literature [46,47], an analytical confirmation was not performed in the present work due to the low NO_x concentrations used during the test.

For all the experiments, the initial concentration of NO_x was approximately 500 ppb. The NO_x photodegradation results are summarized in Figure 8.

As expected, despite its extraordinarily high surface area, TiO₂ shows poor activity towards NO_x conversion under visible light irradiation, leading to NO_x and NO₂ degradation in 25% and 20%, respectively. On the other hand, according to the band gap value, regardless of its low surface area, pristine WO₃ exhibits a good photoactivity towards NO₂ photodegradation (72%) in 3 h, whereas the NO_x abatement is only 46%. In fact, as reported in the scientific literature [19–22], WO₃ can remarkably reduce NO₂ into NO in the presence of N₂. This is confirmed by the results reported in Figure S3, showing for the WO₃ sample an increase in the NO concentration during the reaction. This makes pristine WO₃ not efficient in the NO_x abatement, because, as it is known, in air NO is immediately reoxidized to NO₂. In this regard, from the pioneering investigations of Yu et al., carried out under nitrogen atmosphere and UV irradiation, a 20% conversion of NO₂ into NO can be inferred [20]. The present results demonstrate that even under visible light irradiation, the percentage of NO formation from NO₂ is of the same order (24%), calculated by Equation (1):

NO produced (%) =
$$\frac{[NOt] - [NOi]}{[NOt]}$$
 (1)

where [NOt] is the NO concentration at the end of the reaction (after 3 h of light irradiation), [NOi] is the NO concentration before light irradiation.

If compared to the single-phase photocatalysts (TiO_2 and WO_3), the photoactivity of WO_3/TiO_2 heterostructures strongly depends on their composition. More in detail, the activity of the catalysts gradually increases with the WO_3 load, reaching the highest photodegradation efficiency by $WO_3@TiO_2_20$ (54.4% NO_x conversion and 56.4% NO_2 abatement), whereas it decreases for a percentage of $WO_3 > 20$. These results are in line

Catalysts 2022, 12, 822 11 of 17

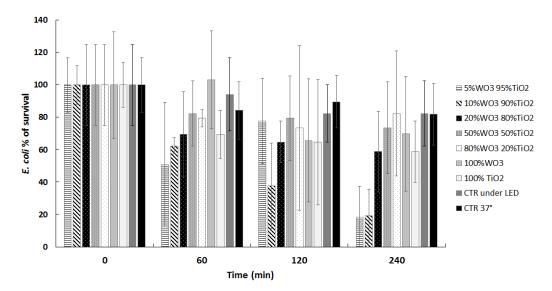
with the pioneering investigations of Balayeva et al., who tested the photocatalytic activity of TiO₂/WO₃ composites towards NO degradation under UV irradiation, obtaining a ca. 35% of conversion for heterostructures characterized by a 1% and 2.5% of WO₃ load [48].

For a very high amount of WO₃ (WO₃@TiO₂_80), these latter composites maintain the photoactive capability of pristine WO₃, converting NO₂ to NO. The different photoactivity of the materials may be due to a combination of factors.

First of all, it can be assumed that for a WO_3 load < 20%, TiO_2 and WO_3 only play their own photocatalytic role, and coupled photocatalysts are not formed. In this case, the low activity of TiO_2 prevails because it is the major component. In contrast, for a large amount of WO_3 , the fast e^-/h^+ recombination of the WO_3 component predominates.

On the contrary, the absence of WO₃ peaks in the XRD spectra of the WO₃@TiO₂_20 sample suggests that its increased photoactivity is not related to the formation of crystal-line tungsten oxide but is probably due to the presence of WO₃ centers on the surface of TiO₂ acting as electrons/holes separators [49]. When the test was carried out using WO₃@TiO₂_20*, in order to observe the effect of calcination temperature on the photoactivity of the material, the percentage of NO_x and NO₂ degradation dropped to ca. 20%, confirming that the thermal treatment acts by reducing the WO₃ content in the WO₃@TiO₂ heterostructure and as a consequence of its activity.

It is known that the quantum efficiency of photocatalytic reactions carried out by heterogeneous photocatalysts depends on the competition between the recombination of photogenerated electrons and holes and the transfer of both electrons and holes at the interface of the material. Extending the electrons and holes recombination time and increasing the transfer rate of electrons at the interface enhance the quantum efficiency positively. As reported in the literature [31], the formation of TiO₂/WO₃ heterostructures leads to enhanced charge carrier lifetimes, due to the transfer of photogenerated electrons in the TiO₂ to WO₃ CB, and at the same time to the entrapment of the photogenerated holes within the TiO₂ particle. Both these phenomena make charge separation more efficient.


Finally, the effect related to the different surface area values cannot be ignored. As for the photocatalytic activity, the surface area values also seem to be correlated to the WO₃ load and the most active catalyst (WO₃@TiO₂_20) is also the one with the highest surface area (Figure 8, Table 1). At first glance, the results obtained by the WO₃@TiO₂_20 photocatalyst seem to contrast with those of Mendoza et al. [22], who report very high NO conversion values under visible light irradiation in similar conditions. The different photocatalytic activity of the WO₃@TiO₂_20 sample compared to those reported by Mendoza and coworkers can be reasonably attributed to the real WO₃ content in the synthesized composites that it is not specified in the work of the author [22].

2.2.2. E. coli Photoinactivation

The antibacterial activity of WO₃@TiO₂ composites, as well as single-phase photocatalysts, was assessed by determining the percentage of *E. coli* cell survival following exposure to visible light. According to standard methods (ASTM E2149, 2001), values of survival \leq 90% indicate the antibacterial activity of a given photocatalytic film.

As shown in Figure 9, none of the tested samples displays antibacterial activity under visible light irradiation, in agreement with what was reported in the literature for the WO₃/TiO₂ catalyst [36].

Catalysts 2022, 12, 822 12 of 17

Figure 9. Percentage of *E. coli* cell survival after exposure to visible light in the presence of the synthesized heterostructures.

Different catalysts (e.g., sulfur-doped carbon quantum dots loaded hollow tubular g-C₃N₄) give degradation of *E. coli* cells instead, under visible light [50].

Based on the morphology of nanoparticles (Figure 7), we speculate that the nanoparticle aggregation of TiO₂/WO₃ hinders a suitable surficial interaction with the bacteria and the catalyst cytotoxicity.

3. Materials and Methods

3.1. Chemicals

Tungstic acid (H₂WO₄, 99% Merck), AMT 100 TiO₂ (Tayca Corporation, WP0097, Osaka, Japan), ammonium hydroxide solution (ACS reagent, 28.0–30.0% Merck & Co., St. Louis, MO, USA), hydrochloric acid (HCl 36%, Suprapur®, Supelco, Belfont, PA, USA) were used as received.

3.2. Synthesis of TiO₂/WO₃ Series

To synthesize 1 g of TiO₂/WO₃ composite, a proper amount of TiO₂ was dispersed in 25 mL of 2 M ammonium hydroxide solution under constant stirring (solution A). The WO₃ precursor solution was prepared by dissolving a proper amount of tungstic acid H₂WO₄ in 25 mL of 2 M ammonium hydroxide solution under constant stirring (solution B). The quantity of TiO₂ and H₂WO₄ used is reported in Table 2. The two solutions were stirred for 30 min at room temperature, then solution B was added to solution A and the stirring was continued for another 2 h at room temperature. Then, the solvent was evaporated, heating the mixture at 110 °C. The white-yellow powder was treated with 0.5 M hydrochloric acid solution and dried again. The final powder was washed with deionized water abundantly, dried at 100 °C overnight, and calcinated in the air at 400 °C for 2 h (heating rate 8 °C·min⁻¹). The synthesized samples containing different TiO₂/WO₃ w/w ratios (95:5, 90:10, 80:20, 20:80) were properly characterized and tested for NO_x photodegradation under visible light irradiation.

Catalysts 2022, 12, 822 13 of 17

-					
Label	TiO ₂ (g)	H ₂ WO ₄ (g)	WO3/TiO2 (w/w Ratio)	Calcination Temperature (°C)	Yield (%)
WO ₃	0.00	1.08	100:0	400	95.2
WO3@TiO2_80	0.20	0.86	80:20	400	95.7
WO3@TiO2_50	0.50	0.55	50:50	400	95.1
WO3@TiO2_20	0.80	0.22	20:80	400	94.8
WO3@TiO2_10	0.90	0.11	10:90	400	96.2
WO ₃ @TiO ₂ _5	0.95	0.05	5:95	400	95.7
WO3@TiO2_20*	0.80	0.22	20:80	600	60.9
TiO ₂	1.00	0.00	0:100	400	98.5

Table 2. Labels of the WO₃/TiO₂ composites, WO₃/TiO₂ w/w ratio, calcination temperature, and reaction yield.

WO₃ was synthesized by the same procedure using a TiO₂-free solution A.

An aliquot of the TiO₂/WO₃ composite with an 80:20 w/w ratio was calcined at 600 °C.

Table 2 reports a list of synthesized composites with the corresponding label, WO_3/TiO_2 w/w ratio, calcination temperature, and reaction yield, calculated by Equation (2):

Yield (%) =
$$\frac{\frac{g(H_2WO_4) \times molar \, mass(WO_3)}{molar \, mass(H_2WO_4)} + g \, TiO_2}{g \, final \, product}$$
(2)

3.3. Characterization Methods

X-Ray Diffraction (XRD) measurements investigated the crystalline structure on a PW3830/3020 X'Pert diffractometer from PANalytical working Bragg–Brentano, using the Cu K α 1 radiation (k = 1.5406 Å).

FT-IR spectra were recorded in the range of 400–4000 cm⁻¹ with a resolution of 0.5 cm⁻¹ by an FT-IR 410 spectrophotometer dispersing a few milligrams of each material in anhydrous KBr. The morphology of the catalysts was inspected employing high-resolution electron transmission microscopy (HR-TEM), using a JEOL 3010-UHR instrument (acceleration potential: 300 kV; LaB6 filament), and by scanning electron microscopy (SEM), using a Zeiss LEO 1525 field emission microscope. The samples were "dry" dispersed on lacey carbon Cu grids for TEM analyses, whereas SEM analyses were carried out without any pre-treatment of the samples.

For the band gap determinations, diffuse reflectance spectra of the powders were collected on a UV–Vis diffuse reflectance spectra using a scanning spectrophotometer PerkinElmer, Lambda 35, which was equipped with a diffuse reflectance accessory. A thin film of each sample was placed in the sample holder on an integrated sphere for the reflectance measurements. A KBr pill was used as the reference material. Data were elaborated using the Kubelka–Munk function (Equation (3)), which expresses the adsorbance as a function of reflectance (F(R)) [51]:

$$F(R) = (1 - R)^2 / 2R \tag{3}$$

where R = reflectance of the powder.

The band gap values were determined by performing the first derivative of the Kubelka–Munk function (Equation (4)):

$$dF(R)/d\lambda$$
 (4)

where λ = wavelength of the incident radiation. The energy of the radiation at which the first derivative dF(R)/d λ shows the maximum was taken to estimate the band gap values.

Catalysts 2022, 12, 822 14 of 17

Specific surface area and porosity distribution were determined by processing N_2 adsorption–desorption isotherms at 77 K (Micromeritics Tristar II 3020 (Micromeritics)) with Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda analyses. Before the analysis, samples were heat-treated (T = 150 °C, 4 h, N_2) to remove adsorbed foreign species.

3.4. NOx Photodegradation Tests

A photocatalytic film of each sample was deposited by drop-casting on glass supports as follows: a suspension of 0.050 ± 0.001 g of photocatalyst in 5 mL of isopropanol was deposited on a glass plate (230 × 19 mm). Once the solvent was evaporated, the photocatalyst was placed inside a 20 L Pyrex glass cylindrical batch reactor for the photocatalytic tests. The photocatalytic tests were performed by a mixture of NO and NO2 in air. The starting inlet gas contains only NO2, but the chemical equilibrium between NO and NO2 is established as it is exposed to air. An LED lamp (350 mA, 9–48 V DC, 16.8 W) with emissions in the 400–700 nm range was used as the light source. The luminous intensity (lux) was measured using an illumination meter (Delta Ohm photo/radiometer HD 2102.2) and was 2900 lx to estimate the light intensity. It was then converted to the irradiance unit (in mW/cm²) [19], obtaining a light intensity of 3.24 mW/cm².

The NO $_{x}$ initial concentration was 500 \pm 50 ppb. A chemiluminescence analyzer measured the NO $_{x}$ concentration after 30, 60, and 180 min of exposure to light irradiation (ENVEA AC32e).

3.5. Antibacterial Assay

Cultures of *E. coli* MG1655 [52] were grown at 37 °C in Luria–Bertani (LB) medium (10 g/L tryptone, 5 g/L yeast extract, 10 g/L NaCl) or LB-agar medium (LB medium with 10 g/L agar). Bacteria (200 mL) were collected by 10 min centrifugation at 5000 rpm, washed in PBS 1X (Merck & Co., St. Louis, MO, USA), and resuspended in the same volume of PBS 1X. Stationary phase cultures of *E. coli* were diluted up to optical density at 600 nm (OD600) of 0.05 and then grown aerated up to 0.6.

Films of the synthesized heterostructures were prepared as follows. A total of 100 mg of each material was dispersed in 8 mL of isopropanol and deposited on a Petri dish (90 mm in diameter) by drop-casting and air-dried.

10 mL of bacterial cells were added to Petri dishes. The plates were irradiated with visible light (2900 lux obtained with an LED lamp) and removed from light at different time points (60, 120, and 240 min). As controls, bacterial cells were deposited onto empty Petri dishes and irradiated (CTR under LED) or incubated at 37 °C under dark (CTR). Viable bacteria expressed as CFU/mL (colony-forming unit /mL) were enumerated at t = 0, 60, 120, and 240 min by plating suitable dilutions onto LB-agar plates following incubation at 37 °C for 18 h.

The percentage of bacterial survival is expressed as follows:

(average of viable bacteria at a given time/average of viable bacteria CTR 37° at t = 0 min) × 100.

The average of viable bacteria is calculated from at least three independent experiments. Values of survival ≤90% indicate the antibacterial activity of a given photocatalytic film.

4. Conclusions

In this study, we investigated the photoactivity of WO₃ and TiO₂/WO₃ composites towards NO₂ degradation under visible light, in order to clarify the numerous conflicting data reported in the literature so far. It was demonstrated that the photoactivity of TiO₂/WO₃ heterostructures are strongly related to their composition. For WO₃@TiO₂ materials characterized by low tungsten trioxide content (<20%), TiO₂ and WO₃ are present

Catalysts 2022, 12, 822 15 of 17

as separate phases, each playing their own photocatalytic role, whereas coupled photocatalysts are not formed.

The composite with a WO₃ load of 20% was the most efficient photocatalyst, extending the electrons and holes recombination time and promoting the transfer rate of electrons at the interface. The high activity of the material can be explained with its high surface area value and with the presence of WO₃ centers on the surface of TiO₂ acting as electrons/holes separators. However, if the WO₃ load is higher than 20%, a fast e-/h⁺ recombination can occur and the ability of tungsten trioxide to reduce NO₂ to NO prevails over the composites' capability to photo-oxidize NO₂ to NO₃⁻. Moreover, the photodegradation activity of the heterostructures can be attributed to the oxidizing effect of holes. Moreover, it was demonstrated that high-temperature calcination leads to a partial sublimation of the WO₃ component that causes a decrease in heterostructure activity. As for the lack of the bacteria degradation, we tentatively suggest that the aggregation of nanoparticles hinders an efficient surface contact between bacteria and catalyst.

Supplementary Materials: The following supporting information can be downloaded at: www.mdpi.com/article/10.3390/catal12080822/s1: Table S1: EDS analysis, Figure S1: EDX spectrum of (A) WO₃@TiO₂_20* and (B) WO₃@TiO₂_20, Figure S2: Tauc plot of TiO₂ (A), WO₃@TiO₂_5 (B), WO₃@TiO₂_10 (C), WO₃@TiO₂_20 (D), WO₃@TiO₂_50 (E), WO₃@TiO₂_80 (F), WO₃ (G), Figure S3: Dependence of WO₃ content (%) in the composites versus and NO production.

Author Contributions: Conceptualization, C.L.B., F.M. and A.P.; methodology, C.L.B. and A.P.; investigation, E.F. and F.D.V.; data curation, C.L.B., F.M. and A.P.; writing—original draft preparation, E.F., F.M., C.L.B. and A.P.; writing—review and editing, E.F.; supervision, F.M.; funding acquisition, I.R.B. All authors have read and agreed to the published version of the manuscript

Funding: This research was funded by Fondazione di Comuntà Milano, Fondo Ignazio Renato Bellobono Letizia Stefanelli.

Data Availability Statement: The data that support the plots within this paper are available from the corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Colls, J. Air Pollution, 2nd ed.; CRC Press: London, UK, 2002; pp. 1–360. https://doi.org/10.4324/9780203476024.
- Chaloulakou, A.; Mavroidis, I.; Gavriil, I. Compliance with the annual NO₂ air quality standard in Athens. Required NO_x levels and expected health implications. *Atmos. Environ.* 2008, 42, 454–465. https://doi.org/10.1016/j.atmosenv.2007.09.067.
- 3. Roy, S.; Hegde, M.S.; Madras, G. Catalysis for NO_x abatement. *Appl. Energy* **2009**, *86*, 2283–2297. https://doi.org/10.1016/j.apenergy.2009.03.022.
- 4. Ângelo, J.; Andrade, L.; Madeira, L.M.; Mendes, A. An overview of photocatalysis phenomena applied to NOx abatement. *J. Environ. Manag.* **2013**, *129*, 522–539. https://doi.org/10.1016/j.jenvman.2013.08.006.
- 5. Brüggemann, T.C.; Keil, F.J. Theoretical investigation of the mechanism of the selective catalytic reduction of nitric oxide with ammonia on H-form zeolites. *J. Phys. Chem. C* **2008**, *112*, 17378–17387. https://doi.org/10.1021/jp806674d.
- 6. Mok, Y.S.; Lee, H. Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption–reduction technique. *Fuel Process. Technol.* **2006**, *87*, 591–597. https://doi.org/10.1016/j.fuproc.2005.10.007.
- 7. German, R.M.; Suri, P.; Park, S.J. Review: Liquid phase sintering. *J. Mater. Sci.* **2009**, 44, 1–39. https://doi.org/10.1007/s10853-008-3008-0.
- 8. Zeng, Y.; Haw, K.-G.; Wang, Y.; Zhang, S.; Wang, Z.; Zhong, Q.; Kawi, S. Recent Progress of CeO₂–TiO₂ Based Catalysts for Selective Catalytic Reduction of NO_x by NH₃. *ChemCatChem* **2021**, *13*, 491–505. https://doi.org/10.1002/cctc.202001307.
- 9. Nakata, K.; Ochiai, T.; Murakami, T.; Fujishima, A. Photoenergy conversion with TiO₂ photocatalysis: New materials and recent applications. *Electrochim. Acta* **2012**, *84*, 103–111. https://doi.org/10.1016/j.electacta.2012.03.035.
- 10. Negishi, N.; Sugasawa, M.; Miyazaki, Y.; Hirami, Y.; Koura, S. Effect of dissolved silica on photocatalytic water purification with a TiO₂ ceramic catalyst. *Water Res.* **2019**, *150*, 40–46. https://doi.org/10.1016/j.watres.2018.11.047.
- 11. Ge, M.; Caia, J.; Iocozzi, J.; Cao, C.; Huang, J.; Zhang, X.; Shen, J.; Wang, S.; Zhang, S.; Zhang, K.-Q.; et al. A review of TiO₂ nanostructured catalysts for sustainable H₂ generation. *Int. J. Hydrogen Energy* **2017**, 42, 8418–8449. https://doi.org/10.1016/j.ijhydene.2016.12.052.
- 12. Hamrouni, A.; Azzouzi, H.; Rayes, A.; Palmisano, L.; Ceccato, R.; Parrino, F. Enhanced Solar Light Photocatalytic Activity of Ag Doped TiO₂–Ag₃PO₄ Composites. *Nanomaterials* **2020**, *10*, 795. https://doi.org/10.3390%2Fnano10040795.

Catalysts 2022, 12, 822 16 of 17

13. Braakhuis, H.M.; Gosens, I.; Heringa, M.B.; Oomen, A.G.; Vandebriel, R.J.; Groenewold, M.; Cassee, F.R. Mechanism of Action of TiO₂: Recommendations to Reduce Uncertainties Related to Carcinogenic Potential. *Annu. Rev. Pharmacol. Toxicol.* **2021**, *61*, 203–223. https://doi.org/10.1146/annurev-pharmtox-101419-100049.

- 14. Luna, M.; Gatica, J.M.; Vidal, H.; Mosquera, M.J. One-pot synthesis of Au/N-TiO₂ photocatalysts for environmental applications: Enhancement of dyes and NO_x photodegradation. *Powder Technol.* **2019**, 355, 793–807. https://doi.org/10.1016/j.powtec.2019.07.102.
- 15. Xu, M.; Wang, Y.; Geng, J.; Jing, D. Photodecomposition of NO_x on Ag/TiO₂ composite catalysts in a gas phase reactor. *Chem. Eng. J.* **2017**, 307, 181–188. https://doi.org/10.1016/j.cej.2016.08.080.
- 16. Bianchi, C.L.; Pirola, C.; Galli, F.; Cerrato, G.; Morandi, S.; Capucci, V. Pigmentary TiO₂: A challenge for its use as photocatalyst in NO_x air purification. *Chem. Eng. J.* **2015**, 261, 76–82. https://doi.org/10.1016/j.cej.2014.03.078.
- 17. Cerrato, G.; Galli, F.; Boffito, D.C.; Operti, L.; Bianchi, C.L. Correlation preparation parameters/activity for microTiO₂ decorated with SilverNPs for NO_x photodegradation under LED light. *Appl. Catal. B Environ.* **2019**, 253, 218–225. https://doi.org/10.1016/j.apcatb.2019.04.056.
- 18. Bianchi, C.L.; Cerrato, G.; Pirola, C.; Galli, F.; Capucci, V. Photocatalytic porcelain grés large slabs digitally coated with AgNPs-TiO₂. *Environ. Sci. Pollut. Res.* **2019**, *26*, 36117–36123. https://doi.org/10.1007/s11356-019-05218-7.
- 19. Luévano-Hipólito, E.; Martínez-de la Cruz, A.; Yu, Q.L.; Brouwers, H.J.H. Precipitation synthesis of WO³ for NO_x removal using PEG as template. *Ceram. Int.* **2014**, *40*, 12123–12128. https://doi.org/10.1016/j.ceramint.2014.04.052.
- 20. Yu, J.C.-C.; Lasek, J.; Nguyen, V.-H.; Yu, Y.-H.; Wu, J.C.S. Visualizing reaction pathway for the phototransformation of NO₂ and N₂ into NO over WO₃ photocatalyst. *Res. Chem. Intermed.* **2017**, 43, 7159–7169. https://doi.org/10.1007/s11164-017-3065-6.
- 21. Kowalkińska, M.; Borzyszkowska, A.F.; Grzegórska, A.; Karczewski, J.; Głuchowski, P.; Łapiński, M.; Sawczak, M.; Zielińska-Jurek, A. Pilot-Scale Studies of WO₃/S-Doped g-C₃N₄ Heterojunction toward Photocatalytic NO_x Removal. *Materials* **2022**, *15*, 633. https://doi.org/10.3390/ma15020633.
- 22. Mendoza, J.A.; Lee, D.H.; Kang, J.-H.; Photocatalytic removal of gaseous nitrogen oxides using WO₃/TiO₂ particles under visible light irradiation: Effect of surface modification. *Chemosphere* **2017**, *182*, 539–546. https://doi.org/10.1016/j.chemosphere.2017.05.069.
- 23. Tahir, M.B.; Nabi, G.; Rafique, M.; Khalid, N.R. Nanostructured-based WO₃ photocatalysts: Recent development, activity enhancement, perspectives and applications for wastewater treatment. *Int. J. Environ. Sci. Technol.* **2017**, *14*, 2519–2542. https://doi.org/10.1016/B978-0-12-821859-4.00008-8.
- 24. Wang, J.; Chen, Z.; Zhai, G.; Men, Y.; Boosting photocatalytic activity of WO₃ nanorods with tailored surface oxygen vacancies for selective alcohol oxidations. *Appl. Surf. Sci.* **2018**, 462, 760–771. https://doi.org/10.1016/j.apsusc.2018.08.181.
- 25. Li, L.; Xiao, S.; Li, R.; Cao, Y.; Chen, Y.; Li, Z.; Li, G.; Li, H. Nanotube array-like WO₃ photoanode with dual-layer oxygen-evolution cocatalysts for photoelectrocatalytic overall water splitting. *ACS Appl. Energy Mater.* **2018**, *1*, 6871–6880. https://doi.org/10.1021/acsaem.8b01215.
- 26. Aslam, M.; Ismail, I.M.; Chandrasekaran, S.; Hameed, A. Morphology controlled bulk synthesis of disc-shaped WO₃ powder and evaluation of its photocatalytic activity for the degradation of phenols. *J. Hazard. Mater.* **2014**, 276, 120–128. https://doi.org/10.1016/j.jhazmat.2014.05.022.
- 27. Chu, W.; Rao, Y.F. Photocatalytic oxidation of monuron in the suspension of WO₃ under UV–visible light. *Chemosphere* **2012**, *86*, 1079–1086. https://doi.org/10.1016/j.chemosphere.2011.11.062.
- 28. Kim, D.-S.; Yang, J.-H.; Balaji, S.; Cho, H.-J.; Kim, M.-K.; Kang, D.-U.; Djaoued, Y.; Kwon, Y.-U. Hydrothermal synthesis of anatase nanocrystals with lattice and surface doping tungsten species. *CrystEngComm* **2009**, *11*, 1621. https://doi.org/10.1039/B901957J.
- 29. Riboni, F.; Bettini, L.G.; Bahnemann, D.W.; Selli, E. WO₃–TiO₂ vs. TiO₂ photocatalysts: Effect of the W precursor and amount on the photocatalytic activity of mixed oxides. *Catal. Today* **2013**, 209, 28–34. https://doi.org/10.1016/j.cattod.2013.01.008.
- 30. Dozzi, M.V.; Marzorati, S.; Longhi, M.; Coduri, M.; Artiglia, L.; Selli, E. Photocatalytic activity of TiO₂-WO₃ mixed oxides in relation to electron transfer efficiency. *Appl. Catal. B Environ.* **2016**, *186*, 157–165. https://doi.org/10.1016/j.apcatb.2016.01.004.
- 31. Paula, L.F.; Hofer, M.; Lacerda, V.P.B.; Bahnemann, D.W.; Patrocinio, A.O.T. Unraveling the photocatalytic properties of TiO₂/WO₃ mixed oxides. *Photochem. Photobiol. Sci.* **2019**, *18*, 2469–2483. https://doi.org/10.1039/c9pp00163h.
- 32. Yang, L.; Si, Z.; Weng, D.; Yao, Y. Synthesis, characterization and photocatalytic activity of porousWO₃/TiO₂ hollow microspheres. *Appl. Surf. Sci.* **2014**, *313*, 470–478. https://doi.org/10.1016/j.apsusc.2014.05.230.
- 33. Žerjav, G.; Arshad, M.S.; Djinović, P.; Zavašnik, J.; Pintar, A. Electron trapping energy states of TiO₂–WO₃ composites and their influence on photocatalytic degradation of bisphenol. *Appl. Catal. B Environ.* **2017**, 209, 273-284. https://doi.org/10.1016/j.apcatb.2017.02.059.
- 34. Shifu, C.; Lei, C.; Shen, G.; Gengyu, C. The preparation of coupled WO₃/TiO₂ photocatalyst by ball milling. *Powder Technol.* **2005**, *160*, 198–202. https://doi.org/10.1016/j.powtec.2005.08.012.
- 35. Makwana, N.M.; Hazael, R.; McMillan, P.F.; Darr, J.A. Photocatalytic water disinfection by simple and low-cost monolithic and heterojunction ceramic wafers. *Photochem. Photobiol. Sci.* **2015**, *14*, 1190–1196. https://doi.org/10.1039/c5pp00002e.

Catalysts 2022, 12, 822 17 of 17

36. Dhanalekshmi, K.I.M.; Umapathy, J.; Magesan, P.; Zhang, X. Biomaterial (Garlic and Chitosan)-Doped WO₃-TiO₂ Hybrid Nanocomposites: Their Solar Light Photocatalytic and Antibacterial Activities. *ACS Omega* **2020**, *5*, 31673–31683. https://doi.org/10.1021/acsomega.0c04154.

- 37. Manmohan, L.; Praveen, S.; Chhotu, R. Calcination temperature effect on titanium oxide (TiO₂) nanoparticles synthesis. *Optik* **2021**, 241, 166934. https://doi.org/10.1016/j.ijleo.2021.166934.
- 38. El-Yazeed, W.S.A.; Ahmed, A.I. Photocatalytic activity of mesoporous WO₃/TiO₂ nanocomposites for the photodegradation of methylene blue. *Inorg. Chem. Commun.* **2019**, *105*, 102–111. https://doi.org/10.1016/j.inoche.2019.04.034.
- 39. Boruah, P.J.; Khanikar, R.R.; Bailung, H. Synthesis and Characterization of Oxygen Vacancy Induced Narrow Bandgap Tungsten Oxide (WO₃-x) Nanoparticles by Plasma Discharge in Liquid and Its Photocatalytic Activity. *Plasma Chem. Plasma Process* **2020**, 40, 1019–1036. https://doi.org/10.1007/s11090-020-10073-3.
- 40. Kathiravan, A.; Renganathan, R. Photosensitization of colloidal TiO₂ nanoparticles with phycocyanin pigment. *J. Colloid Inter-face Sci.* **2009**, 335, 196–202. https://doi.org/10.1016/j.jcis.2009.03.076.
- 41. Gutiérrez-Alejandre, A.; Castillo, P.; Ramírez, J.; Ramis, G.; Busca, G. Redox and acid reactivity of wolframyl centers on oxide carriers: Brønsted, Lewis and redox sites. *Appl. Catal. A* **2001**, 216, 181–194. https://doi.org/10.1016/S0926-860X(01)00557-9.
- 42. Lv, K.; Li, J.; Qing, X.; Li, W.; Chen, Q. Synthesis and photodegradation application of WO₃/TiO₂ hollow spheres. *J. Hazard. Mater.* **2011**, *189*, 329–335. https://doi.org/10.1016/j.jhazmat.2011.02.038.
- 43. Nguyen, T.T.; Nam, S.N.; Son, J.; Oh, J. Tungsten Trioxide (WO₃)-assisted Photocatalytic Degradation of Amoxicillin by Simulated Solar Irradiation. *Sci. Rep.* **2019**, *9*, 9349. https://doi.org/10.1038/s41598-019-45644-8.
- 44. Dirany, N.; Arab, M.; Madigou, V.; Leroux, Ch.; Gavarri, J.R. A facile one step route to synthesize WO₃ nanoplatelets for CO oxidation and photodegradation of RhB: Microstructural, optical and electrical studies. *RSC Adv.* **2016**, *6*, 6961–69626. https://doi.org/10.1039/C6RA13500E.
- 45. Lasek, J.; Yu, Y.-H.; Wu, Y.C.S. Removal of NO_x by photocatalytic processes. *J. Photochem. Photobiol. C Photochem. Rev.* **2013**, *14*, 29–52. https://doi.org/10.1016/j.jphotochemrev.2012.08.002.
- 46. Dalton, J.S.; Janes, P.A.; Jones, N.G.; Nicholson, J.A.; Hallam, K.R.; Alle, G.C. Photocatalytic oxidation of NO_x gases using TiO₂: A surface spectroscopic approach. *Environ. Pollut.* **2002**, 120, 415–422. https://doi.org/10.1016/S0269-7491(02)00107-0.
- 47. Wu, J.C.S.; Cheng, Y.-T. In situ FTIR study of photocatalytic NO reaction on photocatalysts under UV irradiation. *J. Catal.* **2006**, 237, 393–404. https://doi.org/10.1016/j.jcat.2005.11.023.
- 48. Balayeva, N.O.; Fleisch, M.; Bahnemann, D.W. Surface-grafted WO₃/TiO₂ photocatalysts: Enhanced visible-light activity towards indoor air purification. *Catal. Today* **2018**, 313, 63–71. https://doi.org/10.1016/j.cattod.2017.12.008.
- 49. Rampaul, A.; Parkin, I.P.; O'Neill, S.A.; DeSouza, J.; Mills, A.; Elliott, N. Titania and tungsten doped titania thin films on glass; active photocatalysts. *Polyhedron* **2003**, 22, 35–44. https://doi.org/10.1016/S0277-5387(02)01333-5.
- 50. Wang, W.; Zeng, Z.; Zeng, G.; Zhang, C.; Xiao, R.; Zhou, C.; Xiong, W.; Yang, Y.; Lei, L.; Liu, Y.; et al. Sulfur doped carbon quantum dots loaded hollow tubular g-C₃N₄ as novel photocatalyst for destruction of Escherichia coli and tetracycline degradation under visible light. *Chem. Eng. J.* **2019**, *378*, 122132. https://doi.org/10.1016/j.cej.2019.122132.
- 51. Yang, Y.A.; Ma, Y.; Yao, J.N.; Loo, B.H. Simulation of the sublimation process in the preparation of photochromic WO₃ film by laser microprobe mass spectrometry. *J. Non-Cryst. Solids* **2000**, *272*, 71–74. https://doi.org/10.1016/S0022-3093(00)00226-X.
- 52. Blattner, F.R.; Plunkett, G.; Bloch, C.A.; Perna, N.T.; Burland, V.; Riley, M.; Collado-Vides, J.; Glasner, J.D.; Rode, C.K.; Shao, Y. The complete genome sequence of Escherichia coli K-12. *Science* **1997**, 277, 1453–1462. https://doi.org/10.1126/science.277.5331.1453.