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Abstract: Nitrogen-containing phenolic contaminants (NCPCs) represent typical pollutants of in-
dustrial wastewaters. As catalytic reduction of NCPCs is a useful technique and Cu is an efficient
metal catalyst, Cu-carboxylate frameworks (CuCF) are favorable materials. However, they are in
powder form, making them difficult to use; thus, in this study, CuCF was grown on macroscale
supports. Herein, we present a facile approach to develop such a CuCF composite by directly using
a Cu mesh to grow CuCF on the mesh through a single-step electrochemical synthesis method,
forming CuCF mesh (CFM). CFM could be further modified to afford CuCF mesh with amines (NH2)
(CFNM), and CuCF mesh with carboxylates (COOH) (CFCM). These CuCF meshes are compared to
investigate how their physical and chemical characteristics influenced their catalytic behaviors for
reduction/hydrogenation of NPCPs, including nitrophenols (NPs) and dyes. Their nanostructures
and surface properties influence their behaviors in catalytic reactions. In particular, CFCM appears
to be the most efficient mesh for catalyzing 4-NP, with a much higher rate constant. CFCM also
shows a significantly lower Ea (28.1 kJ/mol). CFCM is employed for many consecutive cycles, as
well as convenient filtration-type 4-NP reduction. These CuCF meshes can also be employed for
decolorization of methylene blue and methyl orange dyes via catalytic hydrogenation.

Keywords: copper; MOFs; mesh; catalytic reduction; dyes; nitrophenol

1. Introduction

Nitrogen-containing phenolic contaminants (NCPCs) are almost ubiquitous in indus-
trial wastewaters [1]. Amidst numerous NCPCs, nitrophenols (NPs) have been increasingly
concerning, since NPs can interfere with the nerve/blood systems of the human body [2].
Thus, several methods (e.g., physical, chemical, and biological techniques [3,4]) have been
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developed for removing NPs, especially 4-NP, from wastewaters to prevent its harmful
impact. Among these various techniques, chemically reductive treatment of 4-NP repre-
sents an advantageous technique, as the toxic nitro group of 4-NP can then be catalytically
transformed to a less-toxic amine moiety, affording 4-aminophenol (4-AP); this is especially
advantageous because 4-AP is a valuable molecule that can be used for the synthesis of
chemical products [5–10].

For reducing 4-NP to 4-AP, reducing agents (i.e., NaBH4), together with noble metals
(including Ru, Au, etc.), are frequently required [11,12]. Nonetheless, high costs of noble
metal catalysts impede realistic implementation of this technology. Hence, it would be more
practical to create alternative materials (without usage of noble metals) for the reduction
of NPs. In recent times, a special family of porous coordination polymers, called “metal–
organic frameworks (MOFs)” has been developed [13–15]. MOFs can be synthesized using
various non-noble metals and different ligands to create well-defined porous structures
with versatile physical/chemical properties [13], making MOFs advantageous catalysts for
a variety of reactions [16–18].

Among these non-noble metals, Cu, Co, Ni, etc., have been also evaluated [3,19–21],
and Cu is considered as one of the most effective non-noble metal catalysts because Cu
and Cu-oxides can effectively mediate electron-transfer processes between the reducing
agent and 4-NP for hydrogeneration of 4-NP to 4-AP [3,19,22]. Cu-based MOFs, especially
those containing Cu–O clusters, would be favorable candidates for 4-NP reduction. To this
end, carboxylate ligands are particularly attractive and useful as carboxyl groups of ligands
can coordinate with Cu to afford the Cu–O clusters within MOFs. Therefore, a relatively
inexpensive and highly accessible carboxylate ligand, benzene-1,4-dicarboxylic acid (BDC),
is here chosen to coordinate with Cu to form Cu-carboxylate frameworks (CuCF).

While CuCF might be a useful non-noble metal catalyst in reducing 4-NP, CuCF
typically exists as nanoparticles, which would be impractical for pragmatic applications.
Therefore, it is critical to decorate CuCF on supports, especially macroscale supports,
in order to make such a CuCF composite convenient for use. The resultant composite
of nanostructured CuCF with macroscale supports can be referred to as a “hierarchical”
structure which would represent combinations of different scales of materials for increasing
accessibility of active sites in nanostructures and facilitating convenient operation by
macroscale supports [6,22–24].

More importantly, this type of CuCF composite should be prepared simply without
complex protocols, and the reagents to make these CuCF composites should be more
promising and practical. Herein, we propose a facile approach to develop such a CuCF
composite by directly using a macroscale Cu mesh to grow nanoscale CuCF on the mesh
through a single-step electrochemical synthesis method. The Cu mesh was particularly
selected because Cu mesh can be directly used as a source of Cu, and the mesh configura-
tion provides a large surface for growing CuCF to form hierarchical structures, allowing
it to be exposed to reactants easily. For instance, Wang et al. claimed to establish a hierar-
chical material by employing a copper mesh with a macroscale configuration, on which
nanoclusters of Cu2O were deposited via an electrochemical method to form a “hierarchical
composite” [22]. On the other hand, Guo et al. claimed to build up a hierarchical material
by using a stainless steel mesh as a macroscale support, on which nanostructured ZnO
nanorod-array was then deposited [23]. Furthermore, Xiong et al. also claimed to develop
a hierarchical material by growing a Zr-based MOFs polyacrylonitrile mesh for enhancing
activities [24].

Moreover, the mesh configuration can also act a filter, allowing reactants to flow di-
rectly through the mesh for further catalytic reactions. On the other hand, since catalytic
reductive reactions of NCPCs would certainly involve surficial interactions between cata-
lysts and reactants, surface properties are of importance to govern behaviors of catalysts.
Thus, in this study, CuCF meshes are further modified to possess different functional
groups, especially amine and carboxylate groups, by using functionalized carboxylate
ligands during the electrochemical fabrication of CuCF meshes. Specifically, CuCF mesh
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without additional functional group would be denoted as CFM, whereas CuCF meshes
with amines and carboxylates would be denoted as CFNM, and CFCM, respectively.

CuCFs with different functional groups have been also reported for aqueous appli-
cations [25–27]. For instance, CuCF has been applied as an adsorbent for the removal of
methylene blue from water, and CuCF exhibited superior stability in an aqueous environ-
ment and maintained stable and durable adsorption capacities [25]. CuCF with an amine
functional group has been also employed as an adsorbent, and a catalyst for removing
dyes in aqueous environments, and retained a superior stability for multiple-cycle ap-
plications [26]. In addition, CuCF with a carboxylate group has also been applied as an
adsorbent for removing malachite green from water, and maintained high stability and
durability for consecutive operation without significant destruction in its structure [27].

Through investigating these CuCF meshes for the reduction of NPs, as well as other
NCPCs, the relationship between different physical/chemical/surficial properties and
catalytic behaviors of CuCF meshes can be then revealed to provide insights for designing
and optimizing CuCF meshes for catalytic reductive applications.

2. Results
2.1. Characterization of CuCF Meshes

Fabrication of CuCF meshes is illustrated in Figure 1a. Since CuCF meshes were
fabricated using pristine Cu meshes, the appearance of Cu mesh can be visualized in
Figure 1b, exhibiting the typical reddish brown color and a very dense woven structure.
Its microscale morphology is revealed in Figure S1, in which Cu rounded wires with a
diameter of ~50 µm were woven perpendicularly to afford the mesh with a hole size of
~80 µm. The pristine Cu mesh also exhibited very smooth surfaces, as shown in Figure S1b,
and no specific substances/patterns were present.
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Once the pristine Cu mesh was modified by electrochemical anodization in the pres-
ence of carboxylate ligands, the reddish brown color of Cu mesh was noticeably changed
to a color of dark gray, as shown in Figure 1b, suggesting that the Cu meshes had been
modified and deposited with certain substances. Figure 2 further reveals microscopic mor-
phologies of these modified Cu meshes. Specifically, Figure 2a shows the electrochemically
synthesized Cu mesh in the presence of BDC, and presents how the Cu wires were fully
covered by innumerable fluffy needles. Figure 2b unveils that the needles exhibited a thick-
ness of ~200 nm and a length of a few micrometers. These images also demonstrate that
the single-step electrochemical anodization of Cu mesh in the presence of BDC successfully
grew nanostructures on Cu meshes. Elemental analysis of the BDC-modified Cu mesh
presents how signals of C, O and Cu (Figure 3a) were uniformly distributed all over the
Cu mesh, indicating that these resulting nanostructures were evenly grown on the Cu
mesh. The abundant signals of C and O elements also validate that the BDC ligand shall be
incorporated and comprised in these nanostructures.
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When BDC-NH2 was then used as another carboxylate ligand in the electrochemical
anodization of Cu mesh (the resultant modified Cu mesh can be observed in Figure 1b),
the original reddish brown Cu mesh was also transformed to the gray-colored mesh. Its
corresponding SEM (Figure 2c) also reveals that the Cu wires were also fully covered
by sheet-like substances. Figure 2d further unveils the microscale morphologies of these
sheet-like substances, which were actually comprised of very thin nanosheets assembled
to afford nanoflower-like nanostructures. Figure 3b further reveals the corresponding
elemental mapping result, and signals of C, O, Cu and even N were also uniformly spread
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over the entire mesh, indicating that BDC-NH2 had been successfully incorporated into
these nanoflower-like nanostructures.

As BTEC was then employed, the color of the pristine Cu mesh noticeably varied
to gray (Figure 1b), indicating that certain substances had grown on the Cu mesh. Its
corresponding SEM image (Figure 2e) unveils that these Cu wires were decorated and
covered by clusters of chunks, which were actually comprised of bundles of nanofibers. On
the other hand, Figure 3c also reveals signals of C, O and Cu evenly distributed over the
mesh, and BTEC was also incorporated into these nanostructures comprised of bundles
of nanofibers.

These characterizations validate that the single-step electrochemical anodization of
Cu mesh in the presence of carboxylate ligands would successfully grow nanostructures
comprised of Cu, and ligands. To further investigate these nanostructures, the crystalline
structures are shown in Figure 4a. Prior to growing these nanostructures, the pristine Cu
mesh exhibited three noticeable signature peaks of Cu metal at 43.3, 50.5 and 74.3◦ (JCPDS
card# 65-9473) [28]. After electrochemical anodization with BDC, the XRD analyses of the
resultant mesh retained those original signals of Cu mesh; nevertheless, several additional
peaks could be found at 8~40◦, and the corresponding pattern can be indexed properly
according to the simulated pattern CuBDC MOF [29], suggesting that the fluffy needle-like
nanostructures could be ascribed to CuBDC MOF, and the resultant modified mesh was a
CuMOF mesh.
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The crystalline structure of the modified Cu mesh in the presence of BDC-NH2 was
also obtained; the peaks of Cu metal were preserved, and a number of peaks in 8~40◦ were
also observed, which could be indexed properly based on the reported pattern of CuBDC
MOF [29], suggesting that CuBDC-NH2 MOF had been successfully grown on the Cu mesh.
The Cu mesh after the electrochemical anodization in the presence of BTEC is revealed in
Figure 4a, in which the typical peaks of Cu metals could be observed, and a few additional
peaks were also observed. The coordination of Cu–BTEC has been reported to exhibit a
comparable structure based on the prototype configuration of CuBDC [27,29]. Therefore,
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similar to the aforementioned CuMOF meshes, the resultant Cu mesh with BTEC also
exhibited several peaks in the range of 8~40◦, which were also indexed properly to CuBDC
as the formation of CuBTEC [30].

On the other hand, IR spectra of these modified Cu meshes were collected, and are
displayed in Figure 4b. In comparison to the pristine Cu mesh, these modified Cu meshes
showed a number of bands at 700~1850 cm−1, which were characteristic peaks of the
carboxylate ligands, as displayed in Figure S2 [31–33]. In particular, the bands at 734
and 1500 cm−1 can be ascribed to aromatic rings [31], whereas the bands at 1400 cm−1,
as well as 1670 cm−1, correspond to the coordinated carboxylic, and carbonyl groups in
BDC-based MOF. Therefore, these IR spectra of modified Cu meshes also demonstrated
that the carboxylate ligands were coordinated with Cu in these nanostructures grown on
Cu meshes, forming CuCF meshes.

Moreover, when BDC-NH2 was employed, its spectrum exhibited several additional
bands at 1240 and 1600 cm−1, corresponding to the C–N group and N–H group of primary
amine [29], and the band at 3388 cm−1 could be assigned to the N-H stretching mode
derived from BDC-NH2 [34], as displayed in Figure S2. Therefore, the resultant CuCF was
validated to possess the amine functional group; thus, this specific CuCF was then denoted
as CuCF–NH2 mesh (CFNM).

On the other hand, as BTEC was employed as the ligand, its corresponding spec-
trum also exhibited two noticeable additional bands at 1430 and 1690 cm−1. The peak at
1430 cm−1 was attributed to the unbound (free) carboxylate group, whereas the peak at
1690 cm−1 was attributed to the non-coordinated carbonyl moiety [30,33]. In addition, the
intensity of the band at 3535 cm−1, attributed to the O-H stretching mode [35], was still
pronounced. This further indicates that freely unbound carboxylate groups existed in the
resultant CuCF fabricated by BTEC. Previous studies have also reported that carboxylate
groups would exist in the non-coordinated form in the coordination of Cu and BTEC to
possess the functional group of carboxylic acid [32,33]. Thus, this CuCF mesh was then
denoted as CuCF–COOH mesh (CFCM).

The surface chemistry of these CuMOF meshes was then investigated by XPS, as
shown in Figure 5. For comparison, the full survey of the pristine Cu mesh is also displayed
in Figure S3a, in which a noticeable signal of Cu was observed with negligible fractions
of C and O, possibly due to impurities and moisture on its surface. Figure S3b reveals the
corresponding Cu2p core-level spectrum, in which two tall peaks can be detected at 932.2
and 952.3 eV, ascribed to Cu0 [36], validating the metal state of Cu mesh.

In addition, once the pristine Cu mesh was fabricated to become CuCF meshes, the
corresponding full survey spectra of CuCF meshes were noticeably distinct. In particular,
Figure 5a reveals the full survey scan of CFM, in which a dominant signal of Cu was still
observed but the fractions of C and O had become considerably higher. This suggests that
the surface chemistry of CFM mesh was distinct from that of pristine Cu mesh, as CFM had
been grown on the mesh, thereby exhibiting much stronger signals of C and O from the
BDC ligand. Moreover, the corresponding Cu2p spectrum unveils a few tall bands at 933.5
and 953.4 eV, both corresponding to Cu2+ [3], which can be attributed to the Cu species
coordinated in CuBDC MOF [29]. Moreover, a number of bands were noted at 939.4, 943.3,
959.2 and 962.7 eV, which were attributed to the Cu2+ satellite peaks [37,38].

In addition, the O1s core-level spectrum of CFM was also analyzed, as shown in
Figure 5c, in which three underlying peaks were afforded at 531.2, 532.1 and 532.8 eV,
ascribed to Cu–O, O–C=O and absorbed O, respectively. The presence of Cu–O and O–C=O
validated the coordination between Cu and carboxylate ligands in CuCF mesh [39].
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In the case of CFNM, its full survey spectrum (Figure 5d) also exhibited significant sig-
nals of Cu, C and O, ascribed to CuCF. Additionally, a noticeable fraction of N was observed
at 400 eV, validating the presence of an amine functional group. Figure 5e further unveils
the Cu2p core-level spectrum, in which two tall bands at 933.5 and 953.4 eV, attributed
to Cu2+ [3], and four peaks at 939.4, 943.3, 959.2 and 962.7 eV, corresponding to the Cu2+

satellite peaks [37,38], can also be observed. Moreover, the O1s spectrum of CFNM can also
be analyzed, as shown in Figure 5f, in which Cu–O, O–C=O and absorbed O can be detected
at 531.3, 532.0 and 532.9 eV, respectively [39]. In the case of CFCM, its corresponding full
survey spectrum (Figure 5g) also consisted of high fractions of Cu, C and O, ascribed to
CuBTEC coordination. Moreover, its Cu2p spectrum, displayed in Figure 5h, reveals how
Cu2+ species can be also detected at 933.5 and 953.4 eV, whereas its O1s spectrum can be
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deconvoluted to afford three peaks at 531.3, 532.0 and 532.9 eV, corresponding to Cu–O,
O–C=O and absorbed O, respectively, validating the presence of BTEC.

Moreover, as CuCF meshes were composites comprised of nanoscale CuCF and
macroscale meshes, their textural properties could be then analyzed. Figure 6a exhibits N2
sorption isotherms of pristine Cu mesh, as well as various CuCF meshes. The pristine Cu
mesh (without CuCFs) exhibited a sorption isotherm relatively similar to the IUPAC type II
isotherm, as the Cu mesh was a macroscale but nonporous support. Its N2 sorption was
relatively low, possibly due to its smooth surface, leading a low surface area of 15 m2/g.
Once the Cu mesh was modified and covered with CuCFs, the corresponding N2 sorption
significantly increased, and the corresponding isotherms were closer to the IUPAC type
IV isotherm with noticeable hysteresis loops, suggesting that these CuCF meshes might
contain pores (e.g., mesopores). Once Cu mesh was fabricated into CFM, its hysteresis
loop could be noticed, possibly owing to the presence of pores from CuCF. Therefore, CFM
exhibited a relatively high surface area of 30 m2/g. Moreover, CFNM, and CFCM also ex-
hibited slightly higher N2 sorption than the pristine Cu mesh itself. Surface areas of CFNM
and CFCM were measured as 25 and 23 m2/g, respectively. The relatively high surface area
of CFM might be attributed to its fluffy needle-like nanostructure, whereas nanofibers were
closely packed and formed bundles in CFCM, leading to the relatively low surface area.
Then, the pore size distribution and pore volumes of these CuCF meshes were determined.
As displayed in Figure S4 (in the supporting information), CFM, CFNM and CFCM all
exhibited pores in the range of 2~50 nm, validating that these CuCF meshes contained
mesopores. In particular, a relatively large hysteresis loop could be found in CFM possibly
because CFM exhibited relatively high pore volumes from the pores in the mesoporous
range. The pore volumes of these CuCF meshes were also calculated as CFM, CFNM and
CFCM mesh, exhibiting pore volumes of 0.042, 0.036 and 0.018 cm3/g, respectively.
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However, the growth of CuCF, affording those nanostructures, on Cu mesh would
certainly improve their textural properties, and increase surface contact areas.

Since the reduction of nitrogen-containing contaminants is an aqueous reaction, and
CuCF was functionalized with different functional groups, it would be useful to further
explore the surface charges of these CuCF meshes [40]. Figure 6b displays the zeta potentials
of CuCF meshes, which all exhibited relatively negative charges in the range of pH = 3~11.
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In particular, CFM exhibited −25.8 mV at pH = 3, then continuously decreased at increasing
pH values, and eventually reached −65.9 mV at pH = 11. On the other hand, CFNM
showed −10.5 mV at pH of 3, then also progressively dropped at higher pH values, and
then reached −48.0 mV at pH = 11. Moreover, CFCM revealed a surface charge of −41.1 mV
at pH = 3, which then continuously decreased, and dropped to −103.0 mV at pH = 11.
These results suggest that the functional group of CuCF meshes certainly influenced their
surface charges; the amine group might enable CuCF mesh to exhibit less negative charges,
whereas the existence of carboxylate groups would enable CFCM to exhibit much more
negative surface charges. These surficial properties might then affect their behaviors during
catalytic reactions of contaminant reduction. On the other hand, these CuCF meshes
were also further analyzed using thermogravimetric (TG) analysis; the corresponding
TG curves are displayed in Figure S5. Since the mesh itself was Cu, which would be
oxidized in air to become Cu oxides, TG analyses of these CuCF meshes were conducted
in N2. Overall, these CuCF meshes remained relatively stable up to 150 ◦C, with very
slight weight losses possibly due to moisture. Subsequently, these CuCF meshes started to
decompose, and underwent a series of weight losses in the range of 300~400 ◦C because
of thermal decomposition of ligands. These TG results demonstrated that these CuCF
meshes would be very stable at ambient conditions, especially in the range for aqueous
reduction reactions.

2.2. 4-NP Reduction by CuCF Meshes

Before studying these CuCF meshes for reducing 4-NP, it is essential to investigate if
4-NP could be eliminated by these CuCF meshes merely through adsorption towards these
CuCF meshes. Figure S6b firstly displays the spectral variation of 4-NP with a pristine Cu
mesh (without addition of NaBH4), and the spectrum with a dominant peak at 317 nm
remained almost unchanged (Ct/C0 at 30 min = 1), and no peak of 4-AP, which is located
at 300 nm, could be observed, indicating that the pristine Cu mesh cannot remove 4-NP
via adsorption or reduction. Figure S6c also reveals that the UV-Vis spectrum of 4-NP in
the presence of CFM without addition of NaBH4 was barely changed over 30 min (Ct/C0
at 30 min = 0.990), suggesting that 4-NP could not be noticeably removed by CFM itself
via adsorption, and 4-NP was not reduced to 4-AP. On the other hand, when CFNM was
then employed, its corresponding UV-Vis spectrum in the absence of NaBH4 was slightly
changed over 30 min (Ct/C0 at 30 min = 0.959); however, no noticeable peak at 300 nm could
be observed as no 4-AP was then produced. This demonstrates that CFNM itself might
exhibit a slight affinity towards 4-NP (Figure S6d). In the case of CFCM, a similar result
was observed as the UV-Vis spectrum of 4-NP was also slightly changed over 30 min (Ct/C0
at 30 min = 0.940) (Figure S6d), and no 4-AP was then produced, suggesting that a very
small part of 4-NP might be eliminated via adsorption by CFCM rather than reduction.

After NaBH4 was introduced, the absorption peak of 4-NP at 317 nm would be shifted
to 400 nm as a result of deprotonation of 4-NP [3,41–43], as shown in Figure 5a. Figure S7
shows UV-Vis spectral variation of 4-NP in the presence of pristine Cu mesh and NaBH4,
and the peak of 4-NP at 400 nm was almost unchanged over 150 s, demonstrating that the
pristine Cu mesh cannot incorporate with NaBH4 for reducing 4-NP. Figure 7a also shows
UV-Vis spectral variation of 4-NP in the presence of CFM, and the peak of 4-NP at 400 nm
certainly changed and became noticeably smaller. On the other hand, a short peak at 300 nm
was observed, indicating that 4-NP had been converted to 4-AP. Nevertheless, the reduction
of 4-NP by CFM could not be completely achieved in 70 s. On the other hand, when CFNM
was then employed (Figure 7b), the maximum peak of 4-NP at 400 nm decreased quickly,
and almost disappeared in 70 s, whereas the peak of 4-AP raised up noticeably, indicating
that transforming 4-NP to 4-AP was achieved in a very short period. On the other hand,
when CFCM was used, the peak of 4-NP decreased even faster (Figure 7c), and completely
disappeared in 70 s, with the noticeable peak of 4-AP raised up.



Catalysts 2022, 12, 765 11 of 24

Catalysts 2022, 12, x FOR PEER REVIEW 12 of 25 
 

 

creased quickly, and almost disappeared in 70 s, whereas the peak of 4-AP raised up no-
ticeably, indicating that transforming 4-NP to 4-AP was achieved in a very short period. 
On the other hand, when CFCM was used, the peak of 4-NP decreased even faster (Figure 
7c), and completely disappeared in 70 s, with the noticeable peak of 4-AP raised up. 

 
Figure 7. Absorption spectra of 4-NP and 4-AP during reduction by different CuCF meshes: (a) 
CFM, (b) CFNM, (c) CFCM and (d) pseudo-first order plots of 4-NP reduction in the presence of 
NaBH4 over different meshes at 28 °C. (e) Plot of Ct/C0 against the reaction time for seven successive 
cycle reactions catalyzed by CFCM; (f) conversion and relative change in k for each cycle with CFCM 
as a catalyst. 

Figure 7. Absorption spectra of 4-NP and 4-AP during reduction by different CuCF meshes: (a) CFM,
(b) CFNM, (c) CFCM and (d) pseudo-first order plots of 4-NP reduction in the presence of NaBH4

over different meshes at 28 ◦C. (e) Plot of Ct/C0 against the reaction time for seven successive cycle
reactions catalyzed by CFCM; (f) conversion and relative change in k for each cycle with CFCM
as a catalyst.

For further quantitative comparison of 4-NP reduction by these CuCF meshes, the
kinetics of 4-NP reduction was further calculated by variation of 4-NP concentration based
on a maximum peak of 4-NP at 400 nm by the following pseudofirst order rate law [22]:

Ln (Ct/C0) = −kt (1)

where Ct represents 4-NP concentration at a given time, C0 denotes a starting 4-NP concen-
tration, and k represents the rate constant of 4-NP reduction by CuCF meshes. The plot of
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Ln(Ct/C0) vs. t is then compiled in Figure 7d, and these data points are well fit by the linear
regression, suggesting that the 4-NP reduction by these CuCF meshes can be interpreted
properly using the pseudo-first order kinetic model. Corresponding k values for CFM,
CFNM and CFCM, were 0.018, 1.56 and 2.46 min−1, respectively. While CFM was also
capable of reducing 4-NP to 4-AP, the catalytic activity of CFM seemed much lower than
CFNM and CFCM. As CuCF was formed by the coordination of Cu and carboxylates, these
CuCF meshes were all comprised of the cluster of Cu–O. Nonetheless, CFNM and CFCM
apparently exhibited much higher activities towards the catalytic reduction of 4-NP.

Since catalytic activities would be associated with surface characteristics of catalysts,
the relatively faster reduction kinetics by CFNM, and even CFCM, might be related to their
surficial properties. As revealed earlier, nanostructures afforded by CuCF, CuCF–NH2 and
CuCF–COOH were significantly distinct, leading to different surface areas, which might
influence their catalytic activities. Nevertheless, even though CFM exhibited a slightly
higher surface area of 30 m2/g, the surface areas of CFNM and CFCM (25 and 23 m2/g,
respectively) were actually not significantly lower than that of CFM. Moreover, CFCM,
possessing the lowest surface area among these CuCF meshes, enabled the fastest and most
efficient 4-NP reduction, suggesting that the surface area was not the main factor affecting
catalytic activities of 4-NP in these CuCF meshes.

On the other hand, since 4-NP reduction involves reactions between active sites
of catalysts and 4-NP, interactions between 4-NP and CuCF meshes might be critical.
As 4-NP contains the nitro group (i.e., NO2), the N atom would be relatively electron-
deficient, whereas the O atom would be more electron-rich, affording O=N+−O− as the
inset displayed in Figure 7a. Therefore, the electrostatic interaction between 4-NP, and
CuCF meshes might influence reduction of 4-NP. As revealed earlier, CFNM possessed
the amine group and seemed to exhibit relatively positive surface charges, which might
increase affinities of 4-NP towards CFNM, thereby improving 4-NP reduction.

Moreover, CFCM might also exhibit affinities towards 4-NP, as CFCM seemed to show
a negative surface charge, which would attract the nitro group of 4-NP, thereby leading to
the relatively high reduction efficiency of 4-NP. In addition to electrostatic attraction, the
aromatic ring of 4-NP is comprised of π electrons, which could also exhibit affinities towards
the aromatic ring of CuCF, and the nitro group (acting as an electron-drawing group) is
reported to further enhance the π-π interaction, facilitating adsorption [44]. Moreover,
since CFCM is comprised of carboxyl groups, these carboxyl groups might enable even
stronger affinities of CFCM towards 4-NP through multiple mechanisms [45]. Adebayo
et al. also found that the OH group of CuCF–COOH could interact with the OH group
of 4-NP through hydrogen bonding [45], whereas the aromatic ring of 4-NP might also
interact with the OH group of CuCF–COOH through the donor–acceptor interaction [45].
These affinities and favorable interactions between CFCM and 4-NP might enable CFCM
to exhibit much higher efficiencies and faster kinetics for 4-NP reduction.

2.3. Activation Energy (Ea) of 4-NP Reduction by CuCF Meshes

For examining CuCF meshes in the reduction of 4-NP, reduction experiments of 4-NP
using CuCF meshes were investigated at various temperatures, as shown in Figure S8, for
calculating activation energy (Ea) as follows:

ln k = ln A − (
Ea

RT
) (2)

Figure S8 showed the plots of ln k vs. 1/T, and the corresponding Ea values for CFM,
CFNM and CFCM were 85.0, 28.4 and 28.1 kJ/mol. This validates that CuCF meshes
with functional groups (both the amine and carboxyl group) would considerably enhance
catalytic 4-NP reduction, possibly owing to higher affinities between 4-NP and these CuCF
meshes. For further examining the competitiveness of CuCF meshes, Table 1 summarizes
Ea values of 4-NP reduction by CuCF meshes, and other reported catalysts, including noble
metal catalysts (e.g., Pt, Au, Ag) and other transition metals, especially Cu. Nevertheless,
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CFNM and CFCM both exhibited much lower Ea values than most of the noble metal
catalysts [46–52], as well as other Cu/Co/Ni-containing catalysts [53–57], revealing the
exceptional advantages of functionalized CuCF meshes.

Table 1. Ea of CuCF meshes and other catalysts in reducing 4-NP.

Catalyst Ea (kJ/mol) Ref.

CuCF mesh 85.0

This workCuCF-NH2 mesh 28.4

CuCF-COOH mesh 28.1

NiY 105

[46]

PtY 136

CoY 60

PtNiY 119

PtCoY 55

Pt NPs 40 [47]

Magnetic Au-NP 51 [48]

PS-PEGMA-Ag 62 [49]

Cu2+ 74

[50]

Ag+ 173.1

AuCl4- 32.6

Co2+ 34.7

Ni2+ 216.4

Cu-Co/N 53.21 [51]

Ag/Cu 82.7 [52]

CuFe2O4 44.091 [53]

Cu60Ni40–CeO2 39.695 [54]

Cu/Cu2O/rGO 24.94 [55]

Cu-APTES@Fe3O4 50.5 [56]

Cu 2 – x Se/rGO/PVP 49.05 ± 1.70

[57]Cu 2 – x Se/PVP 86.47 ± 1.22

rGO/PVP 77.32 ± 1.60

2.4. Recyclability of CuCF Meshes, and Reductive Mechanism

As CFCM demonstrated a very promising catalytic activity for 4-NP reduction with
fast kinetics and a significantly lower Ea, CFCM was then also investigated for its recycla-
bility for 4-NP reduction. Figure 7e presents 4-NP reduction over consecutive multiple
cycles using the spent CFCM, which could remain at consistent efficiency for reducing
4-NP. While k was marginally dropped (from 2.46 to 2.40 min−1), this variation could
be associated with the presence of intermediates of NaBH4, which would interfere with
reactions between 4-NP and CFCM. The concentration of leached Cu from CFCM in the
end of the reusability test over five cycles was further analyzed by an inductively coupled
plasma mass spectrometer. The detected concentration for Cu was 0.02 mg/L, which was
considerably lower than the dosage of CFCM used in the experiment (i.e., 70 mg/L), sug-
gesting that the leached Cu from CFCM was insignificant. On the other hand, in the used
CFCM, the special morphologies of bundles covered on the mesh could still be observed
(Figure S9), indicating that the morphology of CFCM was not influenced significantly. The
XRD pattern of the used CFCM (Figure S10a) could still be indexed properly with several
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signature peaks of CuBTEC. In addition, the used CFCM still exhibited a noticeable amount
of N2 sorption with a hysteresis loop as CFCM still retained the mesoporous structure, as
displayed in the inset of Figure S10b. These results demonstrate that CFCM was certainly a
durable and efficient catalyst in 4-NP reduction.

The used CFCM had also been investigated by XPS, and its core-level Cu2p and O1s
are displayed in Figure S10c,d. In particular, the Cu2p spectrum of used CFCM remained
similar to that of pristine CFCM, as two dominant peaks of Cu2+ were retained at 933.5 and
953.4 eV [3]. On the other hand, the O1s spectrum of the used CFCM also consisted of a
noticeable fraction of Cu–O, in which Cu2+ was present [39]. These results suggest that
the used CFCM possessed the coordination between Cu and the carboxylate ligand, which
would enable it to exhibit consistent catalytic activities over multiple cycles of 4-NP.

Nevertheless, the peak intensities of Cu2+ satellite peaks (939.5, 943.3 and 962.7 eV),
owing to an unfilled Cu 3 d9 shell as a result of the presence of CuO [58], seemed to vary
slightly after the recyclability test. This also inferred that Cu–O species might be slightly
altered during 4-NP reduction, as Cu–O would be the active site.

In view of these analyses, the plausible process in 4-NP reduction using CFCM is
illustrated in Figure 8. At the start, NaBH4 might react with the Cu–O cluster of CuCF
to generate H2 molecules [59,60], which might donate electrons to the Cu–O cluster tem-
porarily. After 4-NP is drawn to approach the Cu–O cluster on the CuCF surface, 4-NP
would then receive electrons, and incorporate with H+ in aqueous solutions to become
4-AP [61,62]. Eventually, 4-AP would be released from CuCF and returned to the solution.

Catalysts 2022, 12, x FOR PEER REVIEW 15 of 25 
 

 

plasma mass spectrometer. The detected concentration for Cu was 0.02 mg/L, which was 
considerably lower than the dosage of CFCM used in the experiment (i.e., 70 mg/L), sug-
gesting that the leached Cu from CFCM was insignificant. On the other hand, in the used 
CFCM, the special morphologies of bundles covered on the mesh could still be observed 
(Figure S9), indicating that the morphology of CFCM was not influenced significantly. 
The XRD pattern of the used CFCM (Figure S10a) could still be indexed properly with 
several signature peaks of CuBTEC. In addition, the used CFCM still exhibited a noticea-
ble amount of N2 sorption with a hysteresis loop as CFCM still retained the mesoporous 
structure, as displayed in the inset of Figure S10b. These results demonstrate that CFCM 
was certainly a durable and efficient catalyst in 4-NP reduction. 

The used CFCM had also been investigated by XPS, and its core-level Cu2p and O1s 
are displayed in Figure S10c,d. In particular, the Cu2p spectrum of used CFCM remained 
similar to that of pristine CFCM, as two dominant peaks of Cu2+ were retained at 933.5 
and 953.4 eV [3]. On the other hand, the O1s spectrum of the used CFCM also consisted 
of a noticeable fraction of Cu-O, in which Cu2+ was present [39]. These results suggest that 
the used CFCM possessed the coordination between Cu and the carboxylate ligand, which 
would enable it to exhibit consistent catalytic activities over multiple cycles of 4-NP. 

Nevertheless, the peak intensities of Cu2+ satellite peaks (939.5, 943.3 and 962.7 eV), 
owing to an unfilled Cu 3 d9 shell as a result of the presence of CuO [58], seemed to vary 
slightly after the recyclability test. This also inferred that Cu-O species might be slightly 
altered during 4-NP reduction, as Cu-O would be the active site. 

In view of these analyses, the plausible process in 4-NP reduction using CFCM is 
illustrated in Figure 8. At the start, NaBH4 might react with the Cu-O cluster of CuCF to 
generate H2 molecules [59,60], which might donate electrons to the Cu-O cluster tempo-
rarily. After 4-NP is drawn to approach the Cu-O cluster on the CuCF surface, 4-NP would 
then receive electrons, and incorporate with H+ in aqueous solutions to become 4-AP 
[61,62]. Eventually, 4-AP would be released from CuCF and returned to the solution. 

 
Figure 8. Illustration of 4-NP conversion to 4-AP by CuCF mesh in the presence of NaBH4. 

On the other hand, as CFCM exhibited promising activity for the batch-type experi-
ment of 4-NP reduction, it would be interesting to investigate 4-NP reduction by using 
CFCM as a filter, allowing filtration-type catalytic reactions. Indeed, a piece of CFCM (2.3 
cm × 2.3 cm) was placed on the mouth of a glass bottle, and a plastic syringe containing a 
mixture of 4-NP and NaBH4 solution was vertically placed on the piece of CFCM, as dis-
played in Figure S11a. After gradually pushing the syringe, the filtered solution was then 
accumulated in the bottom of the bottle, as shown in Figure S11b. One can note that the 
original yellowish color of 4-NP had become colorless after filtration. The corresponding 

Figure 8. Illustration of 4-NP conversion to 4-AP by CuCF mesh in the presence of NaBH4.

On the other hand, as CFCM exhibited promising activity for the batch-type exper-
iment of 4-NP reduction, it would be interesting to investigate 4-NP reduction by using
CFCM as a filter, allowing filtration-type catalytic reactions. Indeed, a piece of CFCM
(2.3 cm × 2.3 cm) was placed on the mouth of a glass bottle, and a plastic syringe contain-
ing a mixture of 4-NP and NaBH4 solution was vertically placed on the piece of CFCM, as
displayed in Figure S11a. After gradually pushing the syringe, the filtered solution was
then accumulated in the bottom of the bottle, as shown in Figure S11b. One can note that the
original yellowish color of 4-NP had become colorless after filtration. The corresponding
UV-Vis spectrum of this colorless solution revealed that the 4-NP at 400 nm had almost
disappeared, and converted to 4-AP, demonstrating that CFCM can also be employed for
filtration-type catalytic reactions.
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2.5. The Reduction Reaction of Nitrophenol Isomers

In addition to 4-NP, 2-NP and 3-NP are also intensely concerning as NP isomers [63];
thus, the reduction of 2-NP and 3-NP by these CuCF meshes was then studied. Figure 9a
displays the UV-Vis spectra of 2-NP in the presence of NaBH4 and CFCM at increasing
reaction times, in which the signature peak of 2-NP located at 417 nm gradually decreased,
and almost disappeared after 180 s. This demonstrates that CFCM can be utilized for 2-NP
reduction. In addition, Figure 9b displays 2-NP in the presence of a pristine Cu mesh and
NaBH4; however, the concentration of 2-NP remained almost unchanged, indicating that
the pristine Cu mesh could not reduce 2-NP. When CFM was then used, 2-NP could be
noticeably decreased; nevertheless, the reduction efficiency seemed very limited, and its
corresponding k was merely 0.24 min−1. Once CFNM was employed, 2-NP was noticeably
reduced, and its kinetics seemed considerably accelerated with a much higher k = 1.2 min−1.
On the other hand, CFCM could enable a much higher rate constant of 2-NP reduction, of
k = 2.1 min−1.
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On the other hand, Figure 9c displays the reduction of another isomer, 3-NP, in the
presence of NaBH4 and CFCM at different reaction times, in which the characteristic peak
of 3-NP located at 417 nm rapidly decreased, and almost vanished after 90 s. This also
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validated that CFCM can be applied for 3-NP reduction. Furthermore, Figure 9d shows
3-NP in the presence of pristine Cu mesh and NaBH4; nevertheless, the concentration of
3-NP was almost the same, signifying that the pristine Cu mesh itself could not reduce
3-NP. Once CFM was then adopted, 3-NP was slightly decreased; however, the reduction
efficiency was also relatively low, and its k was merely 0.18 min−1. When CFNM was
employed, 3-NP was noticeably reduced, and its kinetics were notably expedited with a
higher k = 0.84 min−1. Moreover, CFCM could also lead to a much higher rate constant of
3-NP reduction as k = 1.5 min−1.

These results suggest that functionalized CFCM and CFNM could also exhibit much
higher reduction efficiencies for 2-NP and 3-NP. These results were similar to the observa-
tion of 4-NP reduction by these meshes, suggesting that the functionality of CuCF meshes
was validated to enhance reduction of 2-NP and 3-NP, possibly owing to the higher affini-
ties between 2-NP/3-NP and functional groups of CuCF meshes, as 2-NP/3-NP is actually
comparable to 4-NP with the same functional groups.

2.6. CuCF Meshes for MB and MO Reduction/Hydrogeneration

Aside from NPs, CuCF meshes were then also investigated for nitrogen-containing
dyes, which can be decolorized via catalytic reduction/hydrogeneration [64,65]. In partic-
ular, methylene blue (MB) is a widely employed blue dye, and a medication for treating
methemoglobinemia. MB can be decolorized through catalytic hydrogenation, converting
MB to leuco-methylene blue [64,65].

Figure 10a shows the UV-Vis spectra of MB by CFCM and NaBH4 at increasing times,
and how the main bands of MB at 600 and 660 nm continuously dropped, and then almost
ceased in 70 s. This demonstrates that CFCM could be utilized for MB decolorization via
hydrogenation. Moreover, Figure 10b reveals MB in the presence of the pristine Cu mesh,
and NaBH4; however, the concentration of MB remained almost constant, indicating that the
pristine Cu mesh was not capable of hydrogenating MB. Subsequently, when CFM was then
used, the concentration of MB could be gradually decreased in 140 s with a k = 0.78 min−1,
indicating that CFM was also capable of hydrogenating MB. In the case of CFNM, the
decolorization of MB proceeded slightly slower and less efficiently, leading to a much
higher k = 0.54 min−1. Once CFCM was adopted, MB could be decolorized even faster,
and much more effectively, leading to a significantly higher k = 1.14 min−1. These results
unveil that CuCF meshes were all capable of hydrogenating MB for decolorization, possibly
because these CuCF meshes were comprised of Cu-O, which is validated to hydrogenate
the MB molecule [66], causing decolorization. CFNM was shown to be relatively positively
charged, and thus the affinity between the cationic MB and CFNM might become much
less, or even mutual repulsion might be slightly higher, thereby leading to less efficient MB
hydrogenation. In contrast, CFCM appeared to be the most efficient for decolorizing MB,
probably because MB is a cationic molecule, which might exhibit a higher affinity towards
the negatively charged CFCM, leading to the faster reaction kinetics. Table 2 further lists
the rate constants of MB decolorization by CFCM and other reported catalysts, and CFCM
certainly showed a much higher rate constant than other values in the literature, even
compared to Pt and Ag, revealing the advantage of CFCM for MB decolorization.

As CFCM exhibited promising activity for the batch-type experiment of MB decoloriza-
tion, it was then useful to study MB decolorization by using CFCM as a filter for filtering-
type catalytic processes. A piece of CFCM was placed on a glass bottle (Figure S12a), and a
syringe containing a mixture of MB and NaBH4 solution was placed on the piece of CFCM.
After pressing the syringe, and the filtered solution was then collected in the bottom of the
bottle, as shown in Figure S12b. The original blueish color of MB became colorless after
filtration. The corresponding UV-Vis spectrum of this colorless solution revealed that the
MB at 660 nm had almost disappeared, and also converted to LMB, demonstrating that
CFCM can be also employed for filtration-type catalytic decolorization applications.
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Table 2. Comparison of rate constant (k) of CFCM and different reported catalysts for the reduction
of MB.

Material k (min−1) Citation

CFCM 1.14 This work

pNAC7 0.80 [67]

Platinum particles 0.03 [68]

Mg/Al-hydroxide@Gold 0.84

[69]Mg/Al/Ce-hydroxide@Gold 1.80

Mg/Al/Ce-hydroxide 0.30
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Table 2. Cont.

Material k (min−1) Citation

Silver particles 0.20 [70]

Cotton@Silver particles 0.48 [71]

Palladium/Silica 1.43 [72]

Ce/Zr@Cu0 0.17

[73]CA@Cu0 0.083

CA-Ce/Ze@ Cu0 0.096

CuNi@CP 0.026
[74]

Cu@CC 0.246

Ni 0.12

[75]

Ni@Cu 0.52

Ni@Cu@Pd 7.2

Cu-Ni 0.38

Porous Cu 0.81

In addition to the cationic MB, it is interesting to explore these CuCF meshes for
the decolorization of anionic dye. Thus, an extensively used anionic dye, methyl orange
(MO), was selected and investigated. Figure 10c shows MO in the presence of NaBH4 and
CFNM at different reaction times, in which the characteristic peak of MO at 465 nm quickly
decreased over 120 s, and a peak corresponding to the derivatives from decomposition
of MO at 240 nm gradually raised up, suggesting that CuCF meshes were capable of
reducing MO [76,77]. Figure 10d also reveals MO in the presence of the pristine Cu
mesh and NaBH4; however, the concentration of MO was barely changed, demonstrating
that the pristine Cu mesh could not reduce MO. Next, as CFM was then employed, the
concentration of MO progressively decreased within 120 s with a k = 0.78 min−1, indicating
that CFM could also hydrogenate MO. In the case of CFNM, the decolorization of MO
proceeded noticeably faster, resulting in a much higher k = 1.2 min−1. Once CFCM was
employed, the decolorization of MO seemed to proceed slowly, leading to a notably smaller
k = 0.24 min−1. These results unveil that CuCF meshes were all capable of hydrogenating
MO for decolorization, as the Cu-O cluster in these CuCF meshes could catalytically
hydrogenate the azo group of MO, and cause cleavage of MO, leading to decolorization
of MO [76,77]. Moreover, as CFNM was shown to be relatively positively charged, and
the affinity between the cationic MO and CFNM might grow stronger, or the mutual
revulsion might be less, thereby resulting in more efficient MO reduction. Conversely,
CFCM appeared as the least efficient for decolorizing MO, possibly because of a lower
affinity of MO towards the negatively charged CFCM, leading to slower reaction kinetics.
Table 3 summarizes a list of rate constants of MO reduction by CFNM and other reported
catalysts; CFNM certainly exhibited a much higher rate constant than most of the reported
values, even from noble metal catalysts (e.g., Pt, and Ag), revealing the high competitiveness
of CFCM for MO decolorization.

Next, a piece of CFNM was placed on a glass bottle, and a syringe containing a mixture
of MO and NaBH4 solution was placed on the piece of CFNM (Figure S13a). After pushing
the syringe, and the filtered solution was then accumulated in the bottom of the bottle, as
shown in Figure S13b. The original orange color of MO became colorless after filtration.
The corresponding UV-Vis spectrum of this colorless solution revealed that the MO at
465 nm had almost vanished, and a peak at 240 nm raised up, validating that CFNM can
also be employed for filtration-type catalytic decolorization applications.
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Table 3. Comparison of rate constant (k) of CFNM and different reported catalysts for the reduction
of MO.

Catalyst k (min−1) Ref.

CFNM 1.2 This work

CuVOS@SiO2 0.411 [78]

CuO nanosheets 0.0069 [79]

PtNPs 4.145

[80]
PdNPs 0.0125

AuNPs 0.0067

AgNPs 0.00007

CuSnOS@AC-0.30 mL 0.826 [81]

Au@Cu2O NCs 0.299
[82]

Au@Cu2O-Ag NCs 1.081

3. Materials and Methods
3.1. Materials

The chemicals employed in this study were commercially available, and employed di-
rectly. Cu mesh (#200 mesh) was purchased from Mei-Syun Enterprise LTD (Taichung City,
Taiwan). Copper nitrate (Cu(NO3)2), benzene-1,4-dicarboxylic acid (BDC), 2-aminobenzene-
1,4-dicarboxylic acid (BDC-NH2), methyl orange (MO) and 1,2,4,5-benzenetetracarboxylic
acid (BTEC), methylene blue (MB) were obtained from Sigma-Aldrich (St. Louis, MO, USA).
4-NP, 2-NP and 3-NP were received from Acros Organics (Branchburg, NJ, USA). Sodium
borohydride (NaBH4), and N,N-dimethylacetamide were received from Showa Chemicals
(Minato City, Tokyo, Japan).

3.2. Preparation of CuCF Mesh Catalysts

Fabrication of CuCF meshes through the single-step procedure is depicted schemati-
cally in Figure 1a. Initially, Cu mesh (5 cm × 5 cm) was cleansed with hydrochloric acid
(5 M) for 15 min, followed by rinsing with DI water. Next, Cu mesh and a carbon electrode
acted as an anode and a cathode, respectively. A carboxylate ligand was then dissolved in
125 mL of N, N-dimethylacetamide to form an electrolyte solution (5 mM). The anodizing
fabrication of CuCF would be executed (5 V for a half of hour) at 25 ◦C. Subsequently, the
resulting CuCF mesh was cleaned by DI water and dried to produce a CuCF mesh.

3.3. Characterization of CuCF Meshes

Appearances of CuCF meshes were visualized by scanning electronic microscopy
(ZEISS Sigma 500 VP, Ostalbkreis, Germany). Crystalline structures of Cu meshes were
obtained using a diffractometer, whereas the chemistry of these Cu meshes was analyzed
by X-ray photoelectron spectroscopy (XPS). The textural properties of Cu meshes were
analyzed by a BET surface area analyzer (Anton Paar, Graz, Austria), whereas surface
charges of meshes were detected by a zetasizer (Malvern, Malvern, UK).

3.4. Reduction of NCPCs Using CuCF Meshes

Reduction of NCPCs using CuCF meshes was conducted firstly by batch-type ex-
periments. In the case of 4-NP, a 4-NP solution (3.6 mM) and a NaBH4 solution (4.2 M)
were obtained. Subsequently, 2.5 cm3 of the aforementioned 4-NP solution was added to
47.5 cm3 of DI water, followed by 0.2 cm3 of the aforementioned NaBH4 solution. Next,
3.5 mg of CuCF mesh was then immediately placed into the 4-NP/NaBH4 mixture at a
pre-set temperature to initiate the catalytic reduction experiment. Then, spectral variation
of the reduction of 4-NP was then measured using a spectrophotometer (JASCO, Tokyo,
Japan). The variation of 4-NP was quantified through measurement of the absorbance
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at 400 nm at various reaction times. Variations of 2-NP and 3-NP concentrations were
also determined using the same protocol, whereas variations of MB and MO concentra-
tions were identified by monitoring spectral variation in the ranges of 150~700 nm and
200~600 nm, separately. The concentration of Cu leached out from CFCM was determined
using inductively coupled plasma mass spectrometry (ICP-MS) (ICP-MS ELEMENT™ GD
PLUS GD, Thermo Fisher, Branchburg, NJ, USA).

4. Conclusions

In this study, hierarchically structured catalysts comprised of copper carboxylate
frameworks (CuCF) were fabricated. Specifically, a CuCF mesh functionalized with NH2
(CFNM), a CuCF mesh functionalized with COOH (CFCM), and a pristine CuCF mesh
(CFM) were prepared. While the pristine Cu mesh was almost incapable of reducing 4-NP,
these CuCF meshes could all catalyze 4-NP reduction. In particular, CFCM appeared as
the most efficient mesh for catalyzing 4-NP with a much higher rate constant, followed by
CFNM, and then CFM. This was possibly because the affinity between 4-NP and CFCM
seemed much higher owing to stronger hydrogen bonding between the carboxyl group of
CFCM and 4-NP, as well as enhanced π-π interaction. CFCM also showed a significantly
lower Ea in comparison to the reported values. CFCM could also be employed over many
consecutive cycles, and for convenient filtration-type 4-NP reduction. These CuCF meshes
can also be employed for decolorization of MB and MO dyes via catalytic hydrogenation.
Interestingly, CFCM was found to be the most efficient Cu mesh among these three Cu
meshes for MB decolorization, possibly owing to the higher affinity between the anionic
CFCM and the cationic MB. On the other hand, CFNM exhibited a relatively high rate
constant for decolorizing MO among these three Cu meshes, probably because of the strong
affinity between the cationic CFNM, and the anionic MO. These features validate that
CuCF meshes are conveniently prepared and highly efficient hierarchically heterogeneous
catalysts for the reduction of nitrogen-containing contaminants, and functional groups of
CuCF meshes can further enhance their catalytic behaviors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal12070765/s1, Figure S1: SEM images of the pristine Cu
mesh; Figure S2; IR analyses of ligands. Figure S3: XPS of pristine Cu mesh: (a) full spectrum, and
(b) Cu2p; Figure S4: Pore size distributions of CF meshes; Figure S5: Thermogravimetric analyses of
CuCF meshes in N2; Figure S6: UV-Vis spectra of 4-NP with and without NaBH4, and 4-AP; 4-NP
(without NaBH4) in the presence of pristine Cu mesh, 4-NP (without NaBH4) in the presence of CFM,
4-NP (without NaBH4) in the presence of CFNM, 4-NP (without NaBH4) in the presence of CFCM;
Figure S7: UV-Vis spectra of 4-NP with NaBH4 in the presence of pristine Cu mesh; Figure S8: 4-NP
reduction plots of Ln (Ct/C0) vs t, and plots of Ln K vs. 1/t of by (a,d) CFM, (b,e) CFNM, and (c,f)
CFCM; Figure S9: SEM image of the used CFCM; Figure S10: (a) XRD, (b) N2 sorption isotherm, and
XPS analyses of used CFCM: (c) Cu2p, and (d) O1s core-level spectra; Figure S11: Demonstration of
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by CFCM; Figure S13: Demonstration of filtration-type MO reduction by CFNM.
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