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Abstract: In recent years, fuel cell (FC) technology has seen a promising increase in its proportion 

in stationary power production. Several pilot projects are in operation across the world, with the 

number of running hours steadily rising, either as stand-alone units or as part of integrated gas 

turbine–electric energy plants. FCs are a potential energy source with great efficiency and zero emis-

sions. To ensure the best performance, they normally function within a confined temperature and 

humidity range; nevertheless, this makes the system difficult to regulate, resulting in defects and 

hastened deterioration. For diagnosis, there are two primary approaches: restricted input infor-

mation, which gives an unobtrusive, rapid yet restricted examination, and advanced characteriza-

tion, which provides a more accurate diagnosis but frequently necessitates invasive or delayed tests. 

Artificial Intelligence (AI) algorithms have shown considerable promise in providing accurate di-

agnoses with quick data collecting. This work focuses on software models that allow the user to 

evaluate many different possibilities in the shortest amount of time and is a vital method for proper 

and dynamic analysis of such entities. The artificial neural network, genetic algorithm, particle 

swarm optimization, random forest, support vector machine, and extreme learning machine are 

common AI approaches discussed in this review. This article examines the modern practice and 

provides recommendations for future machine learning methodologies in fuel cell diagnostic appli-

cations. In this study, these six AI tools are specifically explained with results for a better under-

standing of the fuel cell diagnosis. The conclusion suggests that these approaches are not only a 

popular and beneficial tool for simulating the nature of an FC system, but they are also appropriate 

for optimizing the operational parameters necessary for an ideal FC device. Finally, observations 

and ideas for future research, enhancements, and investigations are offered. 

Keywords: fuel cells; artificial intelligence; artificial neural network; genetic algorithm; particle 

swarm optimization; support vector machine; random forest 

 

1. Introduction 

1.1. Fuel Cells (FCs) 

Currently, the world economy is integrally connected to sustainable electrical energy 

generation, management, and supply. Traditional energy production methods have al-

ready significantly impacted the global environment and climate change. According to 
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newly released research by the International Energy Agency, “Energy-related greenhouse 

gas (GHG) emissions would lead to considerable climate degradation with an average 6 

°C global warming”, [1]. In this scenario, clean energy is a feasible option for making the 

world a safer and more energy-efficient place to live. Clean energy can be a better solution 

due to its environmentally benign nature because CO2 emissions are maintained to a min-

imum, which is the most basic indicator of the greenhouse effect that causes environmen-

tal damage [2]. 

Energy supplies that are safe, eco-friendly, and dependable are critical for human-

ity’s long-term survival and good quality of life, despite their provision facing economic, 

social, ecological, and economic problems. It is universally recognized that no solitary en-

ergy source can monopolize and regulate the world energy market, and consequently, an 

energy-mix model, which takes advantage of the availability of usable resources in each 

country/region or the option of supplying energy resources, has received widespread ac-

ceptance. To deal with economic expansion and rising urbanization, conventional fossil 

fuels such as natural gas, coal, and oil have been the world’s primary energy sources [3]. 

Because of the inadequacy and severe pollution associated with the present power pro-

duction technology, greener and more productive energy conversion devices that use fos-

sil fuels explicitly have become critical for future energy sustainability and environmental 

concerns. Fuel Cells (FCs) are a sustainable energy source with the potential to be among 

the most beneficial and innovative technologies [4]. The usage of FCs eliminates toxic 

emissions generated by other devices because water is the sole by-product [5]. They are 

financially free of country politics since they do not entail the usage of long-established 

fuels such as oil and gas. When using renewable clean resources, FCs are appropriate, 

have a large capacity, and are long-lasting, resulting in almost zero carbon emissions [6]. 

According to US Department of Energy data, the FC market grew from $630 million in 

2013 to $2.54 billion in 2018, demonstrating the rising interest and potential of FCs [7]. 

FC is an electrochemical device that could transform chemical energy into electrical 

energy in one route, providing several advantages [8]. As a result of the static nature of 

FC, there is no noise or vibration throughout the conversion process. As long as both the 

fuel and the oxidant are accessible, an FC is an energy conversion device that constantly 

transforms chemical energy in fuel into electrical energy. It outperforms standard com-

bustion-based methods used in vital industries including home electricity, electronics, 

passenger vehicles, power plants, and military applications. With a 60% or greater electri-

cal energy conversion efficiency and fewer emissions, FCs are more efficient than com-

bustion engines. In terms of renewable energy, the FC is a viable solution. Since the early 

1800s, FCs have been researched and developed. FCs are divided into two types based on 

the electrolyte employed, such as alkaline and acidic FCs, and the working temperature, 

i.e., low- and high-temperature FCs [9,10]. Every kind has unique characteristics that are 

required for its usage. Alkaline FC (AFC) [11], Proton exchange membrane FC (PEMFC) 

[12], direct methanol [13] FC (DMFC) [13], phosphoric acid FC (PAFC) [14], melting car-

bonate FC (MCFC) [15], and solid oxide FC (SOFC) [16] are devices that use electrochem-

ical processes to turn the chemical energy of the fuel directly into electrical energy using 

fuels—viz. natural gas, hydrogen, methanol, etc.—and oxidants such as O2, air, H2O2, etc. 

Depending on the desired power output scale, FCs can be employed in various ap-

plications such as electronics, residential, automobiles, heavy vehicles, commercial build-

ings, and marine and power operations, as depicted in Figure 1. In general, an FC consists 

of three fundamental functioning parts. The fuel (e.g., hydrogen, ethanol, methanol, me-

thane) is oxidized at an electropositive anode, i.e., a fuel electrode, an electronegative cath-

ode that undergoes a reduction reaction (to O2, air, and other substances). The current is 

transferred between the two electrodes by ions in an electrolyte put between them. 
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Figure 1. FCs based on a power output scale [17]. 

On the anode of the FC, the hydrogen is ionized into electrons and protons as shown 

in Figure 2. The electrons then travel to the cathode, where oxygen is reduced. The protons 

permeate the electrolyte to join the oxygen species on the cathode, resulting in just water 

as an end product [18]. The hydrogen fuel is processed at the anode, where the electrons 

are separated from the proton on the surface of the Pt-based catalyst. On the cathode side, 

the precious metal combines with protons and electrons with oxygen to produce water. 

This process results in the generation of electricity, thermal power, and water. The net 

electrochemical reaction at the electrode is exothermic, which gives a positive cell poten-

tial as output. The electrochemical reaction that occurs at the electrode is summarized 

below: 

H2 + 1/2 O2 → H2O (1)

H2 → 2 H+ + 2 e− (2)

O2 + 4 e− + 4 H+ → 2 H2O (3)
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Figure 2. Schematic diagram for PEMFC [19]. 

1.2. Types of FCs 

Different factors may be used to classify FCs. To begin, they are divided into two 

groups based on the type of electrolyte utilized, which might be alkaline or acidic. Table 

1 shows the typical characteristics of both types of FCs, organized by operating tempera-

ture. The efficiency of FCs is determined by the electrolytes and catalysts that are utilized 

and the operating temperature. Figure 3 depicts various electrode reactions that occur in 

various FCs. 
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Figure 3. Schematic diagram of electrochemical reactions occurring in various FCs [20]. 

Table 1. Characteristics of various FC systems [20]. 

Type Anode Cathode Electrolyte Working Temperature (°C) 

AFC Carbon (C)/platinum (Pt) catalyst Aqueous KOH Ambient—100 

DMFC C/Pt catalyst Acidic Polymer 60–90 

PEMFC C/Pt catalyst Acidic Polymer Ambient—90 

PAFC C/Pt catalyst 
Phosphoric acid in SiC ma-

trix 
150–220 

MCFC Ni NiO Molten Li2CO3 in LiAlO2− 550–700 

SOFC Ni-YSZ LSM Perovskite YSZ 600–1000 

YSZ = Yttria-stabilized zirconia [21]. LSM = Strontia-dopped lanthanum manganite [22]. 

One of the oldest FC types is the AFC [23–25]. The AFC was originally created for the 

Apollo missions [26]. A newer version was produced, which is still used to power shuttle 

flights. Potassium hydroxide is used as an electrolyte. Noble metal catalysts for both the 

hydrogen and oxygen electrodes are particularly active in the AFC. Alkaline electrolytes 

have easier H2 and oxygen kinetics than acid electrolytes, resulting in greater cell voltages 

[20]. When using air, the AFC is subject to CO2 as the contagion of the electrolyte, as well 

as sulfide and CO contaminants in the feedstock poisoning of the Ni and Pt catalyst. At 

0.7 V, the AFC can provide up to 1 A/cm2 [20]. The expected power output was achieved 

with development at 1–100 kW [17]. 
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The PEMFC was originally designed for the Gemini spacecraft. Here, the electrolyte 

used is a proton-conducting polymer membrane, and the electrodes are constructed on a 

thin layer on either surface. In specific ways, the electrolyte is comparable to the plasti-

cized electrolyte in a lithium-ion cell, which is made up of a liquid electrolyte trapped in 

a polymer matrix component [20]. It consists of a backbone made up of a solid PTFE with a 

perfluorinated side chain and a sulfonic acid group at the end. The proton species present 

in the acid group are dissociated and become solvated when the membrane is hydrated. 

Inside the polymer, the solvated protons are free and produce electrolyte conductivity 

[20,27–30]. PEMFCs are capable of having a power output of 1–300 kW with a high cost [17]. 

The DMFC is an environmentally acceptable energy supplier that undergoes metha-

nol oxidation to convert chemical energy into electrical energy [31]. The DMFC is one of 

the most advanced FCs with respect to its performance and convenience of use, and it is 

being considered as a possible substitute for traditional batteries used in portable systems. 

These FCs are grouped under polymer membrane-based, low-temperature FC. This FC 

does not need alcohol to be reformatted into hydrogen species; instead, methanol is deliv-

ered straight to the FC. Because there is no reformer, the anode pulls hydrogen in a chem-

ical process where methanol is dissolved in water, thereby decreasing the total expendi-

ture. The DMFC has received considerable attention compared to other types of FCs be-

cause of its little noise, great efficiency, very low pollution, high dependability, and ease 

of upkeep. Methanol has a volumetric energy density of 17,900 kJ L−1, which is almost 

three times that of hydrogen [32]. Methanol is a popular fuel because of its cheap, high-

energy density, transportation and storage convenience, and being capable of production 

from renewable biomass and natural gas means. As a result, DMFCs are ideal for elec-

tronic vehicles, portable electronic devices, and fixed purposes [33–37]. 

The PAFC is one of the most popular commercialized FC technologies among the 

several types of FCs [14,38–40]. Because of their mild working temperature, PAFCs have 

a long lifespan and a simple build. However, numerous drawbacks, including poor power 

density, limited lifetime, and high production costs, impede PAFC progress. This FC op-

erates in the 423–493 K temperature range [41]. Immobilized liquid phosphoric acid and 

graphite-based electrodes serve as the electrolyte and prime cell parts of this FC, respec-

tively. The PAFC has been in business for quite some time. The high-temperature PAFC 

exhaust gas can be utilized to generate extra electrical energy in other devices [39]. In de-

livering the power output, the PAFC has attained a fair development at 1–200 kW with 

high cost [17]. 

The MCFC can be used in energy storage [39,42–45]. The MCFC works efficiently at 

560 °C, and the unwanted heat produced may be utilized in cogeneration. The MCFC sys-

tem is more efficient than the PEMFC and the PAFC since it does not utilize noble metal 

catalysts. MCFCs are grouped as high-temperature FCs with a molten carbonate salt com-

bination used as an electrolyte in a porous and chemically inert beta-alumina ceramic ma-

trix [46]. A fuel electrode is made up of a porous nickel anode with dispersed aluminum 

or chromium for strength and sintering resistance, an oxidant electrode (lithium-doped 

nickel oxide cathode), and an LiAlO2 matrix stuffed with lithium and potassium car-

bonates (62–70 mol percent Li2CO3) as the electrolyte make up the state-of-the-art MCFC. 

In addition, the fuel gas used is a humidified combination of H2 and CO, and the oxidant 

is an assortment of O2 and CO2 that may have water vapor; the cell is operated at a pres-

sure and temperature of 1–10 atm and 650 °C, respectively [20]. In the case of power out-

put, the MCFC can deliver 250–2000 kW with less life [17]. 

With O2- conduction in the solid phase, the SOFC runs at 800–1000 °C. A sandwiched 

structure anode/electrolyte/cathode with diverse materials is always used in traditional 

SOFCs [47–51]. Due to the varied electrode materials, traditional SOFCs require at least 

two heating stages, resulting in high cost and energy consumption. The standard SOFC 

anode is Ni-YSZ cerement, which can readily cause carbon deposition or sulfur poisoning 

when utilizing hydrocarbon and sulfur-containing fuels [52]. SOFCs have two porous 

electrodes, i.e., both anode and cathode divided by a dense electrolyte. The cathode is 
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involved in a reaction with electrons from the outside circuit; at the cathode, oxide ions 

are formed due to the presence of oxygen, which subsequently proceeds towards the an-

ode via the electrolyte. The anode aids the reaction of oxide ions with carbon monoxide 

(CO) or hydrogen (H2), resulting in the formation of carbon dioxide (CO2) or water (H2O) 

and the release of electrons. The transport of electrons from the anode to the cathode is 

responsible for the creation of electricity. The cells function at 0.7 V and 1 A/cm2 [20,53]. 

Furthermore, the major development in the SOFC with respect to power output has at-

tained a range of 1–200 kW with high manufacturing costs [17]. 

1.3. Components of FC 

1.3.1. Electrocatalyst 

A catalyst that is involved in an electrochemical process is known as an electrocata-

lyst. This sort of material may be created by packing nanostructured components into a 

catalytically active nanomaterial for electrocatalysis. Electrocatalysts ranging from Pt-

group metals to C-based electrocatalysts have been created for both anodic and cathodic 

processes in various types of FCs [54–57]. For the evolution of sustainable energy technol-

ogies, the development of highly efficient and long-lasting electrocatalysts requires care-

ful planning and synthesis. The nanoscale design, methods, and systems have various 

advantages, including novel reactions not achievable with bulk materials, shorter charge 

transport paths, and greater accommodation of the strain caused by electrochemical reac-

tions inside electrodes. It is critical to employ innovative materials and technologies to 

increase the performance of sustainable energy conversion systems and fulfill the fast-

growing energy demand. In addition to being low-cost, ideal nanostructure materials for 

electrocatalysis must have the following characteristics: large surface area, porous struc-

ture, high ion and electron mobility, large electrolyte–electrode contact area, high dura-

bility, and good thermal and chemical stability [31,58,59]. 

1.3.2. State of Health of FC 

Water exists in all areas of a fuel cell system’s primary components as the principal 

product of activity. As a result, it is critical to control water transport in order to keep 

PEMFCs operating efficiently and reliably. There are various mechanisms of water 

transport in a PEMFC, including hydraulic permeation [60], electro-osmotic drag [61], 

thermal-osmotic drag [62], and back diffusion [63]. Because of the two-phase flow, water 

movements are difficult to monitor and forecast during operation. Nuclear magnetic res-

onance imaging and beam interrogation techniques such as X-ray neutron imaging and 

high-speed photography have been reported as methods of in situ observation of liquid 

water [17]. 

Fuel starvation occurs in a fraction of time interval, resulting in catalytic layer dete-

rioration. Flooding and drying, which are common throughout operations, can reduce the 

performance of the fuel cell system [64]. Flooding can hasten the breakdown of a fuel cell 

system due to starvation and material changes. The drying process might cause pinhole 

deterioration of the polymer membrane. Flooding and drying are completely reversible 

with prompt interventions. CO poisoning also reduces the performance of fuel cell sys-

tems, and the reversibility is directly related to exposure time, temperature, and in-chan-

nel gas composition [65]. 

It is essential to develop techniques that are capable of perceiving glitches at the stack 

level due to vain conditions or material defects produced by aging during operation. 

Thus, the state of health of the FC can be studied with AI by investigating various input 

parameters such as cell voltage, current density, impedance spectra, magnetic fields, and 

acoustic emissions. Among these methods, a cell voltage measurement is considered the 

simplest because voltage drops that occur due to failures impose a rapid shutdown of the 

stack. Cell voltage is the sum of the reversible and significant irreversible voltages. The 

thermodynamics of the reactions, electrochemical kinetics, transport processes, and cell 
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design all contribute to the cell voltage. Once the current is disconnected, the cell voltage 

is monitored as a function of time, usually for several milliseconds. Temperature, operat-

ing pressure, inlet humidity, and reactant concentrations are all kept constant. Moreover, 

there is a great demand for techniques that permit local measurement of PEMFC factors 

at the stack level to study localized aging events and investigate the degradation pro-

cesses. For this reason, there are reports on in situ methods to calculate the current distri-

bution over the cell surface. Current density is another important parameter used as an 

input. The current density is defined as the current produced by the FC per unit area of 

membrane–electrode assembly. We can estimate ohmic, concentration, and kinetic polar-

ization losses and compare them to actual or theoretical values by fitting current density 

vs. voltage data to a simple empirical model. 

The AC impedance approach, also known as electrochemical impedance spectros-

copy (EIS), is being used by an increasing number of researchers in proton exchange mem-

brane (PEM) fuel cell investigations. It has evolved to become the main research tool. EIS 

is mainly used as a reliable characterization tool to detect various failure mechanisms that 

can befall the fuel cell. The interconnection between EIS and the control approach of the 

required power converter offers the likelihood of predicting the online diagnosis of the 

fuel cell stack, not including any other sensor devices. Thus, the impedance spectra are 

considered an efficient input parameter for the state of health prediction of FCs. Moreover, 

there are reports on non-invasive methods in which the magnetic field produced by the 

change in induced current inside a stack is measured for the detection of faults in a PEMFC 

stack. For this method, the magnetic field produced is measured with the help of magnetic 

sensors placed around the stack. 

The acoustic characteristics are another important factor in fuel cells that are essential 

for substantial progress in their model, control, robustness, and consistency. The electro-

chemical reactions that take place inside FCs are associated with energy transfer, where 

partial energy is converted into acoustic signals. The activity of the bubbles produced dur-

ing the electrochemical reaction between the hydrogen and oxygen-producing water is the 

prominent acoustic source. The speed of the reaction has a better connection with the rate 

of formation of the bubbles. Consequently, the amplitude of acoustic emission is dependent 

on the rate of electrochemical reaction that will lead to a high rate of bubble formation. 

The polarization curve, one of the most common ways to test a fuel cell, depicts the 

fuel cell’s voltage output for a given current density loading. Polarization curves are often 

acquired using a potentiostat/galvanostat, which draws a constant current from the fuel 

cell and monitors the output voltage of the fuel cell. The voltage response of the fuel cell 

can be determined by gradually “stepping up” the load on the potentiostat. The degrada-

tion process in PEMFC can be studied using polarization curves (V-I curves), as shown in 

Figure 4. Based on variations observed in V-I curves at the time of FC operation, different 

losses, including Activation, Ohmic, and mass transport losses can be calculated. A fuel 

cell polarization curve has three distinct regions: 

 At low power densities, the cell potential drops as a result of the activation polariza-

tion. 

 Due to ohmic losses, the cell potential drops linearly with the current at moderate 

current densities. 

 At high current densities, the cell potential drop deviates from the linear relationship 

with current density due to stronger concentration polarization. 

The voltage overpotential necessary to overcome the activation energy of the electro-

chemical process on the catalytic surface is referred to as activation polarization. This po-

larization outweighs losses at low current density and measures the activity of the catalyst 

at a given temperature. Because the gaseous fuel, solid metal catalyst, and electrolyte must 

all make contact, this is a complicated three-phase interface problem. The catalyst lowers 

the height of the activation barrier, but the sluggish oxygen reaction causes a voltage drop. 
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Figure 4. Polarization curves representing active, ohmic, and activation regions [66]. 

Conductors have an inherent resistance to charge passage, resulting in a decrease in 

cell voltage. This is known as “ohmic polarisation”, and it happens as a result of the elec-

trical resistance in the cell components. The electrolyte, catalyst layer, gas diffusion layer, 

bipolar plates, interface contacts, and terminal connections are cell components that con-

tribute to electrical resistance. Internal ohmic losses through the fuel cell dominate the 

voltage drop. This voltage loss is known as “ohmic loss”. 

To generate electricity, a fuel cell must be constantly supplied with fuel and oxidant. 

To achieve optimal fuel cell efficiency, products must be continuously eliminated. The 

study of mass transfer of uncharged species is critical because it can result in severe fuel 

cell performance losses if not adequately understood. The concentrations of reactant and 

product within the catalyst layer determine fuel cell performance. By improving mass 

transport in the fuel cell electrodes and flow structures, concentration loss can be reduced. 

1.4. Artificial Intelligence (AI) 

A significant concern in this paper is establishing the necessity for AI research in FC 

systems. AI combined with promising machine learning (ML) techniques well-known in 

computer science influences many parts of science and technology, business, and even 

our daily lives [67]. The ML approaches have been created to analyze high-throughput 

data in order to obtain meaningful insights and categorize, forecast, and make evidence-

based judgments in unique ways, promoting the emergence of novel applications and 

fueling the long-term growth of AI [68]. The simulation of human intellect by a system or 

a machine is referred to as AI. The objective of AI is to create a device that can think and 

act like a person, including sensing, thinking, learning, planning, and forecasting. One of 

the key features that differentiate humans from animals is intelligence. With the inexora-

ble occurrence of industrial revolutions, a growing number of machines replace human 

labor in all sectors of life, and the approaching replacement of human resources by ma-

chine intelligence is the next major obstacle to be addressed. Many scientists are working 

on the topic of AI, resulting in a rich and diversified research environment [69–71]. 
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Figure 5 depicts the general framework of artificial intelligence. Perceptual intelli-

gence, cognitive intelligence, and decision-making intelligence are all part of the AI de-

velopment process. Perceptual intelligence refers to a machine’s core human-like skills 

such as vision, hearing, touch, and so on. Cognitive intelligence is the capacity to think, 

infer, and acquire information at a higher level. It is based on cognitive science, brain sci-

ence, and brain-like intelligence and aims to provide robots with human-like reasoning 

and cognitive abilities. Once a machine possesses perception and cognition abilities, it is 

frequently expected to make optimum judgments in the same way that humans do, im-

proving people’s lives, industrial manufacturing, etc. To make optimum judgments, deci-

sion intelligence involves the use of applied data science, social science, decision theory, 

and management science. The infrastructural layer of AI, supported by data, storage, and 

processing capacity, ML algorithms, and AI frameworks, is necessary to realize the aim of 

perceptual, cognitive, and decision-making intelligence. It can then understand the inter-

nal rules of data for supporting and developing AI applications by training models. AI’s 

application layer is expanding and becoming more thoroughly interwoven with basic sci-

ences, industrial production, human life, social governance, and cyberspace, significantly 

influencing our jobs and leisure [69,72–74]. 

 

Figure 5. The general framework of artificial intelligence [69]. 

Statistical learning, neural learning, evolutionary learning, and other learning theo-

ries are all used in AI. Neural learning is the most widely employed of them in a variety 

of applications. The most basic neural learning approach is the ANN. McCulloch and Pitts 

first introduced the ANN in 1943 with the concept of a mathematical model for a primor-

dial brain cell (neuron) [75]. When the weighted sum of input reaches a threshold value, 

the neuron fires, resulting in an output as a response to an activated function. The ANN 

may change its settings to correct errors in the output, making it a more potent learning 

tool. In addition, approaches based on neural learning, statistical learning, and evolution-

ary learning were applied in a variety of practical applications. Bayesian and naive Bayes 

models [76], clustering [77], hidden Markov models [78], closest neighbor models [79], 

and other statistical learning techniques are used in AI. Genetic algorithm (GA) [80], par-

ticle swarm optimization (PSO) [81], ant colony optimization (ACO) [81], bee algorithms, 

and other evolutionary learning approaches are also popular. In recent years, hybrid AI 
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approaches have been utilized in various applications to achieve more accuracy than 

could be accomplished with a single method. 

ML is a method of obtaining models from data or interactions with the environment 

using an algorithm that can then be performed automatically with minimum human in-

tervention. Unsupervised, supervised, and reinforcement learning are the three types of 

machine learning [82]. Unsupervised learning utilizes simply unlabeled data sets, super-

vised learning utilizes labeled data sets, and reinforcement learning necessitates active 

interaction with the environment. The challenge of optimizing long-term rewards is ad-

dressed through reinforcement learning. Unsupervised learning is concerned with how 

the data are distributed. Clustering is a typical approach for grouping data items with 

similar traits or attributes. A regression problem occurs when the label has a continuous 

value in supervised learning, whereas a classification problem occurs when the label has 

a discrete value. As a result, data-driven defect diagnosis might be classified as a problem. 

Figure 6 depicts a simple procedure for using ML to diagnose FC faults. Experiments 

must be carried out in various operating situations, including fault-free and other defec-

tive states of interest, throughout the data collection stage, and the mechanism of impos-

ing faults must be carefully designed. Then, the ML-based diagnostic model is trained, 

and the signal-to-SoH link is established. Finally, the model may be used to monitor SoH 

in an FC system. The signals and the diagnostic model are the two most important varia-

bles, as indicated in Figure 5. Under the premise of detecting defects, diagnostic signals 

should be as basic as feasible [83]. 
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Figure 6. A flowchart depicting the use of machine learning-based diagnostic approaches on a FC 

system [83]. 

ML has been utilized to construct surrogate models for sensitivity studies, battery 

health monitoring, and inverse parameter estimation for FCs and batteries [84]. The tech-

niques used in these models include linear regression and artificial neural networks 

(ANN). They are usually used to forecast a single scalar or a limited number of scalar 

outputs from the original model. ML has also been used to analyze experimental data, for 

example, to improve designs and examine long-term battery performance. Recently, deep 

learning networks have gained popularity as FC and battery surrogate models [85]. The 

types of hidden layers employed differentiate deep networks. Convolutional neural net-

works (CNNs) have been used to forecast stack voltages and polarization curves in PEM-

FCs [86], while recurrent neural networks (RNNs) have been used to anticipate function-

ality decline [87]. Other uses include flaw categorization in FC and water management 

systems and surrogates for mesoscale simulations [88]. 
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Several internal and external factors play a crucial role when operating the FC exper-

imentally, and it is tough to spot faults. It is tough and expensive to analyze its overall 

performance using experimental settings. Furthermore, predicted outcomes may not al-

ways be supplied. As a result, a unique tool has been developed among researchers, which 

may cut costs and ensure redundant and repeatable trial results. These requirements are 

met to a large extent when the FC is developed utilizing AI techniques. In fact, creating a 

reliable model that can forecast the performance of anode and cathode electrodes based 

on cell operating temperature and the applied voltage is critical. A powerful AI tool can 

be used to create a model for forecasting the performance of FC devices. Predicting the 

performance of FCs is crucial for their effective usage. As a result, creating a suitable 

model with a variety of input parameters is a complicated process. Thus, we discuss var-

ious AI approaches to investigate the ideal operating parameters of FCs for obtaining the 

highest performance efficiency (current and power density) from the design, electrodes, 

and electrolyte materials used in FCs. 

The main objective of this review paper is to investigate various AI tools such as ar-

tificial neural networks, genetic algorithms, particle swarm optimization, random forest, 

support vector machine, and extreme learning machine for fuel cell diagnosis. Research 

papers that emphasize the state of health of FCs are given more focus so that FC fault 

detection can be done in an efficient way using AI tools. 

2. Methodology and Structure 

This review includes an introduction, which elaborates the description of FCs (its 

components and various types) and artificial intelligence. This section portrays a clear 

idea about the need for AI in the field of the FC. This review article is divided into five 

parts. After the introduction in the previous section, the methodology and structure are 

included in this section. Section 3 deals with various types of common AI tools used in 

the field of FCs such as artificial neural networks, genetic algorithms, particle swarm op-

timization, random forest, and support vector machines. Finally, the summary and future 

outlook are included in Section 4. 

3. Common AI Methods Used in FC 

In its classic terms, AI refers to the use of a computer to make computations that are 

similar to those performed by a human. The machine analyzes inputs and provides out-

puts for a variety of scenarios that the user defines using code/algorithms. AI is a revolu-

tionary technology that has the potential to provide value in four areas: demand forecast-

ing, supply chain optimization, and research and development optimization; producing 

lower-cost, better goods; delivering competitively priced goods and services to the proper 

clients; and improving the customer experience. 

The key issues that are focused on in this review include a novel optimization method 

for automatically collecting characteristics from the impedance spectra of the polymer 

electrolyte membrane, determining the voltage and current of a PEMFC, performance, 

and durability of an FC by predicting the local current distribution, energy management 

strategy, optimal power allocation between the FC and the battery system, controlling the 

flow channel design and voltage degradation for PEMFC, etc. 

3.1. Artificial Neural Network 

Artificial Neural Networks (ANNs) are based on neuroscience principles and use 

models inspired by the human brain’s neural network. An input layer, hidden layer(s), 

and an output layer make up an ANN. The input layer is where information is supplied 

to the program, and the output layer is the outcome of the ANN computation, as their 

names suggest. The computation is carried out in a single or several hidden layers, effec-

tively “black boxes” that build relationships between system parameters, and information 
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flows from one hidden layer until the output layer is reached. Each layer has its own com-

putational units, suitably named neurons, linked by weights to each neuron in the pre-

ceding and succeeding layers. Based on a study of the importance, bias, and input signals, 

ANNs make decisions, and information flows from one level to the next within the net-

work [89]. Backpropagation allows ANNs to self-correct, which is what makes them such 

a powerful tool. ANNs also avoid solving difficult differential equations by attempting to 

anticipate the outcome while changing the input parameters at the same time. Single-layer 

feedforward networks, multi-layer feedforward networks, and recurrent networks are the 

three most common network architectures. The schematic diagram representing an ANN 

model is shown in Figure 7. 

 

Figure 7. Schematic diagram of an ANN [89]. 

Marek Gnatowski and their co-workers investigated numerical simulations of 

transport events within a solid oxide FC anode [90]. The observed and projected overpo-

tentials differ significantly when using the standard mathematical approach. In the elec-

trochemical reaction model, a modified formulation of the issue incorporates data-driven 

modification of reaction charge transfer coefficients. The team provided a customized 

computational technique in which an artificial neural network changes charge transfer 

coefficients based on operating circumstances and the datasets available. The neural net-

work was trained using twelve experimental data points from the literature for an anode’s 

polarization curve. The training set included the dataset for the anode operating at two 

distinct temperatures, 800 °C and 900 °C. An additional six data points for an anode op-

erating at 1000 °C were included in the test set. The Artificial Neural Network presented 

charge transfer coefficients as a functional relationship between temperature and with-

drew current. The projections’ outcomes are compared to experimental data from the lit-

erature. The obtained findings show that the nonlinear functional relationship between 

the transfer coefficient and the withdrew current and the linear relationship between the 

transfer coefficient and temperature have the least difference between experiment and 

simulation. It was demonstrated that the grey-box technique might be used to increase 

prediction accuracy in SOFC modeling. The Artificial Neural Network was proven to en-

hance an electrochemical process model in solid oxide FC modeling. 
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Using green and carbon-free energy sources is a novel idea in the energy conversion, 

power generation, and energy management framework. Because neural network applica-

tions in the field of FCs are limited, particularly in the case of solid oxide FCs, Xinxiao 

Chen et al. used an ANN model to simulate objectives based on empirical information 

[91]. A new optimization approach is also used to improve the efficiency of solid oxide 

FCs. The grey wolf optimizer with quick, robust, and simple characteristics is used to de-

termine the best operating variables of solid oxide FCs. The thickness of the anode layer, 

electrolyte layer, and cathode layer and the pores of the anode layer are the essential op-

erational parameters employed in the optimization. The modeling findings were com-

pared to test data, confirming the ANN model and optimization method’s capacity to 

identify parameters. Two case study optimization methods were evaluated. To begin, the 

electrolyte layer thickness, anode support layer thickness, cathode thickness, and anode 

support layer porosity were optimized at an operating temperature of 800 °C, yielding 

values of 19 μm, 0.52 mm, 62.16 μm, and 75 percent, respectively. In the second scenario, 

the proposed strategy increased the power density by up to 28%, close to the initial exper-

imental results. The grey wolf optimizer (GWO) is used to determine the SOFC’s optimal 

variables based on operational points. As a result, the recommended technique may be 

utilized to accurately estimate and specify the SOFC’s ideal characteristics. It is worth not-

ing that the ANN with GWO technique ultimately cuts production costs while also mini-

mizing the need for substantial experimental effort. 

A strategy for automatically extracting features from polymer electrolyte membrane 

FC impedance spectra is proposed by Antonio Guarino and co-workers [92]. The research-

ers employed an artificial neural network that was trained using the similarity learning 

technique. The network learns the characteristics of impedance spectra and maps each one 

into the embedding space by properly grouping them and emphasizing differences be-

tween spectra belonging to distinct faults. The topology of the Siamese network is opti-

mized, and the quality of the learned representation is assessed by examining the clusters 

found in the feature space. The experimental spectra dataset has been supplemented in 

two methods, with the results contrasted. A complete framework for PEMFC diagnosis 

has been developed in this research, based on impedance spectra and featuring an auto-

mated features extraction process. The features are retrieved using an ANN-based em-

bedding function that is created and trained using an SNN structure in the context of sim-

ilarity learning. In comparison with existing state-of-the-art feature extraction approaches, 

the suggested strategy performed better. Compared to the top-performing state-of-the-art 

features extraction technique, FastICA, the recommended SNN strategy improves the 

AMI clustering score by 30 percent. The classification is also reduced because of the good 

clustering result, and a simple closest neighbor classification yields an F1 score of 0.909. 

Polarization curves are still one of the characteristics used to examine the effective-

ness and durability of fuels. The use of an ANN to calculate the voltage and current from 

a PEMFC with a membrane area of 11.46 cm2 was investigated by Tabbi Wilberforce and 

A.G. Olabi [93]. For the estimate of the current and voltage acquired from the PEMFC 

under consideration, performance prediction for the group method of data handling 

(GMDH) as well as feedforward backpropagation (FFBP) neural networks were used. 

Even though the GMDH neural network performed better than the FFBP neural network, 

the study revealed models with good predictions. According to the study, the GMDH neu-

ral network is proposed as the best model for forecasting the performance of a PEMFC. It 

was also discovered that increasing the reactant flow rate has a direct influence on the FC’s 

performance but that this is proportionate to the total irreversibilities in the cell; therefore, 

in order to run the FC cheaply, the hydrogen flow rate must be reduced. As a result, the 

pumping energy needed for fuel flow will be reduced, lowering the net loss in the cell. 

Understanding the local current distribution is critical in the construction of an FC to 

gain greater performance and durability. As a result, several developers use a segmented 

FC to monitor current distribution under different operating situations. Experimental data 

are obtained using the program. Jin Young Park et al. proposed a way of utilizing the 
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obtained data to construct a local current prediction model [94]. This neural network-

based forecast is described in-depth, including the data pre-treatment. Current residual 

values are employed in the pre-treatment procedure to improve prediction accuracy. Con-

sequently, the model had 2.98% inaccuracy in predicting local current values. Pressure, 

temperature, cathode relative humidity, and cathode flow rate influences on local current 

distribution patterns are investigated using the model. Because an FC’s non-uniform cur-

rent distribution frequently results in poor performance or rapid local deterioration, an 

extra model is used to determine the best operating conditions for achieving current uni-

formity. The local current prediction model’s inputs and outputs are switched to create 

this model. Under the current load at 1 A/cm2, the uniform distribution is accomplished 

using the model application with a standard deviation of 0.039 A/cm2. 

3.2. Genetic Algorithm 

However, regardless of its good global search speed and cheap algorithm complex-

ity, the genetic algorithm (GA) in evolutionary computing has become one of the most 

concerned algorithms among modern optimization algorithms. The GA is a technique of 

random search based on biological evolution. Professor Holland of the University of 

Michigan was the first to suggest this viewpoint in 1975 [95]. It has implicit parallelism 

built-in and may act directly on structural items without being constrained by function 

continuity. The GA can automatically update the progeny of optimization outcomes and 

global search direction using roulette and other ways. The GA is frequently utilized in 

discrete optimization, algorithm learning, data processing, and other domains due to 

these advantages. 

GAs were created to simulate natural processes required for evolution, particularly 

those that follow Charles Darwin’s ideas of evolution and natural selection. For the pur-

pose of addressing a problem, GAs replicate the survival of the fittest among individuals 

over several generations. Each generation is made up of a population of character strings 

that resemble the chromosomes that make up human DNA. Each person symbolizes a 

possible solution and a point in a search space. Individuals in the population are then 

forced to go through an evolutionary process [96]. 

GAs are built on the following bases analogous to the genetic structure and behavior 

of chromosomes within a population of individuals: Individuals battle for resources and 

mates in a population. Individuals who compete well will generate more offspring than 

those who perform badly. Because good genes spread across the community, two good 

parents can occasionally create offspring who are better than either parent. As a result, 

each generation will become more adapted to their surroundings [96]. 

PEMFCs are thought to be capable of replacing conventional internal combustion en-

gines in vehicles due to their high efficiency, lack of emissions, minimal noise, and other 

benefits. The creation of an energy management system becomes the object of study in 

order to extend the lifetime of FCs. The energy management approach of an FC hybrid 

electric vehicle with an FC as the primary power source and a battery as an auxiliary 

power source is discussed by DehaoMin and colleagues [97]. A novel algorithm is pre-

sented after existing research is summarized. Because frequent startup, shutdown, and 

load changes can shorten the life of an FC, it is important to prevent these as much as 

possible. The proposed study presents Neural Network Optimized by Genetic Algorithm 

(NNOGA) as a viable method for the analyzed system for this goal. The neural network 

may be trained appropriately using a genetic algorithm, and the trained network can de-

liberately avoid particular outputs based on the criteria. The network may consciously 

prevent wasteful start-stop and quick load shift, thanks to the optimization ability of the 

Neural Network Optimized by Genetic Algorithm, which can modify the preference of 

the trained neural network. As a result, the FC’s lifespan is extended. The suggested algo-

rithm’s validity is confirmed by simulation and comparison testing. 

A prospective hybrid power system for emerging energy generation applications is 

the polymer electrolyte membrane FC combined with a battery. The energy management 
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strategy (EMS) has a big impact on FC longevity, battery charge maintenance, and fuel 

usage. Hai-BoYuan et al. proposed a GA-based optimized rule-based EMS for efficient 

power allocation between the FC and the battery system [98]. Control variables in real-

time rule-based EMS are optimized to maintain battery charge while taking FC durability 

and efficiency into account. MATLAB/Simulink and a LabVIEW-based experimental rig 

are used to simulate and experimentally verify the proposed improved rule-based EMS. 

In addition, the traditional rule-based EMS, fuzzy logic EMS, and dynamic programming 

(DP) EMS are compared. The comparative findings show that the optimized rule-based 

EMS outperforms the conventional rule-based and fuzzy logic EMSs by a significant mar-

gin. In terms of fuel economy, battery charge sustenance, FC efficiency, and system lon-

gevity, near-optimal performance is validated when compared to DP EMS. The integra-

tion of rule-based EMS and GA optimization algorithms has the benefit of expert experi-

ence and global optimization properties, allowing for optimized power allocation in prac-

tical uses with less computation strain. It can be easily implemented in other EMS systems 

without losing authenticity. 

To achieve the best performance of PEMFCs, an effective strategy for guiding the 

flow channel design of the bipolar plate (BPP) must be developed for the PEMFC. Most 

previous research has concentrated on improving constant channel dimensions and struc-

tures without taking into account the flow channel’s ideal local performance. The down-

the-channel performance model and the GA are used by Zihan Zhou and his team in work 

to improve BPP channel/rib patterns for FCs [99]. A flow channel is partitioned into nu-

merous segments, with the channel dimensions of each segment being included as varia-

bles in the down-the-channel performance model to produce the best parameter design 

via the GA. The CFD and local current density experiment confirm the model and optimi-

zation findings. Both CFD and local current density experiment findings are inconsistent 

with the result of the down-the-channel performance model. The cell efficiency of a vari-

able rib-to-channel width ratio (RCWR) design along the flow channel is found to be su-

perior to that of a constant RCWR design. When the sum of rib and channel width (SRCW) 

is larger, and the output voltage is lower, performance gains are more noticeable. Design 

guidance for the cathode flow channel RCWR is offered from upstream to downstream. 

The flow channel arrangement of high-temperature polybenzimidazole (PBI) proton 

exchange membrane FCs (HT-PEMFCs) doped with phosphoric acid significantly impacts 

their performance. Taiming Huang and colleagues used a GA to optimize the flow chan-

nel of a high-temperature PEMFC [100]. The genetic algorithm is used in this study to 

optimize the initial three-dimensional simulation model by determining the best channel 

arrangement. To improve HT-PEMFC performance, make the widths of the top and bot-

tom borders of the anode/cathode flow channels independent variables with a defined 

range. The objective function is specified to be the ratio of pressure drop loss to HT- 

PEMFC output power. The widths of the top and bottom margins on the anode side are 

0.513 mm and 0.635 mm, respectively, and 0.752 mm and 1.159 mm on the cathode side. 

The flow channel’s cross-sectional shape is trapezoidal, which provides the highest per-

formance. The limited contact surface between the flow channel and the GDL on the an-

ode side might speed up hydrogen diffusion. The more contact surface generated by the 

flow channel and the GDL can deliver more gas for the electrochemical reaction at the 

cathode. At 0.4 V, the optimum model’s pressure drop loss and output powers are 1.7% 

and 6.5% higher than the original model’s, respectively. The findings may help to enhance 

the design and operation of future HT-PEMFCs. 

Prognostics can anticipate the breakdown of a PEMFC and help create a management 

plan to extend its life and improve its performance. Using a unique prognostics technique 

based on GA and an extreme learning machine (ELM), the voltage deterioration for 

PEMFC under various scenarios is forecasted by K. Chen et al. [101]. The new prognostics 

technique takes into account the impacts of PEMFC load current, relative humidity, hy-

drogen pressure, and temperature on PEMFC deterioration. To begin, the ELM creates a 
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voltage decay prediction model for PEMFC. The GA is then used to find the best param-

eter for the suggested deterioration prediction model. Finally, the suggested prognostic 

method’s voltage degradation prediction is proven by utilizing data collected from the 

PEMFC in an actual postal FC electric vehicle (PFCEV) under real settings and PEMFC at 

dynamic load current. The experimental findings demonstrate that the proposed prog-

nostics technique can accurately estimate PEMFC voltage deterioration in PFCEV under 

real-world conditions. Other standard data-based prognostics approaches fail to predict 

voltage deterioration for PEMFC under dynamic load current and the suggested method. 

3.3. Particle Swarm Optimization 

Particle swarm optimization (PSO) is an evolutionary computer method for optimiz-

ing continuous nonlinear, constrained, unconstrained, nondifferentiable multimodal 

functions. The process of finding the most appropriate solution to accomplish the “best” 

aim in a situation is known as optimization. Its goal is to find the best answer possible. 

Several optimization techniques, particularly meta-heuristic algorithms, have been tried 

in recent years to improve the solution of application or theoretical issues. PSO is one of 

the most often utilized algorithms. Eberhart and Kennedy presented it in 1995 as an evo-

lutionary algorithm [81]. 

PSO is based on two sources: first, generic artificial life, such as bird flocking, fish 

schooling, and human social interaction, and second, random search methods in evolu-

tionary algorithms. Animals, particularly birds and fish, always travel in groups to avoid 

clashing; each member follows its group and adjusts its position and velocity based on 

group knowledge, reducing individual action in the search for food, shelter, and other 

necessities. PSO has now become one of the most popular methods for solving optimiza-

tion issues. It imitates the swarm behavior of various animals, such as flocks of birds, fish 

schools, and mammal swarms. These species’ swarm behavior helps them avoid dangers 

and find food, among other things. This swarm’s particles communicate with one another 

and make decisions in concert. Human beings have their own prior experiences, ideas, 

and work rules, which they use to guide their behavior (individual best position). Humans 

also follow the path defined by the society/group, which is believed to be the ideal for the 

entire group (global best position). 

For the long-term functioning of PEMFCs, degradation prediction is an important 

strategy. A unique grey neural network model (GNNM) technique is described by Kui-

Chen et al., where GNNM is integrated with particle swarm optimization (PSO) and the 

moving window method to anticipate the deterioration of PEMFC under various operat-

ing situations [102]. The impact of load current, intake temperature, inlet hydrogen pres-

sure, and inlet relative humidity is taken into account in the suggested technique. A grey 

neural network is used to create PEMFC’s deterioration prediction model. The PSO opti-

mizes the initial weight and threshold of established GNNM. The optimized PSO-GNNM 

is repeatedly trained using the moving window approach with multiple newly observed 

data. The impact of various moving window widths on PEMFC deterioration prediction 

under static load current is examined. After that, a comparison is made between the sug-

gested approach and the adaptive neuro-fuzzy inference system method. Furthermore, the 

effect of load current on the deterioration forecast of PEMFCs in real-world postal FC electric 

vehicles is investigated. Finally, three PEMFC aging tests under various circumstances are 

used to validate the suggested approach. The findings demonstrate that the recommended 

technique can accurately predict PEMFC deterioration in a variety of applications. 

Because of their high energy conversion efficiency, high power density, and low op-

erating temperatures, polymer electrolyte membrane FCs are commonly used in engineer-

ing applications. They have recently gained prominence in vital and strategic applications 

such as electric automobiles and unmanned aerial aircraft. However, FCs are used in a 

variety of applied-theoretical investigations. Models that are highly comparable to the 

genuine PEMFC should be employed to improve the accuracy of this research. Modeling 
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of PEMFC with chaos-embedded particle swarm optimization for optimum parameter es-

timates was reported by Mahmut TemelÖzdemir [103]. This research introduces a novel 

objective function to more authentically determine the unknown variables of PEMFC 

heaps. Three commercially available PEMFC stacks, the 250 W Stack, BCS-500 W, and 

Nedstack PS6, were numerically simulated to demonstrate the efficiency of the proposed 

methods for parameter determination. 

Identifying sustainable approaches is difficult due to the negative environmental ef-

fect and increasingly diminishing supply of fossil fuel-based energy sources for power 

generation. The ever-increasing global population expansion, which demands a greater 

level of life, complicates this issue. An FC system may generate power and water more 

efficiently while emitting almost no carbon dioxide. Internal limits and operational char-

acteristics such as temperature, hydrogen, oxygen partial pressures, and humidity levels 

cause a nonlinear power characteristic in a typical FC stack, resulting in lower overall 

system performance. Consequently, it is critical to extract as much power as possible from 

the stack, thereby reducing fuel consumption. To keep the output power of an FC stack 

incredibly close to its peak, Doudou N. Luta and their group investigated and contrasted 

two maximum power point tracking (MPPT) techniques, one based on the Mamdani 

fuzzy inference system and the other on the particle swarm optimization (PSO) algorithm 

[104]. To do so, the inverter connected to the FC unit must be able to continually self-

modify its parameters, adjusting its voltage and current in response to the location of the 

maximum power point. As there are other approaches to designing a maximum power 

point tracker, this work examines the response characteristics of a Mamdani fuzzy infer-

ence engine using the particle swarm optimization methodology. A 53 kW PEMFC was 

used in the study, which was connected to a DC-to-DC boost converter that provided 1.2 

kV from a 625 V input DC voltage. A Matlab/Simulink environment was used to complete 

the modeling. Compared to the Mamdani controller, the MPPT controller based on the 

PSO algorithm demonstrated superior tracking efficiency. Moreover, the PSO controller’s 

rise time was somewhat shorter than the Mamdani controller’s, and the PSO controller’s 

overrun was 2% less than the Mamdani controller’s. 

Upasana Sarma and Sanjib Ganguly proposed an optimization technique for scaling 

the modules of a PEM FC (PEMFC)-battery hybrid energy system (HES) to provide the 

necessary driving force to transport passenger trains [105]. The goal is to reduce the cost 

of HES while staying within the limits of the battery state-of-charge limit, PEMFC capacity 

constraint, and instantaneous power balancing constraint. A PEMFC-battery HES model 

appropriate for locomotive use is developed. To establish a balance between instantane-

ous power demand and power supply, two energy management systems (EMS) are pre-

sented. The particle swarm optimization-based solution algorithm incorporates the EMS 

effectively. The simulation research employs three real-world driving cycles. According 

to the simulation research, the size of the PEMFC and battery is determined by the EMS, 

average train speed, and slope of the railway track. The selection of EMS has an impact 

on fuel usage and dynamic behavior. 

To simulate and study the dynamic conversion behavior of a solid oxide FC (SOFC), 

it is critical to identify trustworthy and precise parameters. To handle the parameter iden-

tification problem of SOFC models, a simplified variation of competitive swarm optimizer 

(SCSO) was presented by G. Xiong and the team [106]. CSO excels at unimodal optimiza-

tion issues in particular. However, when addressing complicated multimodal optimiza-

tion issues, it has the downsides of “two steps ahead, one step back” and diverting from 

the promising approach, resulting in low searching efficiency. To overcome these disad-

vantages, SCSO uses two simple components: a simplified learning equation, according 

to which losers only learn from winners, ignoring the population’s mean position, and a 

refreshed approach to random numbers, according to which random numbers are re-

newed for each loser rather than for each dimension of each loser. A Siemen Energy cy-

lindrical cell and a 5-kW dynamic tubular stack receive SCSO treatment. Furthermore, the 



Catalysts 2022, 12, 743 20 of 30 
 

 

effect of the weight parameter and the advantage of simpler components were experimen-

tally explored. Compared to other sophisticated algorithms, the results show that SCSO 

is very competitive in terms of precision, stability, convergence, and statistics. 

3.4. Random Forest 

Random forests (RF) are a widely used ensemble learning technique with many im-

plications in data mining and machine learning. Random forests are a nonparametric tree-

based collective solution for effective data-adaptive inference that combines the notions 

of adaptive closest neighbors and bagging. The greedy characteristic of one-step-at-a-time 

node division allows trees/forests to enforce regularization for successful analysis in 

“large p, small n” issues, and the “grouping property” of trees allows RF to handle corre-

lation and interaction among variables with ease. 

The Random Forest approach combines the bagging algorithm with a multilevel de-

cision tree, which is frequently used to select features in the development workflow of 

data-driven models. The rationale is that random forests’ tree-based methods are essen-

tially ranked by how efficient they increase node purity. Figure 8 depicts the random for-

est formation process [107]. 

 

Figure 8. Schematic diagram representation of the random forest formation process [99]. 

Several diagnostics approaches based on the previous hydrogen FC status data are 

presented to determine the health state of hydrogen FCs. Because a variety of variables 

might cause the FC problem, feature selection would be required during diagnostics. RH 

Lin et al. attempted to produce the required features using an upgraded PCA technique 

[108]. Based on these attributes, a random forest algorithm is built to forecast health status 

based on historical data. In this study, all hydrogen FC sensor data elements were moni-

tored and used statistical analysis to extract many properties. The authors present a hy-

drogen FC diagnostics model that is both efficient and accurate. 

SOFCs are complicated systems in which gas-phase mass movement, heat transfer, 

ionic conduction, chemical reactions, and electrical conduction all happen at the same 

time. To regulate and optimize their operations, trustworthy simulation tools are re-

quired. ML is a technique for swiftly estimating and generalizing the relationship between 

input and output values in a process. Modeling, simulation, optimization, control, signal 
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processing, pattern recognition, and systems like electricity, production, and renewable 

energy systems all employ ML techniques. Many strategies aid in the development of suc-

cessful algorithms for SOFC systems. Few academics, however, have looked into and com-

pared regression techniques. Research done by F. C. İskenderoğl and colleagues com-

pared two efficient ML techniques, Random Forest (RF) and Support Vector Regression 

(SVR) [109]. These methods are used to forecast SOFC cell performance. The algorithms 

were developed based on experimental data collected at various temperatures and hydro-

gen flow rates. Furthermore, the influence of the quantity of pure hydrogen and the total 

amount of hydrogen in the fuel mixes given to the SOFC’s anode side on the experimental 

voltage was compared. The experimental data collection that was utilized to create the 

model contains 1272 records about SOFCs that were operated under various operating 

circumstances. The regression methods indicated above are trained using 1122 records 

from the experimental data set. Consequently, the algorithms are put to the test, and the 

experimental data are compared to the findings provided by the algorithms in order to 

validate forecast outcomes. With typical absolute percentage errors of 1.97 percent for the 

RF method and as low as 0.92 percent for the SVR algorithm, the model predicts cell per-

formance (output voltage) in about 0.52 s. The SVR algorithm is chosen as the most plau-

sible model in this paper. When the created models have been demonstrated to be reliable 

and precise after testing with unknown data, the impacts of process factors on the fluctu-

ation of the SOFC output voltage may be investigated. 

Because of their clean and efficient functioning, PEMFC stacks are frequently em-

ployed in mobile and portable applications. To enhance the deterioration prediction of a 

PEMFC stack, FK Wang et al. presented an ensemble model based on a stacked extended 

short-term memory model that integrates three machine-learning models, including long 

short-term memory with attention mechanism, support vector regression, and random 

forest regression [110]. The dropout approach was used to calculate the prediction inter-

vals. Using two PEMFC stacks, the suggested model is compared to various current mod-

els. According to the findings, the presented model beats the previous models in terms of 

mean absolute percentage error and root mean square error. The proposed model using 

the sliding window technique can deliver superior results in terms of residual usable life 

prediction. 

The system energy optimization was investigated by X. Lü and colleagues using a 

thorough performance assessment and random forest prediction approach in order to en-

hance the stability, real-time performance, and economy of the PEMFC hybrid welding 

robot system [111]. The optimal control strategy was built on the basis of rule partition, 

using the entropy weight technique and the cloud model comprehensive performance 

testing procedure; the random forest prediction method was implemented in the energy 

management system, and the model parameters with the least mean square error were 

determined using particle swarm optimization, and the robot’s load power was estimated. 

Finally, the assessment findings are used to determine the expected ability to enhance and 

optimize the hybrid power welding robot system’s performance. The experimental find-

ings demonstrate that using the optimization technique in this study, the durability of FC 

power output is increased by 11.26%, and hydrogen consumption is lowered by 3.24%. 

The experimental findings demonstrate that the energy optimization technique not only 

ensures high precision and real-time performance of the welding robot system but also 

improves the hybrid welding robot system’s stability and energy economy while lowering 

energy usage. 

3.5. Support Vector Machine 
Support vector machines (SVMs) are also excellent choices for high-dimensional re-

gression analysis and are applicable in real applications. Vapnik and colleagues devel-

oped the SVM technique for pattern recognition. SVMs offer remarkable generalization 

power compared to ANNs, and support vector regression is one of the most used imple-

mentations for regression and function prediction. The SVM regression approach employs 
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the structural risk minimization (SRM) rule instead of the empirical risk minimization 

(ERM) criterion used by most ANNs. 

SVM has been effectively used as an ML technique for classification and regression 

problems. Although it was designed for linear classification, now it has been extended to 

nonlinear issues. It uses kernel functions to turn the data into a high-dimensional feature 

space for nonlinear classification, then looks for the hyperplane with the maximum dis-

tance to each type of observation. It has performed exceptionally well in binary and mul-

tiple classification tests. 

A Kheirandish et al. used a support vector machine (SVM) to forecast the perfor-

mance of a PEMFC system in a commercially available electronic bicycle [112]. The key 

benefit of the study’s findings is that they make it easier to utilize carbon-free fuels instead 

of carbon-based ones, which reduces energy consumption. SVMs, which are excellent 

tools for forecasting PEMFC performance, are employed since such cells are nonlinear, 

multivariable systems that are challenging to describe using standard approaches. Exper-

imental data from a 250 W PEMFC were used to estimate parameters for the V–I, P–I, and 

efficiency–power curves, and the data were then used to forecast total PEMFC perfor-

mance. This technique was compared to a multi-layer perceptron (MLP) artificial neural 

network model to assess the functioning of the recommended model. It has been shown 

that the inaccuracy of the SVM model is substantially less than that of the MLP model and 

that the suggested technique performs better in predicting the PEM FC curve for the elec-

tric bicycle. It was discovered that the SVM prediction model for the power–current curve 

has a coefficient of determination of approximately 99%, compared to 97% for the MLP 

model, making the proposed black box SVM PEMFC model suitable for monitoring and 

simulating FC performance in the electric bicycle, which is advantageous for its variety of 

energy-saving applications. 

Because of their great efficiency and environmental safety, polymer electrolyte mem-

brane FCs are being investigated as a viable source of power generation. X. Peng and col-

leagues examined the relationship between power density and operational factors such as 

operating temperature, FC pressure, anode relative humidity, cathode relative humidity, 

porosity of gas diffusion electrode (GDE), and GDE conductivity [113]. However, identi-

fying the operating parameters that will enhance the power density of PEMFCs has re-

ceived little attention. Based on the AI method of support vector machines, the current 

work offers the best design of a power density model for PEMFCs (SVM). The experi-

mental data and the proposed power density model correspond well. After that, a simu-

lation profiler is created to ensure that it is unaffected by changes in operating circum-

stances, and conclusions about correlations between power density and operational pa-

rameters are studied. The findings demonstrate that the FC pressure and GDE conductiv-

ity are the two most important inputs in the proper operation of a PEMFC. The operating 

temperature of 86.2 K, the FC pressure of 3.44 atm, the relative humidity of the anode of 

50%, the relative humidity of the cathode of 64.4 percent, the porosity of GDE of 0.5, and 

the conductivity of GDE of 997.7 S/m give a greater power density value of 870 mW/cm2 

to PEMFCs, according to the formulated model. 

Using a support vector machine, ZD Zhong and co-authors reported on a modeling 

investigation of PEMFC performance (SVM) [114]. A PEMFC is a multivariable, nonlinear 

system that is difficult to model using traditional approaches. In terms of generalization, 

the SVM is superior, and this capability is independent of the dimensionality of the input 

data. These two advantages combine to make it an effective tool for predicting how a 

PEMFC would perform under various operating situations. A PEMFC system SVM model 

is created, optimized, and evaluated in this paper. After determining the model using 

chosen experimental data, it is utilized to predict PEMFC performance. It is demonstrated 

that the model can generate a prediction in 10 milliseconds with a squared correlation 

value of 99.7%. As a result, the suggested black-box SVM PEMFC model may be used to 

simulate, control, and monitor the functioning of an FC in real-time. 
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Using a least-squares support vector machine (LS-SVM), HB Huo et al. presented a 

nonlinear modeling investigation of a solid oxide FC (SOFC) stack [115]. The SOFC is a 

nonlinear, multi-input, multi-output system that is difficult to model using conventional 

methods. Most available models are now based on conversion rules, which are quite ben-

eficial for cell design. They are, however, far too sophisticated to be used in the design of 

control systems. This study attempts to eliminate internal complications and proposes a 

black-box model of the SOFC based on LS-SVM in order to assist in the creation of a valid 

control strategy. The simulation experiments show that the model can be established us-

ing LS-SVM. Simultaneously, experimental comparisons of the LS-SVM model and the 

radial basis function neural network (RBFNN) model show that the LS-SVM outperforms 

the RBFNN in forecasting stack voltage with various fuel utilizations. Furthermore, viable 

control strategy studies such as predictive control and robust control may be established 

using this black-box LS-SVM model. 

In SOFC functioning, cell temperature management is critical. Y. W. Kang et al. pre-

sent a dynamic temperature model of an SOFC utilizing least squares support vector ma-

chines (LS-SVMs) in order to build effective temperature management techniques using 

model-based control approaches [116]. A nonlinear autoregressive with exogenous inputs 

(NARXs) model is used to characterize the SOFC’s nonlinear temperature dynamics, 

which is achieved using an LS-SVM regression model. Variable selection, training set gen-

eration, and LS-SVM parameter optimization are all covered in-depth as part of the de-

velopment of the LS-SVM temperature model. Extensive validation studies show that the 

proposed LS-SVM model is effective enough to be employed independently of the SOFC 

process, simulating its temperature response using simply process input data across a 

large working range. Apart from the modeling method itself, the LS-SVM temperature 

model benefits from the approaches of automatically building the training set and tweak-

ing hyperparameters via GA. The suggested LS-SVM temperature model may be used to 

create temperature management strategies for SOFCs with ease. 

3.6. Extreme Learning Machine 

The ELM model is one of the most intriguing networks. This network generates a 

consistent pattern with a wide range of feature transmissions that are used in the hidden 

layer, which is directly used in multi-category classification and regression. The ELM is a 

learning technique for Single Hidden Neural Networks (SHNN) that enables random bias 

and input weight initialization as well as for analytic output weight evaluation. As a re-

sult, this approach allows the network to be trained in a matter of minutes [117]. 

For optimal control and behavior analysis, a precise, rapid, and robust parameter 

extraction technique for SOFC models is critical. To extract unknown characteristics of 

solid oxide fuel cell models, including electrochemical models and simple electrochemical 

models, a unique extreme learning machine-based method is proposed by Yang and col-

leagues [118]. An extreme learning machine is initially used to handle two difficult chal-

lenges (e.g., data scarcity and noised data) by anticipating extra data and updating noised 

data. The raw data from a 5-kW solid oxide fuel cell stack, as well as processed data, are 

then transferred to successfully guide eight renowned meta-heuristic algorithms for opti-

mal parameter extraction. A detailed comparison based on varied training data is used to 

properly analyze the performance of an extreme learning machine under two typical op-

eration settings. The simulation results demonstrate that the suggested approach may ef-

fectively contribute to the search for efficient model parameters while maintaining high 

accuracy, conspicuous stability, fast speed, and great robustness. The accuracy of param-

eter extraction for electrochemical models and basic electrochemical models, in particular, 

can be enhanced by up to 49.3% and 65.6%, respectively. 

The prognostics of proton exchange membrane fuel cell (PEMFC) deterioration can 

be used to develop an appropriate maintenance plan to enhance its lifetime and perfor-

mance. Chen et al. proposed the voltage deterioration for PEMFC under various situations 

forecasted by utilizing a novel prognostics method based on GA and ELM [101]. The 
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unique prognostics method takes into account the impacts of PEMFC load current, rela-

tive humidity, hydrogen pressure, and temperature on PEMFC degradation. The ELM 

first creates the voltage degradation prediction model for PEMFC. The GA is then used to 

select the best parameter for the proposed degradation prediction model. Moreover, the 

suggested prognostics method’s voltage degradation prediction is validated using data 

collected from the PEMFC in a real postal fuel cell electric vehicle (PFCEV) in real settings 

and PEMFC at dynamic load current. The experimental results show that the suggested 

prognostics method can estimate voltage deterioration for PEMFC in PFCEV under real-

world conditions. The suggested method outperforms existing traditional data-based 

prognostics methods for PEMFC voltage deterioration prediction at dynamic load current. 

A novel, deep learning-based methodology for optimal and efficient modeling of 

proton-exchange membrane fuel cells was proposed by Han and Ghadimi [119]. A hybrid 

technique based on CNN and ELM networks is used to do this. The model is refined to 

achieve the best outcomes using a new, improved metaheuristic known as the Improved 

Honey Badger Algorithm (IHBA). The upgraded version of the IHBA is used to increase 

the accuracy of the model findings and to give fast convergence for the method. The de-

signed model is then applied to a model to validate its efficacy. The findings show that 

the suggested model is consistent with experimental training data, with a maximum error 

rate of 0.039. The suggested model’s findings are then compared to a CNN-based model 

estimator to validate its better efficiency. Although both model estimators have acceptable 

confirmation with the experimental data, the suggested model delivers more satisfactory 

findings with a lower error value. 

4. Summary and Outlook for Future 

In summary, this review gives a clear picture of the various types of FCs, such as 

PEMFC, AFC, DMFC, PAFC, MCFC, and SOFC. Additionally, common types of AI—viz., 

genetic algorithm, particle swarm optimization, random forest, support vector machine, 

artificial neural network, and Extreme Learning Machine—used in FC technology are de-

scribed. 

In the case of the application of ANN in the FC, 

 The computational models of transport events inside a solid oxide FC anode were 

examined. 

 The grey wolf optimizer is utilized, which has rapid, sturdy, and simple properties. 

 A novel optimization method for automatically collecting characteristics from the 

impedance spectra of polymer electrolyte membrane FCs was observed. 

 A neural network method used to determine the voltage and current of a PEMFC 

was summarized. 

 A technique to improve the performance and durability of an FC by predicting the 

local current distribution was also discussed. 

In the GA section, 

 The energy management strategy for an FC hybrid electric vehicle with an FC as the 

primary power source and a battery as a backup power source was illustrated. 

 A GA-based optimized rule-based EMS for optimal power allocation between the FC 

and the battery system was explored. 

 An effective method for controlling the flow channel design of the bipolar plate (BPP) 

was devised to obtain the greatest performance of PEMFCs. 

 GA was used to improve a high-temperature PEMFC’s flow channel. 

 The voltage degradation for PEMFC under various conditions is projected using a 

new prognostics approach based on GA, and an extreme learning machine (ELM) 

was explained. 

In order to understand the role of PSO in FC, 



Catalysts 2022, 12, 743 25 of 30 
 

 

 A novel grey neural network model (GNNM) strategy in which GNNM is combined 

with particle swarm optimization (PSO) and the moving window method to predict 

PEMFC degradation under various operating conditions was described. 

 For optimal parameter estimations, chaos-embedded particle swarm optimization 

was used to model polymer electrolyte membrane FCs. 

 The comparison and contrast of two Maximum Power Point Tracking (MPPT) strat-

egies, one based on the Mamdani Fuzzy Inference System and the other on the PSO 

algorithm, to keep the output power of an FC stack extraordinarily near to its peak 

was discussed. 

 An optimization approach for scaling the modules of a PEMFC-battery hybrid en-

ergy system (HES) to provide the required driving force for passenger trains was 

illustrated. 

 A simplified form of the competitive swarm optimizer (SCSO) was introduced to deal 

with the parameter identification challenge of SOFC models. The flow channel of a 

high-temperature PEMFC was optimized using GA. 

The implication of RF in FCs was analyzed. 

 An improved PCA approach was employed to create the essential features of RF and 

Support Vector Regression to evaluate two efficient ML algorithms. 

 An ensemble model based on a stacked extended short-term memory model that in-

tegrates three machine-learning models, including long short-term memory with at-

tention mechanism, support vector regression, and random forest regression, to im-

prove the deterioration prediction of a PEMFC stack was explained. 

 A detailed performance evaluation and a random forest prediction technique to ex-

amine system energy optimization in order to improve the stability, real-time perfor-

mance, and economy of the PEMFC hybrid welding robot system were carried out. 

The SVM tool in FC is described 

 To predict the performance of a PEMFC system in a widely available electronic bicy-

cle using SVM. 

 The link between power density and operational parameters such as operating tem-

perature, FC pressure, anode relative humidity, cathode relative humidity, GDE po-

rosity, and GDE conductivity was established using SVM modeling analysis of 

PEMFC performance. The optimum design of a power density model for PEMFCs 

was also performed with SVM. 

 A nonlinear modeling investigation of an SOFC stack using a least-squares support 

vector machine was illustrated. 

 A dynamic temperature model of an SOFC using least-squares support vector ma-

chines in order to build effective temperature management techniques using model-

based control approaches has also been portrayed. 

The ELM an advanced AI tool was used to 

 Extract unknown characteristics of solid oxide fuel cell models, including electro-

chemical models and simple electrochemical models. 

 Forecast a novel prognostics method based on GA and ELM for the voltage deterio-

ration in PEMFC under various situations. 

 Optimal and efficient modeling of proton-exchange membrane fuel cells using a hy-

brid technique based on CNN and ELM networks. 

Among all the methods discussed above, ANN is considered to be a better AI tool 

suitable for studying the performance of FCs. ANN is a cost-effective and rapid technique 

that is a subset of machine learning. It was observed that both classic computing methods 

and innovative approaches based on AI techniques had been shown to achieve equivalent 

accuracy in FC modeling. The model used to estimate the performance of the FC is quite 

accurate. FC technology has excellent performance qualities, particularly in terms of effi-

ciency, and can contribute to the overall effort to improve power generation. AI, notably 
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artificial neural networks, can be trained to accurately imitate the functioning of an FC. AI 

is a strong tool for FC design, simulation, control, and optimization. The capacity of AI-

based and data-driven modeling to find the conditions necessary for optimal power out-

put is considerable. The benefits of AI-enabled technologies include the ability to forecast 

FC disadvantages during unexpected demand increases and variable energy output. AI 

can assist in identifying trends that are difficult to detect through trials and can examine 

a vast number of situations in a cost-effective manner. It is worth noting that AI ap-

proaches are susceptible to dataset quantity and noise, which might impair model devel-

opment time and accuracy. 

Model verification for ML-based defect diagnosis is still in progress, with test data 

being used to assess the model’s efficacy. Integration problems, such as restricted compu-

ting capability and temporal delay, have not yet been examined. If feasible, fault diagnosis 

tries to raise the recognition rate to 100%. On the other hand, a single diagnostic model 

can only achieve a restricted recognition capacity, which may be insufficient for the real 

application. FCs may be taught and programmed to regulate internal functioning and 

flow rates to improve performance from a strategic standpoint and with adequate data 

available. The usage of optimization approaches should be explored in future AI applica-

tions in HRESs. The use of hybrid optimization methods, which integrate two or more 

optimization approaches, has been proven to save computing time. Future research 

should also compare the viability of HRES with other FCs and address and provide an-

swers to difficulties like data integrity in AI and the complex nature of AI algorithms. 
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