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Abstract: In this study, coaxial dielectric barrier discharge (DBD) plasma, in conjunction with a
metal oxide catalyst, was used to degrade naphthalene. The characteristics of plasma discharge were
studied by measuring voltage and current waveforms and the Lissajous figure. The effects of different
parameters of the process on naphthalene decomposition in air were investigated. XRD, BET, and
SEM data were used to investigate the nature, specific surface area, and surface morphology of the
catalyst. The results show that the mineralization of naphthalene reached 82.2% when the initial
naphthalene concentration was 21 ppm and the total gas flow rate was 1 L/min in the DBD reactor
filled with Al2O3. The mineralization of naphthalene first increased and then became stable with the
increase in treatment time and discharge power. The TiO2 catalyst has more apparent advantages than
the two other studied catalysts in terms of the removal efficiency and mineralization of naphthalene
due to this catalyst’s large specific surface area, porous structure, and photocatalytic properties. In
addition, the introduction of a small amount of water vapor can promote the mineralization and CO2

selectivity of naphthalene. With further increases in the water vapor, Fe2O3 has a negative effect on
the naphthalene oxidation due to its small pore size. The TiO2 catalyst can overcome the adverse
effects of water molecule attachment due to its photocatalytic properties.

Keywords: DBD; metal oxide catalyst; naphthalene decomposition; mineralization

1. Introduction

As a result of the development of society and industry, the content of polycyclic
aromatic hydrocarbons (PAHs) in the environment has increased significantly. PAHs are
a form of persistent organic pollutant having different structures and toxicity levels [1,2].
Due to their carcinogenicity and persistence, PAHs in air, water, and soil have become a
serious threat to human health [3]. Therefore, PAH emission has received special attention
from the World Health Organization [4], and the degradation and removal of PAHs have
also become the focus of scientific research [5].

As the simplest PAH, naphthalene has attracted much attention due to its strong
volatility and ubiquity in the atmosphere [6]. Many methods have been applied to degrade
naphthalene in the environment, such as biodegradation, catalytic oxidation, and physical
adsorption [7,8]. However, the above methods have limitations in terms of decomposition
time, energy efficiency, adsorption capacity, etc. [9,10]. Compared with the above methods,
non-thermal plasma (NTP) technology has the advantages of high removal efficiency,
short treatment time, and wide applicability [11,12]. Thus, NTP has become an essential
technology for degrading naphthalene and has received widespread attention.
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In NTP, the particle temperature ranges from room temperature to approximately
3× 104 K [13]. At room temperature, high-energy electrons generated by NTP are like
“electronic scissors”. Through the collisions of electrons with background gases, the carrier
gas molecules are dissociated, excited, and ionized to produce active particles such as
excited particles, ions, free radicals, and electrons [14,15]. Then, these oxidize, reduce, or
decompose pollutants, resulting in the effective degradation of naphthalene [16]. NTP
can be produced using various approaches, including electron beams, corona discharge,
gliding arc discharge, dielectric barrier discharge, and microwave plasma [17,18]. Dielectric
barrier discharge (DBD) is one of the most commonly used methods to generate NTP
in atmospheric air [19]. Wu et al. [6] reported the effect of different background gases
on naphthalene decomposition in DBD. It was found that the O2 concentration was a
key influencing factor in the naphthalene decomposition and COx formation. Rdeolfi
et al. [20] studied the decomposition of naphthalene using a DBD reactor and found that
the introduction of water vapor in the discharge could further promote the naphthalene
degradation by OH atoms, which have better oxidation capacity than O atoms.

Compared with the process using plasma alone, the combination of DBD plasma and
a catalyst further promotes the decomposition of gas-phase pollutants. Furthermore, it
also addresses the problem of insufficient mineralization and reduces the generation of
undesirable by-products. Nguyen et al. [21] used a Ag/α -Al2O3 catalyst coupled with
DBD plasma to improve the conversion of soot simulant (naphthalene). The results showed
that the combined use of the catalyst and plasma solved the problem of the poor removal of
naphthalene at low operating temperatures. The plasma–catalyst completely decomposed
the naphthalene at 350 ◦C with specific input energy of 90 J/L. Wu et al. [4] used a DBD
reactor driven by a nanosecond pulse to oxidize naphthalene by combining plasma and a
TiO2/diatomite catalyst. The study showed that the addition of the TiO2/diatomite catalyst
effectively improved the conversion rate of naphthalene (up to 92%) and COx selectivity
(up to 40%), and significantly reduced the formation of aerosols and secondary volatile
organic compounds compared with the plasma-alone process. Therefore, it is necessary to
investigate the treatment of naphthalene by combining plasma and catalysts.

The transition metal oxides, which include Fe2O3, ZnO2, TiO2, CuO, Al2O3, and
MgO, can be widely used as catalysts due to their low cost, anti-toxicity, and high catalytic
activity [22–24]. Choi et al. [25] mentioned that Al2O3 was usually used as a catalyst because
of its thermally stable and relatively high thermal conductivity. Wu et al. [26] investigated
the effect of Fe2O3 on the chemical looping generation of NH3, and found that Fe2O3 can
reduce the activation energy of the N-desorption step due to its considerable catalytic effect
on the reaction. Bagheri et al. [27] found that TiO2, a photocatalyst, is widely applied in
industry due to its high physical and chemical stability, in addition to its high activity.

In this study, a plasma catalytic degradation platform was independently constructed.
A uniform and stable coaxial DBD plasma, in conjunction with three transition metal
oxides (Al2O3, Fe2O3, and TiO2), was used to degrade naphthalene. The synergy of
each catalyst with DBD was investigated based on discharge characteristics, removal
efficiency, mineralization, and CO2 selectivity. In this paper, the effects of initial naphthalene
concentration, total gas flow rate, discharge power, treatment time, and relative humidity
(RH) on mineralization and CO2 selectivity in the DBD reactor filled with the catalyst
are discussed. Finally, a discussion of the physical structure of the catalysts is presented,
in which the specific surface area, surface morphology, and microstructure are taken
into account.

2. Materials and Methods
2.1. Materials

In this study, three transition metal oxides (Al2O3, Fe2O3, and TiO2) were used as
catalysts to fill the discharge gap. All of these filling materials were purchased from
advanced material professional manufacture Co., Ltd. Their particle sizes were 1–3 mm,
and they had a purity of 99.9%. Naphthalene at a purity of 99.7% was provided by
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Shanghai Macklin Biochemical Co., Ltd. The materials are commercially available and
were untreated.

2.2. Experimental Setup

A schematic of the experimental setup used in the present study is shown in Figure 1.
The gas supplied by the system was composed of synthetic air (N2:O2 = 4:1) (99.99% purity).
The total gas flow rate was maintained at 500 mL/min and controlled by the mass flow
controller (MFC). In order to ensure the stability of the gas-phase naphthalene and the
water vapor input to the reactor, N2 in synthetic air was separated into three paths, two of
which were dedicated to carrying naphthalene and water vapor. The naphthalene vapor
was generated by placing a sealed quartz tube filled with 3 g naphthalene into a 30 ◦C
water bath pot. N2 was passed through the quartz tube as the carrier gas of the naphthalene
vapor, and the flow rate was set to 200 mL/min. A heating tape system (55~60 ◦C) was
equipped in the inlet gas line to prevent the condensation of the naphthalene vapor. The
naphthalene in the N2 carrier gas was collected by another quartz tube filled with 5 mL
of anhydrous ethanol, and the naphthalene concentration was measured by an ultraviolet
spectrophotometer (UV-Vis-NIR, Agilent Technologies). A portion of the carrier gas was
passed through a bubble bottle, which was placed in an insulated drum with cold water
and combined with another portion of the dry gas to control the proportion of humidity.
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Figure 1. Schematic diagram of the experimental setup.

The reactor used in this work was a coaxial DBD reactor consisting of a quartz tube
having an inner diameter of 12 mm, a thickness of 1.5 mm, and a length of 250 mm. A
piece of silver-plated copper (25 mm height) was wrapped around the quartz tube as a
high-voltage electrode. A stainless steel rod having a 6 mm diameter was inserted into the
quartz tube as a low-voltage electrode. The transition metal oxides (3 g) were placed in the
discharge gap with a packing length of 25 mm to constitute a plasma–catalyst reactor.

2.3. Testing Methods

An AC power supply (CTP-2000K, Nanjing Suman) was used to supply the DBD
reactor voltage with a fixed frequency of 12.6 kHz. The applied voltage and current wave-
forms were measured using a 1:1000 HV probe (P6015A, Tektronix) and a current probe
(TPP0500B, Tektronix), respectively. The electrical signals were recorded by a digital oscillo-
scope (OSC, MDO3034, Tektronix). The discharge power was determined by the product of



Catalysts 2022, 12, 740 4 of 15

the discharge energy and the driving frequency. The gas from the outlet of the DBD reactor
was analyzed using a gas chromatograph (GC 7900, Techcomp) equipped with a carbon
molecular sieve column and a PEG-20000 capillary column, two flame ionization detectors
(FID) for each column, and a methanation converter, where the methanation converter was
used to measure CO and CO2 concentrations. The specific surface area, microstructure, and
surface morphology of the catalysts were characterized using the Brunauer–Emmett–Teller
method, X-ray diffraction, and scanning electron microscopy, respectively.

The discharge power P (W) of the DBD reactor was calculated by Equation (1):

P(W) = f × E = f × C× S, (1)

where f is the driving frequency, C is the additional capacitance (0.22 µF in this study), and
S is the integral area of the closed Lissajous figure.

The removal efficiency of naphthalene (ηnaphthalene), mineralization (MCOx), CO2 se-
lectivity (SCO2 ), and COx concentration (CCOx ) are defined in Equations (2)–(5):

ηnaphthalene(%) =

(
Cin − Cout

Cin

)
× 100, (2)

MCOx(%) =
CCO2 + CCO

10Cnap
× 100, (3)

SCO2(%) =
CCO2

CCO2 + CCO
× 100, (4)

CCOx(ppm) = CCO2 + CCO, (5)

where Cin and Cout are the concentrations of naphthalene at the inlet and outlet, respectively.
CCO and CCO2 are the concentrations of produced CO and CO2, respectively. Cnap is the
naphthalene concentration passing through the reactor.

3. Results and Discussion
3.1. Discharge Characteristics

Figure 2 plots the voltage and current waveforms of the DBD reactor without a
catalyst and filled with an Al2O3 catalyst. The driving frequency was fixed at 12.6 kHz.
As shown in Figure 2, the discharge current filaments without a catalyst at 14 kV are
almost invisible because the gas was not broken down in the plasma discharge region
(Figure 2a). In comparison, the gas was broken down in the discharge gap, and the
discharge current filaments can be clearly observed in the DBD reactor filled with Al2O3 at
14 kV (Figure 2c). This phenomenon shows that the addition of catalysts can decrease the
breakdown voltage in the discharge gap. Furthermore, the discharge current filaments and
uniformity apparently increased with the introduction of the catalyst at 16 kV (Figure 2b,d).
These results occurred because Al2O3 has a higher dielectric constant than gas, and the
introduction of the catalyst reduces the discharge gap of gas [28]. As such, an intense
electric field is created in the areas of the contact points among the catalyst pellets, which
decreases the breakdown voltage of the discharge gap and increases the number of micro-
discharges [29]. As previously mentioned, the filling materials play a vital role in DBD. It is
necessary to explore the influence of filling materials in plasma technology experiments.

Figure 2c,d shows that the number of micro-discharges and the amplitude of the cur-
rent pulse increased with the increase in the applied voltage. The maximum amplitude of
the current pulse increased from 5 to 7 mA. The main discharge patterns in the DBD reactor
filled with Al2O3 are those of current filament discharge and surface discharge [30]. Many
current pulses are generated per half-cycle of the applied voltage in the same periodicity,
and the number of current pulses in the positive cycle is nearly equal to that in the negative
cycle [31,32].
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Figure 2. The voltage and current waveforms of discharge in the DBD reactor: (a) without a catalyst
at 14 kV; (b) without a catalyst at 16 kV; (c) filled with Al2O3 at 14 kV; (d) filled with Al2O3 at 16 kV.
(Driving frequency: 12.6 kHz; total gas flow rate: 500 mL/min; discharge gap: 3 mm).

An additional capacitor providing much greater capacitance that that of the DBD
reactor was used in series with the discharge circuit to accumulate the total charge during
one AC half-cycle; its voltage can be plotted versus the discharge voltage in the Lissajous
figure [31,33]. As shown in Figure 3, the closed curve area corresponds to the energy Ek
consumed per cycle of the operating voltage [33,34]. Moreover, at the same input voltage,
the Lissajous figure of the packing TiO2 has a larger area than the other catalysts, which
means that TiO2 can further enhance the discharge power. From the slopes of the graph, it
can be concluded that the TiO2 catalyst has greater effective capacitance Ceff [35]; that is,
the TiO2 catalyst has a stronger charge-transfer ability than the other two metallic oxides.
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3.2. The Influence of Different Filling Materials on Naphthalene Decomposition

The removal efficiency and the mineralization of naphthalene under different filling
materials are presented in Figure 4. It can be seen that the removal efficiency and the
mineralization of naphthalene in the DBD reactor filled with Al2O3, Fe2O3, and TiO2 are
higher than those without filling materials. When the applied voltage was 24 kV, the
removal efficiency and the mineralization of naphthalene in the DBD reactor without filling
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materials were 76.1% and 53.4%, respectively. At an applied voltage of 24 kV, the removal
efficiency of naphthalene in the DBD reactor filled with Al2O3, Fe2O3, and TiO2 was 82.6%,
84.5%, and 86.8%, respectively, and the mineralization of naphthalene in the DBD reactor
filled with Al2O3, Fe2O3, and TiO2 was 71.8%, 66.3%, and 71.7% at 24 kV, respectively.
This is because adding catalysts can increase the electric field intensity in the discharge
gap via the discharge characteristics discussed in the former section [29], and promote
the formation of more reactive oxygenated radicals [36]. In addition, the catalysts affect
the removal efficiency and mineralization of naphthalene due to the different catalytic
activity [36,37].
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Figure 4. The removal efficiency and the mineralization of naphthalene under different filling
materials. (Applied voltage: 24 kV; driving frequency: 12.6 kHz; initial naphthalene concentration:
21.5 ppm; total gas flow rate: 500 mL/min; discharge gap: 3 mm).

It is worth noting that carbon oxides and other by-products are produced during
the degradation of naphthalene by plasma. It is difficult to analyze these by-products
due to their complex composition [4,38]. The mineralization of pollutants reflects the pro-
portion of by-products formed. The degree of mineralization is higher, which means
fewer by-products are produced [39]. It is necessary to study the mineralization in
pollutant decomposition.

3.3. The Influence of Initial Naphthalene Concentration on Mineralization

Figure 5 shows the effect of initial naphthalene concentration (Ci) on the mineralization
and COx concentration in the DBD reactor filled with Al2O3 at 55 W. The mineralization
increased from 35.8% to 68.1% and the COx concentration increased from 60 to 286 ppm
when Ci rose from 17 to 42 ppm. It is worth mentioning that, although the concentration
of COx produced remained stable, the mineralization decreased with increasing Ci at
higher Ci (Ci > 42 ppm). The mineralization decreased from 68.1% to 32.8% when Ci
increased from 42 to 92 ppm. These results indicate that the increase in the number of
naphthalene molecules per unit time is conducive to the oxidation of naphthalene within
a suitable Ci range [40], which increases mineralization and COx concentration, while
the naphthalene decomposition reaction competes with the oxidation of intermediate
products. The oxidation of intermediate products is inhibited at higher Ci; thus, the
COx concentration no longer increases and the mineralization decreases as Ci increases
further [41]. As previously mentioned, the concentration of naphthalene plays a vital role
in carbon oxide formation and the deep oxidation of naphthalene. The oxidation reaction
of naphthalene (C10H8) is as follows [4]:

C10H8 + A*→ Intermediate products (R1)
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Intermediate products + A*→ CO + CO2 (R2)

where A* is an active species, which can be an O atom or/and •OH.
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Figure 5. Effect of initial naphthalene concentration on the mineralization and COx concentration
in a DBD reactor filled with Al2O3. (Discharge power: 55 W; driving frequency: 12.6 kHz; initial
naphthalene concentration: 21.5 ppm; total gas flow rate: 500 mL/min; discharge gap: 3 mm).

3.4. The Influence of Flow Rate on Mineralization and CO2 Selectivity

The influence of the total gas flow rate on the mineralization and CO2 selectivity in a
DBD plasma reactor having a discharge power of 55 W is depicted in Figure 6. The flow
rate of the naphthalene carrying gas was fixed at 200 mL/min, and the total gas flow rate
of the reactor was changed by adjusting the flow rate of the other gas paths. Figure 6
illustrates that the total gas flow rate significantly affects the formation of carbon oxides
during naphthalene decomposition, as evidenced by increasing mineralization from 51.6%
to 82.2% when the total gas flow rate increased from 0.2 to 1.0 L/min [35]. However,
the mineralization no longer significantly changed when the feeding gas was further
increased. These results indicate that the total gas flow rate of 1.0 L/min is an optimum
condition for the generation of carbon oxides in the DBD system. The mineralization of
naphthalene reached 82.2% when the naphthalene carrying gas flow rate was 200 mL/min
(Ci = 21 ppm) and the total gas flow rate was 1 L/min in the DBD reactor filled with Al2O3.
The gas penetration increased as the total gas flow rate increased; as a result, the gas has
greater contact with the surface of the filling materials and the oxidation of naphthalene
is greater [40]. This was also confirmed by the rise in CO2 selectivity as the total gas flow
rate increased, as shown in Figure 6. However, the gas was fully in contact with the filling
materials when the gas flow rate increased to 1 L/min, and the contact area between the
gas and the filling materials did not change with the further increase in the total gas flow
rate. Thus, the oxidation of naphthalene was no longer significantly changed, and the
mineralization tended to be relatively stable.
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3.5. The Influence of Discharge Time on Mineralization and CO2 Selectivity

Figure 7 shows the mineralization and CO2 selectivity under different filling materials
in the DBD reactor having a discharge power of 55 W. The mineralization and CO2 first
increases, and then stabilized with time. This is because some carbonaceous by-products
were attached to the catalyst and enriched in the process of naphthalene decomposition; this
increases the probability of collisions with the carbonaceous by-products and the oxidation
with active species [42]. Furthermore, as the discharge time increases, the high-energy
particles produced by plasma continuously bombard the catalyst, enhancing the desorption
of the carbonaceous by-products on the catalyst. The reaction eventually achieves dynamic
equilibrium through the continuous cycle of adsorption and desorption on the catalyst
surface [43].
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Figure 7. Effect of time on (a) the mineralization and (b) the CO2 selectivity in a DBD reactor
filled with Al2O3, Fe2O3, and TiO2. (Discharge power: 55 W; driving frequency: 12.6 kHz; initial
naphthalene concentration: 21.5 ppm; total gas flow rate: 500 mL/min; discharge gap: 3 mm).

As shown in Figure 7a, the mineralization in the DBD reactor filled with Fe2O3 was
almost the same as that filled with Al2O3, and both were lower than that of the DBD reactor
filled with TiO2. However, the CO2 selectivity of the DBD reactor filled with Fe2O3 and TiO2
was better than that of the DBD reactor filled with Al2O3 (Figure 7b). These results indicate
that Fe2O3 and TiO2 have a better oxidation performance during the reaction than Al2O3.
In addition, TiO2 shows more apparent advantages in carbon oxide formation than the
other catalysts. This may be due to the fact that TiO2 is a photocatalyst, and can therefore
use the ultraviolet light generated by the discharge to generate electron–hole pairs that
promote the production of various strong active species, such as •OH and •HO2 [44]. Thus,
the decomposition of naphthalene can be promoted. The active species can be produced
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via the following reactions (see (R3)–(R9)) [44,45]. These findings indicate that the catalytic
performance of filling materials plays a vital role in carbon oxide formation.

TiO2 + hv→ e− + h+ (R3)

h+ + H2O→ OH− + H+ (R4)

h+ + OH− → •OH (R5)

e− + O2 → O2
− (R6)

O2
− + H+ → •HO2 (R7)

HO2 + H+ + e− → •H2O2 (R8)

H2O2 + e− → •OH + OH− (R9)

3.6. The Influence of Discharge Power on Mineralization and CO2 Selectivity

The formation of the active species is closely related to the discharge power, which
is an important electrical parameter [46]. The mineralization and CO2 selectivity under
three different catalysts at the treatment time of 7 min are displayed in Figure 8. It can be
seen that the mineralization increased with increasing discharge power when the discharge
power was not higher than 30 W under the three different catalysts. The electron energy
increases with an increase in the discharge power, which increases the number of active
species [40] and promotes collisions between active particles and background gas molecules
in the discharge zone [38]. Thus, the oxidation of naphthalene is enhanced. Furthermore,
the mineralization in the DBD reactor filled with Fe2O3 was the highest. As a p-type
multivalent metal oxide, the Fe2O3 catalyst is expected to have high activity due to its
highly mobile chemisorbed oxygen [47].
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However, when the discharge power was not higher than 30 W, the CO2 selectivity
decreased with the increase in discharge power in the DBD reactors filled with TiO2 and
Al2O3 (Figure 8b). The increase in energy input intensifies the bombardment of the catalyst
by the active particles, which results in further desorption of intermediate products on
the catalyst [38]. Thus, the number of intermediate products increases in the reaction
region, which reduces the number of active substances available for CO2 production and
the selectivity of CO2 [40]. In contrast, the CO2 selectivity changed little in the DBD reactor
filled with Fe2O3 (Figure 8b). This is because the Fe2O3 catalyst has more catalytic activity,
and thus has a strong oxidation capacity for naphthalene; this was also confirmed by the
mineralization in the DBD reactor filled with Fe2O3. The discharge wire covered the surface
of the electrode and the micro-discharge quantity did not increase significantly when the
discharge power increased to a certain value [48]. At this time, the generation of carbon
oxides tended to be stable.

3.7. The Influence of Relative Humidity on Mineralization and CO2 Selectivity

Figure 9 shows the mineralization and CO2 selectivity as a function of RH at a dis-
charge power of 55 W and an initial naphthalene concentration of 28 ppm. The mineral-
ization slightly increased when RH ≤ 5% but decreased with the further increase in RH
in the DBD reactor filled with Fe2O3 (Figure 9). The injection of a small amount of water
vapor provides a large amount of •OH for improving naphthalene oxidation [49]. However,
undissociated water molecules adhere to the catalyst as RH continues to increase, resulting
in a decrease in the number of active sites for naphthalene oxidation and a drop in the
formation of carbon oxides [50]. This can be illustrated by the change in CO2 selectivity in
the DBD reactor filled with Fe2O3, as shown in Figure 9b. Although RH had little influence
on mineralization, which remained at about 57.9%, the introduction of water vapor pro-
moted the oxidation of CO so that the CO2 selectivity increased in the DBD reactor filled
with Al2O3.
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It is worth noting that the addition of steam increased the mineralization and the
increase was most obvious when RH was 5% in the DBD reactor filled with TiO2. Compared
with the DBD reactor filled with Al2O3, the mineralization of naphthalene in the DBD
reactor filled with TiO2 was higher and its CO2 selectivity was also slightly higher. These
phenomena can be attributed to the injection of a small amount of water vapor, which
provides a large amount of •OH for the reaction. The •OH can be produced via the
following reactions [51,52]:

H2O + e− → •H + •OH + e− (R10)

O2 + e− → O3(P) + O1(D) +e− (R11)

O1(D) + H2O→ 2•OH (R12)

The •OH is highly active in naphthalene decomposition, contributing to enhanced
mineralization and CO2 selectivity. Furthermore, although the enhancement of RH causes
undissociated water molecules to adhere to the catalyst, TiO2 is a photocatalyst that can
effectively use the ultraviolet light generated by the discharge to generate electron–hole
pairs [44]. The holes generate •OH with H2O, and the electrons also generate •OH with
O2 [53], which promotes the decomposition of water and overcomes the adverse effects of
water to a certain extent.

3.8. The Characterization of the Catalysts

The three transition metal oxides (Al2O3, Fe2O3, and TiO2) were examined by XRD
analysis. As presented in Figure 10, diffraction peaks are compared with the Inorganic
Crystal Structure Database (ICSD) data to obtain the crystal parameters of the sample
surface [54]. The diffraction peaks of the Al2O3 catalyst can be observed at 2θ of 25.6◦,
35.2◦, 43.4◦, 57.6◦, and 76.9◦, corresponding to the (012), (104), (113), (202), (116), and
(1010) crystal facets. The peaks of the Fe2O3 catalyst at 33.4◦, 35.8◦, 49.8◦, 54.5◦, and 64.4◦

correspond to (104), (110), (024), (116), and (300) crystal planes. The Ti2O catalyst shows
diffraction angles (25.3◦, 33.5◦, 48.0◦, 62.7◦, and 75.0◦) which correlate to the (101), (110),
(200), (204), and (215) crystal planes [55].
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Figure 10. X-ray diffraction (XRD) patterns of the (a) Al2O3 catalyst, (b) Fe2O3 catalyst, and
(c) TiO2 catalyst.

Table 1 shows BET data analysis of the three catalyst samples. The specific surface area,
pore volume, and pore size of the catalysts are summarized in the table. The metal oxides
having weak adsorption capacity are used for naphthalene degradation, which exclude the
influence of naphthalene adsorption on the catalyst. Among these, Al2O3 and Fe2O3 have
a similar specific surface area and different pore size, and Al2O3 and TiO2 have a similar
pore size and different specific surface area. As can be seen from the table, Fe2O3 shows
a smaller pore size than the other catalysts; thus, the Fe2O3 catalyst is more negatively
affected because undissociated water molecules cover its surface, as shown when exploring
the influence of RH (Figure 9a) [56]. In addition, TiO2 shows a higher specific surface area,
pore volume, and pore size than the other catalysts; these characteristics are conducive
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to the exposure of the active sites, and promote the photocatalytic performance of the
catalyst [55].

Table 1. BET data analysis of the three catalyst samples.

Catalysts Specific Surface
Area (m2/g) Pore Volume (cm3/g) Pore Size (nm)

Al2O3 0.3056 0.000629 17.7985
Fe2O3 0.7785 0.001263 7.0580
TiO2 6.7880 0.025519 19.7173

BET: Brunauer–Emmett–Teller.

The surface morphology of the three samples was studied using SEM, as shown in
Figure 11. The samples have micron-sized pores, as seen from the SEM images. The
Al2O3 catalyst possesses a smooth surface and a structure having fewer pores, as shown
in Figure 11a,d. The surface of the Fe2O3 catalyst has loose porosity, and its pores are
large (Figure 11b,e). The TiO2 catalyst has a coarse surface and a finer porous structure
than the other two catalysts (Figure 11c,f). The porous structure of the TiO2 catalyst is
conducive to the exposure of the active sites, thus promoting the photocatalytic perfor-
mance of the catalyst. The analysis of the catalysts’ specific surface area also confirms this
viewpoint, as shown in Table 1. Thus, TiO2 shows more apparent advantages in terms of
the decomposition and mineralization of naphthalene than the other two catalysts.
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4. Conclusions

In this study, an AC power supply-excited packed-bed DBD in synthetic air was used
to oxidate naphthalene. The results show that the filling materials, initial naphthalene
concentration, gas flow rate, discharge power, treatment time, and RH all have certain
effects on the decomposition of naphthalene and the generation of carbon oxides. The
addition of filling materials reduces the breakdown voltage in the discharge gap and
increases the number of micro-discharges. Furthermore, the catalytic performance of the
filling materials plays a vital role in naphthalene decomposition. In general, TiO2 has more
obvious advantages than the other two catalysts in terms of the reaction because of its
photocatalytic properties and large specific surface area. The mineralization reached 82.2%
at a discharge power of 55 W when Ci was 21 ppm and the total gas flow rate was 1 L/min
in the DBD reactor filled with Al2O3.

As the treatment time increased, the reaction eventually achieved a dynamic equilib-
rium through the continuous cycle of adsorption and desorption on the catalyst surface
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in the discharge process. The discharge wire covered the electrode surface and the micro-
discharge quantity did not increase significantly when the discharge power increased to a
certain value. The effect of humidity on the discharge was related to the proportion of the
introduced water vapor and the type of catalyst in the reactor. Fe2O3 had a positive effect on
the naphthalene oxidation when the amount of water vapor was low, but a negative effect
when the water vapor increased, due to its small pore size. The TiO2 catalyst can overcome
the adverse effects of water molecule attachment due to its photocatalytic properties and
porous structure.
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